18.09.2019

Производство преобразование распределение накопление и передача энергии. Что такое ЛЭП. Передача и распределение электрической энергии


Электроэнергетической системой называется электрическая часть энергосистемы и питающиеся от нее , объединенные общностью процесса производства, передачи, распределения и потребления электрической энергии.

В настоящее время в составе 6 объединенных энергосистем работает параллельно 74 районных систем.

Электроэнергетической сетью называется совокупность электроустановок для передачи и распределения электрической энергии, состоящая из подстанций, распределительных устройств, токопроводов, воздушных и кабельных линий электропередачи, работающих на определенной территории.

Подстанцией называется электроустановка, служащая для преобразования и распределения электроэнергии и состоящая из трансформаторов или других преобразователей энергии, распределительных устройств до и выше 1000 В, аккумуляторной батареи устройств управления и вспомогательных сооружений.

Распределительным устройством называется электроустановка, служащая для приема и распределения электроэнергии и содержащая коммутационные аппараты, сборные и соединительные шины, вспомогательные устройства (компрессорные, аккумуляторные и др.), а также устройства защиты, автоматики и измерительные приборы.

Линией электропередачи (ЛЭП) любого напряжения (воздушной или кабельной) называется электроустановка, предназначенная для передачи электрической энергии на одном и том же напряжении без трансформации.

Рис. 1. Передача и распределение электрической энергии

По ряду признаков электрические сети подразделяются на большое количество разновидностей, для которых применяются различные методы расчета, монтажа и эксплуатации.

Электрические сети делятся:

4. соблюдением технологии электромонтажных работ;

5. своевременным и качественным выполнением правил технической эксплуатации.

Живучесть электрической сети - это свойство выполнять свое назначение в условиях разрушающих воздействий в том числе и в боевой обстановке при воздействиях средств поражения противника.

Живучесть достигается:

1. использованием конструкций, которые наименее подвержены разрушению при воздействии поражающих факторов оружия противника;

2. специальной защитой сети от поражающих факторов;

3. четкой организацией ремонтно-восстановительных работ. Живучесть - основное тактическое требование.

Экономичность - это минимум затрат на сооружение и эксплуатацию сети при условии выполнения требований надежности и живучести.

Экономичность обеспечивается:

1. применением типовых серийно выпускаемых и стандартных конструкций;

2. унификацией материалов и оборудования;

3. применением недефицитньгх и недорогих материалов;

4. возможностью дальнейшего развития, расширения и усовершенствования в процессе эксплуатации.

И. И. Мещеряков




Страница 1 из 42

М. Б. Зевин, А. Н. Трифонов

В книге рассмотрены электротехнические устройства и кабельные присоединения к ним, основы электромонтажных работ. Большое внимание уделено механизированной прокладке и описанию механизмов и приспособлений, разработанных и внедренных в практику в последние годы, а также эксплуатации и монтажу кабельных линий.

Глава I. Производство и распределение электрической энергии

§ 1. Электрические станции

Электрической станцией (электростанцией) называется совокупность устройств и оборудования, используемых для производства электрической энергии. На электростанциях электрическую энергию получают благодаря использованию энергоносителей или преобразованию различных видов энергии. Электростанции по виду используемой в них энергии подразделяются на тепловые, атомные и гидроэлектрические .

В тепловых электростанциях в топках котлов сжигается уголь, нефть или природный газ. Получаемая при этом теплота превращает находящуюся в котлах воду в пар, приводящий во вращение роторы паровых турбин и соединенные с ними роторы генераторов, в которых механическая энергия турбин преобразуется в электрическую.

На атомных электростанциях процессы преобразования энергии пара в механическую, а затем в электрическую энергию аналогичны процессам, происходящим в тепловых электростанциях, и отличаются от последних тем, что в них «топливом» служат радиоактивные элементы или их изотопы, выделяющие теплоту в процессе реакции распада

На гидроэлектростанциях энергия потока воды превращается в электрическую энергию.
Существуют также ветро -, гелиоэлектростанции, геотермальные , приливные и другие электростанции, преобразующие в электрическую энергию соответственно перемещающиеся потоки воздуха, тепло солнечных лучей и недр Земли, энергию морских и океанических приливов.

Паротурбинные тепловые электростанции подразделяют на конденсационные и теплофикационные. На конденсационных станциях тепловая энергия полностью преобразуется в электрическую, а на теплофикационных, называемых теплоэлектроцентралями (ТЭЦ) , тепловая энергия частично превращается в электрическую, а в основном расходуется на снабжение промышленных предприятий и городов паром и горячей водой. Поэтому ТЭЦ сооружают вблизи потребителей тепловой энергии. Конденсационные паротурбинные электростанции, как правило, строят недалеко от места добычи твердого топлива - угля, торфа, горючих сланцев. При строительстве гидроэлектростанций (ГЭС) решается комплекс задач, связанных не только с выработкой электрической энергии и снабжением ею потребителей, но и с улучшением судоходства рек, орошения засушливых земель, водоснабжения и др.

Сооружение атомных электростанций (АЭС) особенно целесообразно в районах, где нет запасов местного топлива и рек с большими гидроэнергетическими ресурсами. Они работают на ядерном горючем, которое потребляется в незначительных количествах, поэтому его доставка на электростанцию не вызывает больших транспортных затрат.

Передача энергии, выработанной мощными ГЭС, ТЭЦ и АЭС в электросеть для снабжения потребителей, как правило, осуществляется по линиям высокого напряжения (110 кВ и выше) через повысительные трансформаторные подстанции.

Для рационального распределения нагрузки между электростанциями, наиболее экономичной выработки электрической энергии, лучшего использования установленной мощности станций, повышения надежности электроснабжения потребителей и отпуска им электрической энергии с нормальными качественными показателями по частоте и напряжению широко осуществляется параллельная работа электростанций на общую электрическую сеть районной энергетической системы. В ее состав кроме электростанций входят также линии электропередачи различных напряжений, сетевые трансформаторные подстанции и тепловые сети, связанные общностью режима производства и распределения электрической и тепловой энергии. Многие районные энергетические системы Советского Союза объединены для параллельной работы в общую электрическую сеть и образуют крупные энергосистемы: Единую энергетическую систему (ЕЭС) европейской части СССР, Объединенную энергосистему Сибири, Объединенную энергосистему Казахстана и др.

Дальнейшим этапом развития энергетики СССР будет объединение энергосистем в Единую энергосистему Советского Союза: Энергосистемы ряда социалистических стран объединены в энергосистему «Мир».

Электрические сети

Для передачи и распределения электрической энергии от центров питания электростанций к потребителям служат электрические сети, которые состоят из распределительных устройств (РУ) и воздушных или кабельных линий различных напряжений.

Центром питания (ЦП) называется распределительное устройство генераторного напряжения электростанций или РУ вторичного напряжения понизительной подстанции энергосистемы, к которому присоединены распределительные сети данного района.

Электрические сети могут быть постоянного и переменного тока. К сетям постоянного тока в основном относятся сети электрифицированных железных дорог, метрополитена, трамвая, троллейбуса, а также некоторые электрические сети химических, металлургических и других промышленных предприятий. Электроснабжение всех остальных объектов промышленности, сельского хозяйства, коммунального и бытового назначения ведется трехфазным переменным током частотой 50 Гц.

Электрическая энергия, вырабатываемая турбогенераторами и гидрогенераторами, имеет напряжения 6000 или 10000 В, а иногда 20000 В. Электрическую энергию такого напряжения передавать на большие расстояния экономически нецелесообразно из-за значительных электрических потерь. Поэтому ее повышают до 110, 220 и 500 кВ на повысительных трансформаторных подстанциях, сооружаемых при электростанциях, а затем перед поступлением потребителям понижают до 35, 10 и 6 кВ на понизительных трансформаторных подстанциях.

Упрощенная схема распределения энергии от электростанций до потребителей приведена на рис. 1. Из приведенной схемы видно, что электростанции А, Б, В, Г и Д объединены линиями электропередачи (ЛЭП) напряжением 220 кВ. Передача и распределение электрической энергии осуществляются на напряжениях 220, 110, 35 и 10 кВ. В схеме электроснабжения предусматривается резервирование подстанций на всех уровнях напряжений, что позволяет избежать перебоев в подаче электрической энергии.

Рис 1. Схема энергосистемы:
А - Д - электростанции, ТП - трансформаторные подстанции, I - III - повышающие подстанции, 1-4 - понижающие подстанции

От РУ понижающих подстанций отходят для передачи электрической энергии потребителям воздушные или кабельные линии. Большинство промышленных предприятий получают энергию от энергетических систем и лишь в редких случаях от собственных заводских электростанций. Электроснабжение и распределение энергии в пределах предприятия от собственных электростанций производится в основном на генераторном напряжении 6 и 10 кВ.

Схема электроснабжения и распределения энергии зависит от расстояния между предприятием и источником питания, потребляемой мощности, территориального размещения нагрузок, требований надежного и бесперебойного питания электроприемников, а также от числа приемных и распределительных пунктов на предприятии.

Наличие больших нагрузок, сосредоточенных на определенных участках промышленных предприятий и в отдельных районах крупных городов, ускоряет внедрение в систему электроснабжения глубоких вводов* высокого напряжения. Благодаря этому значительно сокращаются кабельные распределительные сети и экономится кабельная продукция. Глубокие вводы сооружают, как правило, воздушными линиями на напряжения 35, 110, 220 и 330 кВ.

* Глубокий ввод - это канализация высокого напряжения от энергосистемы непосредственно к центру нагрузок.

Электрические сети делятся: на нерезервируемые, когда электроприемники получают электрическую энергию от одного источника питания, и резервируемые, когда электроснабжение ведется от двух или более источников питания. Производство, передача и распределение электрической энергии сопровождаются потерями ее во всех элементах сети; кабельных и воздушных линиях, трансформаторах, высоковольтных аппаратах и др.

Общие потери электрической энергии, включая расходы на собственные нужды, доходят до 10%, из них наибольшие потери приходятся на питающие сети от центров питания до распределительных пунктов.

Для снижения потерь электрической энергии и определения участков и элементов сети с наибольшими потерями производят измерения, расчеты и оценки рационального построения и эксплуатации сети. На основании этих данных принимают меры для снижения потерь электрической энергии, которые в основном сводятся к переводу сети на повышенное напряжение (если это экономически целесообразно), отключению малозагруженных трансформаторов в период минимальных нагрузок.

§ 3. Потребители электрической энергии

Основными характеристиками потребителей электрической энергии являются: расчетная нагрузка, режим работы установки, надежность электроснабжения. По расчетной нагрузке и режиму работы потребителя определяются мощности питающих трансформаторов, сечения кабельных и воздушных линий.

По обеспечению надежности электроснабжения электроприемники делятся на три категории.
К первой категории относятся электроприемники, нарушение электроснабжения которых влечет за собой опасность для жизни людей, значительный ущерб народному хозяйству, повреждение оборудования, массовый брак продукции, расстройство сложного технологического процесса, нарушение режима работы особо важных объектов (доменных и мартеновских печей, некоторых цехов химических предприятий, электрифицированных железных дорог, метро).

Ко второй категории относятся электроприемники, перерыв в электроснабжении которых связан с массовым недоотпуском продукции, простоем рабочих механизмов и промышленного транспорта, нарушением нормальной работы значительного количества городских предприятий (швейные и обувные фабрики) и электротранспорта.

К третьей категории относятся электроприемники, не входящие в первую и вторую категории.
Перерыв в электроснабжении электроприемников первой категории может быть допущен лишь на время автоматического ввода аварийного питания, второй категории - на время, необходимое для включения резервного питания дежурным персоналом или выездной оперативной бригадой, и для приемников третьей категории - на время, необходимое для ремонта или замены поврежденного элемента системы электроснабжения, но не более суток.

В соответствии с указанными требованиями надежности электроснабжения питание электроприемников первой и второй категорий осуществляется от двух независимых источников, а третьей - от одной питаюшей линии без обязательного резервирования.

Электроснабжение промышленных предприятий и городов производится через РУ и подстанции, максимально приближенные к потребителям.

Распределительным устройством (РУ) называется электроустановка, служащая для приема и распределения электрической энергии и содержащая коммутационные аппараты, сборные и соединительные шины, вспомогательные устройства (компрессорные, аккумуляторные и др.), а также устройства защиты, автоматики и измерительные приборы. Распределительные устройства сооружают открытого исполнения (ОРУ), когда основное оборудование расположено на открытом воздухе, и закрытого (ЗРУ), когда оборудование расположено в здании.

Электроустановка, служащая для преобразования и распределения электрической энергии и состоящая из трансформаторов или других преобразователей энергии, РУ, устройств управления и вспомогательных сооружений, называется подстанцией. В зависимости от преобладания той или иной функции подстанций они называются трансформаторными (ТП) или преобразовательными.

Распределительное устройство, предназначенное для приема и распределения электрической энергии на одном напряжении без преобразования и трансформации и не входящее в состав подстанции, называется распределительным пунктом (РП).


Рис. 2. Двухступенчатая радиальная схема питания: ЦРП - центральная распределительная подстанция, ТП1 , РП2 - распределительные подстанции, ТП1 , ТП 2- трансформаторные подстанции

Для распределения электрической энергии при напряжении 6 и 10 кВ на предприятиях и в городах применяют два вида схем: радиальную (рис. 2) и магистральную (рис. 3). Эти схемы имеют много разновидностей, которые определяются главным образом категорией электроприемников, территориальным размещением и мощностью подстанций и пунктов приема энергии. Качество электрической энергии характеризуется постоянством частоты и стабильностью напряжения у потребителей в пределах установленных норм. Частота задается электростанциями для всей энергосистемы в целом.

Рис. 3. Магистральные схемы: а - одиночная с односторонним питанием, б - кольцевая; РП - распределительная подстанция, ТП1 - ТП5 - трансформаторные подстанции.

Уровень напряжения изменяется в зависимости от конфигурации сети по мере приближения к потребителю, условий загрузки оборудования и расхода электрической энергии потребителями. Номинальное напряжение потребителей указывается в таблицах.

Напряжения электросетей и электрооборудования стандартизованы (табл. 1). Для компенсации потери напряжения в сетях номинальные напряжения генераторов и вторичных обмоток трансформаторов принимаются на 5 % выше номинальных напряжений электроприемников.

Таблица 1. Номинальные напряжения (до 1000 В) электрических сетей и присоединяемых к ним источников и приемников энергии

Напряжение при постоянном токе, В

Напряжение при переменном токе, В

источников и преобразователей

сетей и приемников

однофазном

трехфазном

однофазном

трехфазном

источников и преобразователей

сетей и приемников

Примечание. Номинальное напряжение (свыше 1000 В) электрических сетей и приемников, генераторов и синхронных компенсаторов, а также наибольшее рабочее напряжение электрооборудования приведены в ГОСТ 23366-78.

Правила устройства электроустановок определяют уровни напряжения и порядок его регулирования. Отклонение напряжения на зажимах электродвигателей от номинального, как правило, допускается не более ± 15 %. Снижение напряжения у наиболее удаленных ламп внутреннего рабочего освещения промышленных предприятий и общественных зданий может быть не более 2,5 %, а увеличение не более 5 % от номинального.

Контрольные вопросы
1. Перечислите названия электростанций по видам используемых них энергоносителей.
2. Каковы технические и экономические преимущества сооружения ТЭЦ, ГЭС и АЭС?
3. Из каких элементов состоит энергосистема?
4 Что входит в состав электрической сети?
5. Что называется РУ, ТП, РП?
6. Что называется глубоким вводом?
7. В каких элементах электрической сети имеются наибольшие потери электрической энергии?
8. На какие категории делятся потребители электрической энергии?

Производство электроэнергии в мире в наши дни играет огромную роль. Она - стержень государственной экономики любой страны. Гигантские суммы денег ежегодно вкладываются в производство и использование электроэнергии и научные исследования, связанные с этим. В повседневной жизни мы постоянно сталкиваемся с ее действием, поэтому современный человек должен иметь представление об основных процессах ее выработки и потребления.

Как получают электроэнергию

Производство электроэнергии осуществляется из других ее видов при помощи специальных устройств. Например, из кинетической. Для этого применяют генератор - прибор, преобразующий механическую работу в электрическую энергию.

Другие существующие способы ее получения - это, например, преобразование излучения светового диапазона фотоэлементами или солнечной батареей. Или производство электроэнергии путем химической реакции. Или использование потенциала радиоактивного распада либо теплоносителя.

Вырабатывают ее на электростанциях, которые бывают гидравлическими, атомными, тепловыми, солнечными, ветряными, геотермальными и проч. В основном все они работают по одной схеме - благодаря энергии первичного носителя определенным устройством вырабатывается механическая (энергия вращения), передаваемая затем в специальный генератор, где и вырабатывается электроток.

Основные виды электростанций

Производство и распределение электроэнергии в большинстве стран ведутся путем строительства и эксплуатации ТЭС - тепловых электростанций. Их функционирование требует большого запаса органического топлива, условия добычи которого из года в год усложняются, а стоимость растет. Коэффициент полезной отдачи топлива в ТЭС не слишком высок (в пределах 40%), а число экологически грязных отходов велико.

Все эти факторы снижают перспективность такого способа выработки.

Наиболее экономично производство электроэнергии гидроэнергетическими установками (ГЭС). КПД их доходит до 93%, себестоимость 1 кВт/ч впятеро дешевле других способов. Природный источник энергии таких станций практически неисчерпаем, количество работников - минимально, ими легко управлять. По развитию данной отрасли наша страна - признанный лидер.

К сожалению, темпы развития ограничены серьезными затратами и длительными сроками строительства ГЭС, связанными с их удаленностью от больших городов и магистралей, сезонным режимом рек и трудными условиям работы.

Кроме того, гигантские водохранилища ухудшают экологическую ситуацию - затапливают ценные земли вокруг водоемов.

Использование атомной энергии

В наши дни производство, передача и использование электроэнергии производятся атомными электростанциями - АЭС. Они устроены практически по тому же принципу, что и тепловые.

Главный их плюс - малое количество требующегося топлива. Килограмм обогащенного урана по своей производительности эквивалентен 2,5 тыс. тонн угля. Именно поэтому АЭС теоретически можно строить в любом районе независимо от наличия близлежащих топливных ресурсов.

В настоящее время запасы урана на планете значительно больше, чем минерального горючего, а воздействие АЭС на окружающую природу минимально при условии безаварийной работы.

Огромный и серьезный недостаток АЭС - вероятность страшной аварии с непредсказуемыми последствиями, отчего для их бесперебойной работы требуются очень серьезные меры по обеспечению безопасности. К тому же производство электроэнергии на АЭС регулируется с трудом - как для их запуска, так и для полной остановки понадобится несколько недель. И практически отсутствуют технологии утилизации опасных отходов.

Что такое электрический генератор

Производство и передача электроэнергии осуществимы благодаря электрогенератору. Это устройство преобразования любых видов энергии (тепловой, механической, химической) в электрическую. Принцип его действия построен на процессе электромагнитной индукции. ЭДС индуктируется в проводнике, который движется в магнитном поле, пересекает его силовые магнитные линии. Таким образом, проводник может служить источником электроэнергии.

Основа любого генератора - система электромагнитов, формирующих магнитное поле, и проводников, которые его пересекают. Большинство всех генераторов переменного тока основаны на применении вращающегося магнитного поля. Его неподвижную часть именуют статором, подвижную - ротором.

Понятие трансформатора

Трансформатор - электромагнитное статическое устройство, предназначенное для преобразования одной системы тока в другую (вторичную) при помощи электромагнитной индукции.

Первые трансформаторы в 1876 г. были предложены П. Н. Яблочковым. В 1885 г. венгерскими учеными разработаны промышленные однофазные приборы. В 1889-1891 гг. изобретен трехфазный трансформатор.

Простейший однофазный трансформатор состоит из стального сердечника и пары обмоток. Применяются они для распределения и передачи электроэнергии, ведь генераторы электростанций вырабатывают ее при напряжении от 6 до 24 кВт. Передавать ее выгодно при больших значениях (от 110 до 750 кВт). Для этого на электростанциях устанавливают повышающие трансформаторы.

Как используется электроэнергия

Ее львиная доля идет на снабжение электричеством предприятий промышленности. Производство потребляет до 70% всей вырабатываемой в стране электроэнергии. Эта цифра значительно разнится для отдельных регионов в зависимости от климатических условий и уровня индустриального развития.

Другая статья расходов - снабжение электротранспорта. От электросетей ЭЭС работают подстанции городского, междугороднего, промышленного электротранспорта, использующего постоянный ток. Для транспорта на переменном токе применяются понижающие подстанции, которые тоже потребляют энергию электростанций.

Другой сектор потребления электроэнергии - коммунально-бытовое снабжение. Потребителями здесь являются здания жилых районов любых населенных пунктов. Это дома и квартиры, административные здания, магазины, заведения образования, науки, культуры, здравоохранения, общественного питания и т. д.

Как происходит передача электроэнергии

Производство, передача и использование электроэнергии - три кита отрасли. Причем передать полученную мощность потребителям - самая сложная задача.

"Путешествует" она главным образом посредством ЛЭП - воздушных линий электропередачи. Хотя все чаще начинают применять кабельные линии.

Вырабатывается электроэнергия мощными агрегатами гигантских электростанций, а потребителями ее служат относительно небольшие приёмники, разбросанные по обширной территории.

Существует тенденция концентрировать мощности, связанная с тем, что с их увеличением уменьшаются относительные затраты возведения электростанций, а следовательно, и себестоимость получаемого киловатт-часа.

Единый энергокомплекс

На принятие решения о размещении крупной электростанции влияет ряд факторов. Это вид и количество имеющихся в наличии ресурсов, доступность транспортировки, климатические условия, включенность в единую энергосистему и т. д. Чаще всего электростанции строятся вдали от крупных очагов потребления энергии. Эффективность ее передачи на немалые расстояния влияет на успешную работу единого энергетического комплекса огромной территории.

Производство и передача электроэнергии должны происходить с минимальным количеством потерь, главная причина которых - нагрев проводов, т. е. увеличение внутренней энергии проводника. Для сохранения передаваемой на большие расстояния мощности нужно пропорционально увеличить напряжение и уменьшить в проводах силу тока.

Что такое ЛЭП

Математические расчеты показывают, что величина потерь в проводах на нагрев обратно пропорциональна квадрату напряжения. Именно поэтому электроэнергию на большие расстояния передают при помощи ЛЭП - высоковольтных линий электропередач. Между их проводами напряжение исчисляется десятками, а порой сотнями тысяч вольт.

Электростанции, расположенные неподалеку друг от друга, объединяются в единую энергосистему именно при помощи ЛЭП. Производство электроэнергии в России и ее передача ведутся путем централизованной энергетической сети, в которую входит огромное количество электростанций. Единое управление системой гарантирует постоянную подачу потребителям электроэнергии.

Немного истории

Как формировалась единая электрическая сеть в нашей стране? Попробуем заглянуть в прошлое.

До 1917 года производство электроэнергии в России велось недостаточными темпами. Страна отставала от развитых соседей, что отрицательно сказывалось на экономике и обороноспособности.

После Октябрьской революции проект электрификации России разрабатывался Государственной комиссией по электрификации России (сокращенно ГОЭЛРО), возглавляемой Г. М. Кржижановским. С ней сотрудничали более 200 ученых и инженеров. Контроль осуществлялся лично В. И. Лениным.

В 1920 г. был готов «План электрификации РСФСР», рассчитанный на 10-15 лет. Он включал восстановление прежней энергосистемы и строительство 30 новых электростанций, оборудованных современными турбинами и котлами. Главная идея плана - задействовать гигантские отечественные гидроэнергоресурсы. Предполагались электрификация и коренная реконструкция всего народного хозяйства. Упор делался на рост и развитие тяжёлой промышленности страны.

Знаменитый план ГОЭРЛО

Начиная с 1947 года СССР стал первым в Европе и вторым в мире производителем электроэнергии. Именно благодаря плану ГОЭЛРО была сформирована в кратчайшие сроки вся отечественная экономика. Производство и потребление электроэнергии в стране вышло на качественно новый уровень.

Выполнение намеченного стало возможным благодаря сочетанию сразу нескольких важных факторов: высокого уровня научных кадров страны, сохранившегося с дореволюционных времен материального потенциала России, централизации политической и экономической власти, свойству российского народа верить "верхам" и воплощать провозглашаемые идеи.

План доказал эффективность советской системы централизованной власти и государственного управления.

Результаты плана

В 1935 году принятая программа была выполнена и перевыполнена. Построено 40 электростанций вместо запланированных 30, введено мощностей почти втрое больше, чем предусматривалось по плану. Возведено 13 электроцентралей мощностью по 100 тыс. кВт каждая. Общая мощность российских ГЭС составила около 700 000 кВт.

В эти годы были возведены крупнейшие объекты стратегического значения, такие как всемирно известная Днепровская ГЭС. По суммарным показателям Единая советская энергосистема превзошла аналогичные системы самых развитых стран Нового и Старого Света. Производство электроэнергии по странам Европы в те годы значительно отставало от показателей СССР.

Развитие села

Если до революции в деревнях России электричества практически не существовало (небольшие электростанции, устанавливаемые крупными землевладельцами не в счет), то с реализацией плана ГОЭЛРО благодаря использованию электроэнергии сельское хозяйство получило новый толчок к развитию. На мельницах, лесопилках, зерноочистительных машинах появились электродвигатели, что способствовало модернизации отрасли.

Помимо того, электричество прочно вошло в быт горожан и селян, в буквальном смысле вырвав "темную Россию" из мрака.

Технологическая карта урока.

Урок 15. Производство, преобразование, распределение, накопление и передача энергии как технология

Задачи урока:

Формирование понятий: производство, преобразование, распределение, накопление и передача энергии;

Актуализация сведений из личного опыта;

Развитие логического мышления;

Формирование навыков работы с информацией;

Умение работать в группах и индивидуально.

1

Организационный момент

Дети рассаживаются по местам, проверяют наличие принадлежностей

Личностные УУД:

- формирование навыков самоорганизации

Поверка домашнего задания

Устный опрос:

    Что такое технология?

    Какое значение имеют технологии для производства?

    По какой причине возникают новые технологии?

Коммуникативные УУД:

Личностные УУД:

Развитие речи,

Формулирование целей урока

Тема нашего урока сегодня «Производство, преобразование, распределение, накопление и передача энергии как технология»

Регулятивные УУД:

Умение ставить учебную задачу

Объяснение темы урока

Все технологические процессы любого производства связаны с потреблением энергии.

Важнейшую роль на промышленном предприятии играет электрическая энергия – самый универсальный вид энергии, являющейся основным источником получения механической энергии.

Преобразование энергии различных видов в электрическую происходит на электростанциях .

Электростанциями называются предприятия или установки, предназначенные для производства электроэнергии. Топливом для электрических станций служат природные богатства – уголь, торф, вода, ветер, солнце, атомная энергия и др.

В зависимости от вида преобразуемой энергии электростанции могут быть разделены на следующие основные типы: тепловые, атомные, гидроэлектростанции, ветряные, солнечные и др.

Основная часть электроэнергии (до 80 %) вырабатывается на тепловых электростанциях (ТЭС). Процесс получения электрической энергии на ТЭС заключается в последовательном преобразовании энергии сжигаемого топлива в тепловую энергию водяного пара, приводящего во вращение турбоагрегат (паровую турбину, соединённую с генератором). Механическая энергия вращения преобразуется генератором в электрическую. Топливом для электростанций служат каменный уголь, торф, горючие сланцы, естественный газ, нефть, мазут, древесные отходы.

Атомные электростанции (АЭС) отличаются от обычной паротурбинной станции тем, что на АЭС в качестве источника энергии используется процесс деления ядер урана, плутония, тория и др. В результате расщепления этих материалов в специальных устройствах – реакторах, выделяется огромное количество тепловой энергии.

По сравнению с ТЭС атомные электростанции расходуют незначительное количество горючего. Такие станции можно сооружать в любом месте, т.к. они не связаны с местом расположения естественных запасов топлива. Кроме того, окружающая среда не загрязняется дымом, золой, пылью и сернистым газом.

На гидроэлектростанциях (ГЭС) водная энергия преобразуется в электрическую при помощи гидравлических турбин и соединённых с ними генераторов.

Достоинствами ГЭС являются их высокий КПД и низкая себестоимость выработанной электроэнергии. Однако следует учитывать большую стоимость капитальных затрат при сооружении ГЭС и значительные сроки их сооружения, что определяет большой срок их окупаемости.

Особенностью работы электростанций является то, что они должны вырабатывать столько энергии, сколько её требуется в данный момент для покрытия нагрузки потребителей, собственных нужд станций и потерь в сетях. Поэтому оборудование станций должно быть всегда готово к периодическому изменению нагрузки потребителей в течении дня или года.

Электрическую энергию, вырабатываемую на электростанциях, необходимо передать в места её потребления, прежде всего в крупные промышленные центры страны, которые удалены от мощных электростанций на многие сотни, а иногда и тысячи километров. Но электроэнергию недостаточно передать. Её необходимо распределить среди множества разнообразных потребителей – промышленных предприятий, транспорта, жилых зданий и т.д. Передача происходит через трансформаторные подстанции и электрические сети.

Перерывы в электроснабжении предприятий, даже кратковременные, приводят к нарушениям технологического процесса, порче продукции, повреждению оборудования и невосполнимым убыткам. В некоторых случаях перерыв в электроснабжении может создать взрыво- и пожароопасную обстановку на предприятиях.

Распределение электроэнергии производится с помощью электропроводок – совокупности проводов и кабелей с относящимися к ним креплениями, поддерживающими и защитными конструкциями.

Личностные УУД:

- закрепление знаниевой компоненты

Развитие речи

Умение кратко формулировать мысль

Умение приводить примеры из личного опыта

Развитие навыков чтения

Закрепление учебного материала

Ответить на вопросы теста:

    Что такое ТЭС, АЭС, ГЭС?

    Где происходит преобразование различных видов энергии в электрическую?

    В чем преимущество атомной электростанции перед тепловой электростанцией?

    Как происходит передача электроэнергии?

    Чем опасны перерывы в электроснабжении предприятий?

Коммуникативные УУД:

Умение слушать и исправлять ошибки других Личностные УУД:

Формирование навыков письма

Развитие логического мышления

Итоги урока

Проверка теста, выставление оценок.

Личностные УУД:

- развитие самооценки

Технологические схемы и экологические показатели производства электроэнергии на тепловых и атомных электростанциях, теплоцентралях и ветровых электростанциях. Современные тенденции развития электроэнергетики.

Электроэнергетика - отрасль энергетики, включающая в себя производство, передачу и сбыт электроэнергии. Электроэнергетика является наиболее важной отраслью энергетики, что объясняется такими преимуществами электроэнергии перед энергией других видов, как относительная лёгкость передачи на большие расстояния, распределения между потребителями, а также преобразования в другие виды энергии (механическую, тепловую, химическую, световую и др.). Отличительной чертой электрической энергии является практическая одновременность её генерирования и потребления, так как электрический ток распространяется по сетям со скоростью, близкой к скорости света.

Исторический экскурс : электрическая энергия долгое время была лишь объектом экспериментов и не имела практического применения. Первые попытки полезного использования электричества были предприняты во второй половине XIX века, основными направлениями использования были недавно изобретённый телеграф, гальванотехника, военная. Источниками электричества поначалу служили гальванические элементы. Существенным прорывом в массовом распространении электроэнергии стало изобретение электромашинных источников электрической энергии - генераторов. По сравнению с гальваническими элементами, генераторы обладали большей мощностью и ресурсом полезного использования, были существенно дешевле и позволяли произвольно задавать параметры вырабатываемого тока. Именно с появлением генераторов стали появляться первые электрические станции и сети - электроэнергетика становилась отдельной отраслью промышленности. Первой в истории линией электропередачи (в современном понимании) стала линия Лауфен - Франкфурт, заработавшая в 1891 году. Протяжённость линии составляла 170 км, напряжение 28,3 кВ, передаваемая мощность 220 кВт. Важным этапом стало изобретение электрического трамвая: трамвайные системы являлись крупными потребителями электрической энергии и стимулировали наращивание мощностей электрических станций. Во многих городах первые электрические станции строились вместе с трамвайными системами.

Начало XX века было отмечено так называемой «войной токов» - противостоянием промышленных производителей постоянного и переменного токов. Постоянный и переменный ток имели как достоинства, так и недостатки в использовании. Решающим фактором стала возможность передачи на большие расстояния - передача переменного тока реализовывалась проще и дешевле, что обусловило его победу в этой «войне»: в настоящее время переменный ток используется почти повсеместно. Тем не менее, в настоящее время имеются перспективы широкого использования постоянного тока для дальней передачи большой мощности.

Передача и распределение электрической энергии

Передача электрической энергии от электрических станций до потребителей осуществляется по электрическим сетям. С технической точки зрения, электрическая сеть представляет собой совокупность линий электропередачи (ЛЭП) и трансформаторов, находящихся на подстанциях.

Линии электропередачи представляют собой металлический проводник, по которому проходит электрический ток. Электроснабжение в подавляющем большинстве случаев - трёхфазное, поэтому линия электропередачи, как правило, состоит из трёх фаз, каждая из которых может включать в себя несколько проводов. Конструктивно линии электропередачи делятся на воздушные и кабельные .

o Воздушные ЛЭП подвешены над поверхностью земли на безопасной высоте на специальных сооружениях, называемых опорами. Основным достоинством воздушных линий электропередачи является их относительная дешевизна по сравнению с кабельными. Также гораздо лучше ремонтопригодность (особенно в сравнении с бесколлекторными КЛ): не требуется проводить земляные работы для замены провода, ничем не затруднён визуальный осмотр состояния линии. Однако у воздушных ЛЭП имеется ряд недостатков: широкая полоса отчуждения - в окрестности ЛЭП запрещено ставить какие-либо сооружения и сажать деревья; незащищённость от внешнего воздействия, например, падения деревьев на линию и воровства проводов. По причине уязвимости, на одной воздушной линии часто оборудуют две цепи: основную и резервную. Эстетическая непривлекательность; это одна из причин практически повсеместного перехода на кабельный способ электропередачи в городской черте.

Для воздушных линий переменного тока принята следующая шкала классов напряжений: переменное – 0.4, 6, 10, 20, 35, 110, 150, 220, 330, 400, 500, 750, 1150 кВ; постоянное – 400, 800 кВ

o Кабельные линии (КЛ) проводятся под землёй. Электрические кабели имеют различную конструкцию, однако можно выявить общие элементы. Сердцевиной кабеля являются три токопроводящие жилы (по числу фаз). Кабели имеют как внешнюю, так и междужильную изоляцию. Обычно в качестве изолятора выступает трансформаторное масло в жидком виде, или промасленная бумага. Токопроводящая сердцевина кабеля, как правило, защищается стальной бронёй. С внешней стороны кабель покрывается битумом. Главным достоинством кабельных линий электропередачи (по сравнению с воздушными) является отсутствие широкой полосы отчуждения. К недостаткам кабельных линий электропередачи можно отнести высокую стоимость строительства и последующей эксплуатации. Кабельные линии менее доступны для визуального наблюдения их.

Линии переменного тока.

Большая часть энергии передаётся по линиям электропередач переменного тока.

ЛЭП переменного тока обладают весьма важным преимуществом: в любом месте линии понижающий трансформатор, присоединенный к линии, передает энергию потребителям.

Недостатки линий переменного тока: наличие индуктивного сопротивления линии, которое связано с явлением электромагнитной индукции. Индуктивное сопротивление значительно ухудшает передачу электроэнергии в линии, т. к. приводит к уменьшению напряжения на пути от источника к потребителю. Индуктивность линии вызывает сдвиг по фазе между колебаниями тока и напряжения. Для уменьшения индуктивного сопротивления применяют различные методы: а) например, включают в линию батареи конденсаторы; б) расщепление одного провода на несколько, что приводит к уменьшению индуктивного сопротивления линии.

Б) Электроэнергия может передаваться и по линиям электропередач постоянного тока.


ЛЭП постоянного тока обладает преимуществами по сравнению с линиями переменного тока. Прежде всего, при прохождении постоянного тока нет индуктивного сопротивления. Кроме того, меньшая металлоемкость проводов (используется два провода вместо трех в линиях трехфазного тока); меньше потерь на коронный разряд, отсюда и меньшие радиопомехи. Наконец, главное - использование постоянного тока в линиях электропередач позволяет необычайно повысить устойчивость энергосистемы, которая в случае переменного тока требует строгой синхронности, постоянства частоты всех генераторов, входящих в общую систему. Для постоянного тока такой проблемы нет.

Атомная электростанция (АЭС)

Атомная электростанция (АЭС) - комплекс технических сооружений, предназначенных для выработки электрической энергии путём использования энергии, выделяемой при контролируемой ядерной реакции.

Атомные электростанции классифицируются в соответствии с установленными на них реакторами:

· Реакторы на тепловых нейтронах, использующие специальные замедлители для увеличения вероятности поглощения нейтрона ядрами атомов топлива

ü Реакторы на лёгкой воде

ü Реакторы на тяжёлой воде

  • Реакторы на быстрых нейтронах
  • Субкритические реакторы, использующие внешние источники нейтронов
  • Термоядерные реакторы

Атомные станции по виду отпускаемой энергии можно разделить на:

  • Атомные электростанции (АЭС), предназначенные для выработки только электроэнергии
  • Атомные теплоэлектроцентрали (АТЭЦ), вырабатывающие как электроэнергию, так и тепловую энергию

На рисунке показана схема работы атомной электростанции с двухконтурным водо-водяным энергетическим реактором. Энергия, выделяемая в активной зоне реактора, передаётся теплоносителю первого контура. Далее теплоноситель поступает в теплообменник (парогенератор), где нагревает до кипения воду второго контура. Полученный при этом пар поступает в турбины, вращающие электрогенераторы. На выходе из турбин пар поступает в конденсатор, где охлаждается большим количеством воды, поступающим из водохранилища. Или более простыми словами в реакторе распадается ядерное топливо, при его распаде происходит выделение тепловой энергии, которая кипятит воду, в свою очередь, появившийся пар крутит турбину, а та вращает электрогенератор, который уже и вырабатывает электричество.

Компенсатор давления представляет собой довольно сложную и громоздкую конструкцию, которая служит для выравнивания колебаний давления в контуре во время работы реактора, возникающих за счёт теплового расширения теплоносителя. Давление в 1-м контуре может доходить до 160 атмосфер (ВВЭР-1000).

Помимо воды, в различных реакторах в качестве теплоносителя может применяться также расплавленный натрий или газ. Использование натрия позволяет упростить конструкцию оболочки активной зоны реактора (в отличие от водяного контура, давление в натриевом контуре не превышает атмосферное), избавиться от компенсатора давления, но создаёт свои трудности, связанные с повышенной химической активностью этого металла.

Общее количество контуров может меняться для различных реакторов, схема на рисунке приведена для реакторов типа ВВЭР (Водо-Водяной Энергетический Реактор). Реакторы типа РБМК (Реактор Большой Мощности Канального типа) использует один водяной контур, а реакторы БН (реактор на Быстрых Нейтронах) - два натриевых и один водяной контуры.

В случае невозможности использования большого количества воды для конденсации пара, вместо использования водохранилища, вода может охлаждаться в специальных охладительных башнях (градирнях), которые благодаря своим размерам обычно являются самой заметной частью атомной электростанции.

Достоинства атомных станций:

Небольшой объём используемого топлива и возможность его повторного использования после переработки;

  • Высокая мощность: 1000-1600 МВт на энергоблок;
  • Низкая себестоимость энергии, особенно тепловой.
  • Возможность размещения в регионах, расположенных вдали от крупных водноэнергетических ресурсов, крупных месторождений угля, в местах, где ограничены возможности для использования солнечной или ветряной электроэнергетики.
  • При работе АЭС в атмосферу выбрасывается некоторое количество ионизированного газа, однако обычная тепловая электростанция вместе с дымом выводит еще большее количество радиационных выбросов, из-за естественного содержания радиоактивных элементов в каменном угле.

Недостатки атомных станций:

· Облучённое топливо опасно, требует сложных и дорогих мер по переработке и хранению;

· Нежелателен режим работы с переменной мощностью для реакторов, работающих на тепловых нейтронах;

· Большие капитальные вложения, как удельные, на 1 МВт установленной мощности для блоков мощностью менее 700-800 МВт, так и общие, необходимые для постройки станции, её инфраструктуры, а также в случае возможной ликвидации.

Ветровые электростанции

Ветрогенератор (ветроэлектрическая установка или сокращенно ВЭУ) - устройство для преобразования кинетической энергии ветра в электрическую.

Ветрогенераторы можно разделить на две категории: промышленные и домашние (для частного использования). Промышленные устанавливаются государством или крупными энергетическими корпорациями. Как правило, их объединяют в сети, в результате получается ветряная электростанция. Её основное отличие от традиционных (тепловых, атомных) - полное отсутствие, как сырья, так и отходов. Единственное важное требование для ВЭС - высокий среднегодовой уровень ветра. Мощность современных ветрогенераторов достигает 6 МВт.

1. Фундамент

2. Силовой шкаф, включающий силовые контакторы и цепи управления

4. Лестница

5. Поворотный механизм

6. Гондола

7. Электрический генератор

8. Система слежения за направлением и скоростью ветра (анемометр)

9. Тормозная система

10. Трансмиссия

11. Лопасти

12. Система изменения угла атаки лопасти

13. Колпак ротора.

Принцип действия ветряных электростанций прост: ветер крутит лопасти ветряка, приводя в движение вал электрогенератора. Тот в свою очередь вырабатывает энергию электрическую. Получается, что ветроэлектростанции работают, как игрушечные машины на батарейках, только принцип их действия противоположен. Вместо преобразования электрической энергии в механическую, энергия ветра превращается в электрический ток.

Каковы недостатки ветровых энергетических установок?

Прежде всего, их работа неблагоприятно влияет на работу телевизионной сети. Вот какой любопытный пример можно привести в этой связи. Несколько лет тому назад от жителей Оркнейских островов (Великобритания) стали поступать необычные жалобы. Оказалось, что при работе ветровой станции, построенной на одном их холмов, возникают такие сильные помехи в работе телевизионной сети, что на экранах телевизоров пропадает изображение. Выход нашли в строительстве рядом с ветровой установкой мощного телевизионного ретранслятора, который позволил усиливать телевизионные сигналы. По имеющимся данным, ветровая энергетическая установка мощностью 0,1 МВт может вызвать искажение телевизионных сигналов на расстоянии до 0,5 км.

Другая неожиданная особенность ветровых установок проявилась в том, что они оказались источником достаточно интенсивного инфразвукового шума, неблагоприятно действующего на человеческий организм, вызывающего постоянное угнетенное состояние, сильное беспричинное беспокойство и жизненный дискомфорт. Как показал опыт эксплуатации большого числа ветровых установок в США, этот шум не выдерживают ни животные, ни птицы, покидая район размещения станции, т.е. территории самой ветровой станции и примыкающие к ней становятся непригодными для жизни людей, животных и птиц.

Однако главный недостаток этого вида энергии наряду с изменчивостью скорости ветра - это низкая интенсивность, что требует значительной территории для размещения ветровой установки. Из проведенных специалистами расчетов следует, что оптимальным для ветрового колеса является диаметр 100 м. При таких геометрических размерах и плотности энергии на единицу площади ветрового колеса 500 Вт/м 2 (скорость ветра 9,2 м/с) из ветрового потока можно получить электрическую мощность, близкую к 1 МВт. На площади 1 км 2 можно разместить 2-3 установки указанной мощности с учетом того, что они должны находиться одна от, другой на расстоянии, равном трем их высотам, чтобы не мешать друг другу, и не снижать эффективности своей работы.

Примем для оценки, что на площади 1 км 2 размещено 3 установки, т.е. с 1 км 2 можно снять 3 МВт электрической мощности. Это означает, что для размещения ветровой станции электрической мощностью 1000 МВт нужна площадь, равная 330 км 2 . Если сравнивать ветровые и тепловые электростанции по энерговыработке в течение года, то полученное значение следует увеличить не менее чем в 2-3 раза. Для сравнения укажем, что площадь Курской АЭС мощностью 4000 МВт вместе с вспомогательными сооружениями, водоемом-охладителем и жилым поселком составляет 30 км2, т.е. на 1000 МВт электрической мощности приходится 7,5 км2. Другими словами, размер территории ветровой станции в расчете на 1000 МВт на 2 порядка превышает площадь, занимаемую современной АЭС.

Несмотря на это, отдельные ученые считают, что следует развивать крупномасштабную ветроэнергетику. Перед войной у нас в стране только в колхозах и совхозах работало более 8000 ветровых установок. В 1930г. на базе отдела ветродвигателей ЦАГИ был создан Центральный ветроэнергетический институт, в 1938 г. было организовано конструкторское бюро по ветровым энергетическим установкам. В предвоенные годы и после войны было разработано и выпущено довольно большое число (примерно 10 тыс.шт.) разнообразных ветровых установок. Интенсивная работа по использованию энергии ветра ведется в ряде зарубежных стран.

Итак, можно указать следующие достоинства и недостатки энергии ветра: отсутствие влияния на тепловой баланс атмосферы Земли, потребления кислорода, выбросов углекислого газа и других загрязнителей, возможность преобразования в различные виды энергии (механическую, тепловую, электрическую), но при этом низкая плотность энергии, приходящейся на единицу площади ветрового колеса; непредсказуемые изменения скорости ветра в течение суток и сезона, требующие резервирования ветровой станции или аккумулирования произведенной энергии; отрицательное влияние на среду обитания человека и животных, на телевизионную связь и пути сезонной миграции птиц. Отечественный и зарубежный опыт свидетельствует о технической осуществимости и целесообразности сооружения и эксплуатации ветровых энергетических установок небольшой мощности для удаленных поселков и отгонных пастбищ, а также в аграрном секторе.

Тепловые электростанции

Наиболее распространены тепловые электрические станции (ТЭС), использующие тепловую энергию, выделяемую при сжигании органического топлива (твердого, жидкого и газообразного).

На тепловых электростанциях вырабатывается около 76% электроэнергии, производимой на нашей планете. Это обусловлено наличием органического топлива почти во всех районах нашей планеты; возможностью транспорта органического топлива с места добычи на электростанцию, размещаемую близ потребителей энергии; техническим прогрессом на тепловых электростанциях, обеспечивающим сооружение ТЭС большой мощностью; возможностью использования отработавшего тепла рабочего тела и отпуска потребителям, кроме электрической, также и тепловой энергии (с паром или горячей водой) и т.п.

На схеме представлена классификация тепловых электрических станций на органическом топливе.

Тепловой электрической станцией называется комплекс оборудования и устройств, преобразующих энергию топлива в электрическую и (в общем случае) тепловую энергию.

Тепловые электростанции характеризуются большим разнообразием и их можно классифицировать по различным признакам.

По назначению и виду отпускаемой энергии электростанции разделяются на районные и промышленные.

Районные электростанции – это самостоятельные электростанции общего пользования, которые обслуживают все виды потребителей района (промышленные предприятия, транспорт, население и т.д.). Районные конденсационные электростанции, вырабатывающие в основном электроэнергию, часто сохраняют за собой историческое название – ГРЭС (государственные районные электростанции). Районные электростанции, вырабатывающие электрическую и тепловую энергию (в виде пара или горячей воды), называются теплоэлектроцентралями (ТЭЦ). Как правило, ГРЭС и районные ТЭЦ имеют мощность более 1 млн. кВт.

Промышленные электростанции – это электростанции, обслуживающие тепловой и электрической энергией конкретные производственные предприятия или их комплекс, например завод по производству химической продукции. Часто промышленные электростанции работают на общую электрическую сеть, но не подчиняются диспетчеру энергосистемы.

По виду используемого топлива тепловые электростанции разделяются на электростанции, работающие на органическом топливе и ядерном горючем.

За конденсационными электростанциями, работающими на органическом топливе, во времена, когда еще не было атомных электростанций (АЭС), исторически сложилось название тепловых (ТЭС – тепловая электрическая станция). Именно в таком смысле ниже будет употребляться этот термин, хотя и ТЭЦ, и АЭС, и газотурбинные электростанции (ГТЭС), и парогазовые электростанции (ПГЭС) также являются тепловыми электростанциями, работающими на принципе преобразования тепловой энергии в электрическую.

В качестве органического топлива для ТЭС используют газообразное, жидкое и твердое топливо. Большинство ТЭС России, особенно в европейской части, в качестве основного топлива потребляют природный газ, а в качестве резервного топлива – мазут, используя последний ввиду его высокой стоимости только в крайних случаях; такие ТЭС называют газомазутными.

По типу теплосиловых установок, используемых на ТЭС для преобразования тепловой энергии в механическую энергию вращения роторов турбоагрегатов, различают паротурбинные, газотурбинные и парогазовые электростанции.

Основой паротурбинных электростанций являются паротурбинные установки (ПТУ), которые для преобразования тепловой энергии в механическую используют самую сложную, самую мощную и чрезвычайно совершенную энергетическую машину – паровую турбину. ПТУ – основной элемент ТЭС, ТЭЦ и АЭС.

ПТУ, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называются конденсационными электростанциями. ПТУ, оснащённые теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называют теплоэлектроцентралями (ТЭЦ).

Газотурбинные тепловые электростанции (ГТЭС) оснащаются газотурбинными установками (ГТУ), работающими на газообразном или, в крайнем случае, жидком (дизельном) топливе. В настоящее время в России функционирует одна ГТЭС (ГРЭС-3 им. Классона, г. Электрогорск Московской обл.) мощностью 600 МВт и одна ГТУ-ТЭЦ (в г. Электросталь Московской обл.).

Схема тепловой электростанции (на угле)


Тепловые электростанции работают по такому принципу: топливо сжигается в топке парового котла. Выделяющееся при горении тепло испаряет воду, циркулирующую внутри расположенных в котле труб, и перегревает образовавшийся пар. Пар, расширяясь, вращает турбину, а та, в свою очередь, - вал электрического генератора. Затем отработавший пар конденсируется; вода из конденсатора через систему подогревателей возвращается в котел.

Преимущества ТЭС:
1. Используемое топливо достаточно дешево.
2. Требуют меньших капиталовложений по сравнению с другими электростанциями.
3. Могут быть построены в любом месте независимо от наличия топлива. Топливо может транспортироваться к месту расположения электростанции железнодорожным или автомобильным транспортом.
4. Занимают меньшую площадь по сравнению с гидроэлектростанциями.
5. Стоимость выработки электроэнергии меньше, чем у дизельных электростанций.

Недостатки:
1. Загрязняют атмосферу, выбрасывая в воздух большое количество дыма и копоти.
2. Более высокие эксплуатационные расходы по сравнению с гидроэлектростанциями.

ВОПРОСЫ:

1. Дайте определение отрасли электроэнергетика.

2. Какими преимуществами обладает электроэнергия по сравнению с энергией других видов?

3. С изобретением, какого прибора связывают появление первых электрических станции?

4. Что, с технической точки зрения, из себя представляет электрическая сеть?

5. Назовите типы линий электропередач с точки зрения их конструкторских особенностей. Перечислите их достоинства и недостатки.

6. Изобразите схему передачи энергии по линиям переменного тока. Достоинства и недостатки такого способа передачи.

7. Изобразите схему передачи энергии по линиям постоянного тока. Какого их преимущество по сравнению с линиями переменного тока?

8. Заполните таблицу:

9. Чем обусловлено широкое распространение тепловых электростанций


Похожая информация.