29.08.2019

Аст - атомные станции теплоснабжения. История создания атомных станций теплоснабжения в крупных городах


Реактор предназначался для проекта атомных станций теплоснабжения, предназначенных для генерации тепловой энергии, обеспечения горячего водоснабжения и отопления жилых и промышленных объектов.

Вопрос о строительстве АСТ был рассмотрен в ЦК КПСС и Правительстве СССР, после чего было принято решение о начале проектирования. Перед Минсредмашем и Минэнерго была поставлена задача спроектировать АСТ с гарантированной безопасностью для размещения её вблизи крупных городов. Главным конструктором реакторной установки было назначено ОКБМ (в настоящее время ОАО «ОКБМ Африкантов»), разработчиком технико-экономического обоснования головных станций в Горьком и Воронеже был назначен ГоТЭП. Научное руководство обеспечивалось Курчатовским институтом. По указанию Правительства проектирование АСТ лично курировал Президент Академии наук СССР Анатолий Александров .

Институтом ГоТЭП были выполнены технико-экономического обоснования и проект строительства АСТ в Воронеже, Брянске, Архангельске, Хабаровске, а также проекты на строительство атомных ТЭЦ в Одессе и Минске. В 1978 года был создан технический проект реакторной установки АСТ-500, а в марте 1979 года вышло постановление Совета министров СССР о сооружении двух головных станций теплоснабжения в Горьком и Воронеже. Генеральным проектировщиком Горьковской АСТ был назначен Головной институт ВНИПИЭТ , подчинявшийся Минсредмашу, а Воронежской АСТ - ГоТЭП, входивший в структуру Минэнерго. Сооружение головных АСТ было начато в 1982 и 1983 гг. в Горьком и Воронеже, соответственно.

Обзор по материалам СМИ

Предпосылки

Изучение возможности использования ядерных энергоисточников для целей теплоснабжения было начато в конце 1970-х гг. В 1976 г. Горьковским отделением института «Теплоэлектропроект» - ГоТЭП (в настоящее время ОАО «Нижегородская инжиниринговая компания «Атомэнергопроект») и институтом «ВНИПИэнергопром» был разработан «Сводный ТЭД по вопросам использования атомной энергии для целей теплоснабжения до 1990 г.»), в котором была обоснована экономическая целесообразность внедрения ядерных энергоисточников в сектор теплоснабжения за счет обеспечения значительной экономии дефицитных газа и мазута; улучшения экологической обстановки в городах; решения проблем транспортировки углеводородного топлива.

При этом было показано, что для энергодефицитных систем с большим (более 2000 Гкал/ч) теплопотреблением оптимальным решением является использование атомных теплоэлектроцентралей (АТЭЦ) с ВВЭР-1000, а для систем средней мощности с покрытием тепловых нагрузок на уровне 1000-2000 Гкал/ч, не испытывающих потребности в дополнительных электрических мощностях, - атомных станций теплоснабжения (АСТ) мощностью примерно 500 МВт. По данным «Сводного ТЭДа...» строительство АСТ было целесообразно в 30-35 промышленно-жилых комплексах страны, из них 27 - в Европейской части.

После обсуждения указанного вопроса в ЦК КПСС и Правительстве СССР перед Минсредмашем (так называлась атомная отрасль) и Минэнерго была поставлена задача создания атомной станции теплоснабжения с гарантированной безопасностью для размещения ее вблизи крупных городов. Главным конструктором реакторной установки (РУ) было назначено ОКБМ (в настоящее время ОАО «ОКБМ Афри- кантов»), разработчиком ТЭО головных станций в г. Горьком (ныне - г. Нижний Новгород) и в г. Воронеже - вышеупомянутый ГоТЭП. Научное руководство обеспечивалось РНЦ «Курчатовский Институт». Разработку АСТ по указанию Правительства лично курировал Президент Академии наук СССР А.П. Александров.

Выбор площадок для сооружения головных АСТ в городах Горьком и Воронеже был обусловлен не только наличием в указанных городах проблем с теплоснабжением, но и другими причинами:

■ в Горьком располагались разработчик реакторной установки (ОКБМ) и политехнический институт, в котором на физико-техническом факультете готовились специалисты для атомной отрасли;

■ рядом с Воронежем уже работала Нововоронежская АЭС, на которой строились все головные блоки ВВЭР, имелся центр подготовки персонала для АЭС и располагалось мощное строительно-монтажное управление;

■ оба города размещались на берегах крупных судоходных рек, что позволяло осуществить транспортировку крупногабаритного корпусного оборудования РУ, нетранспортабельного по железной дороге.

По результатам разработки в 1978 г. технического проекта РУ АСТ-500 и ТЭО в марте 1979 г вышло постановление Совета министров СССР о сооружении двух головных станций теплоснабжения в Горьком и Воронеже. При этом Генпроектировщиком Горьковской АСТ был назначен ГИ ВНИПИЭТ (Минсредмаш), а Воронежской АСТ - ГоТЭП (Минэнерго).

Сооружение головных АСТ в городах Горьком и Воронеже было начато в 1982 и 1983 гг. соответственно.

Правительством СССР были рассмотрены обращения региональных властей ряда крупных областей и городов по поводу строительства АСТ (в т.ч. Архангельска, Иванова, Брянска, Ярославля, Хабаровска) и приняты положительные решения. Для этих регионов ГоТЭП были выполнены необходимые технико-экономические исследования и обоснования, а в Архангельской области начаты подготовительные работы по сооружению.

Реакторная установка АСТ-500

РУ АСТ-500 - реакторная установка на основе интегрального водо-водяного реактора давления с естественной циркуляцией теплоносителя первого контура, страховочным корпусом и пассивными системами безопасности. Главный конструктор реакторной установки - ОКБМ, научный руководитель проекта - РНЦ «Курчатовский институт».

Основные технические характеристики РУ АСТ-500: тепловая мощность реактора - 500 МВт, отпуск тепловой энергии - 430 Гкал/ч; вид используемого топлива - диоксид урана UO 2 .

Реактор АСТ выполнен по интегральной схеме, т.е. активная зона, теплообменники 1-2 контура и компенсатор давления размещаются в корпусе реактора. Это решение позволило исключить трубопроводы большого диаметра, опасные с точки зрения разрыва.

В реакторе циркулирует вода, являющаяся теплоносителем первого контура. Применение естественной циркуляции теплоносителя в корпусе реактора исключает сложные и опасные для активной зоны динамические режимы, характерные для всех реакторов с принудительной циркуляцией теплоносителя.

Перезарядка активной зоны реактора происходит 1 раз в 2 года.

Компактность интегрального реактора позволила применить второй герметичный страховочный корпус, рассчитанный на давление, устанавливающееся при разгерметизации корпуса реактора.

Передача тепловой энергии в сеть осуществляется через промежуточный (второй) контур и сетевой (третий) контур (рис. 1).

Давление в сетевом контуре всегда выше, чем во втором, что позволяет исключить попадание воды второго контура в сетевой контур при негерметичности сетевых теплообменников.

Реактор оснащен системами безопасности пассивного принципа действия, которые могут вводиться в действие в авариях без команд оператора при отказе систем автоматического управления и функционировать длительное время без подачи энергии извне.

Протекание быстрых взрывных процессов типа Чернобыльского в реакторе АСТ принципиально невозможно.

Радиационные последствия самых тяжелых аварий ограничены и не превышают естественного радиационного фона.

Реакцией атомщиков на Чернобыль стали глубокий анализ безопасности ядерных энергоисточников и разработка проектов реакторов нового поколения.

Анализ проекта АСТ-500, выполненный после Чернобыльской аварии, показал, что основные качества реакторов нового поколения уже нашли свое воплощение в реакторе АСТ. В их числе:

■ внутренние присущие свойства безопасности, основанные на законах природы;

■ защищенность от ошибок персонала;

■ ограниченность последствий запроектных аварий.

Разработанные советскими инженерами и учеными в 1980-х гг. технические решения РУ АСТ-500 в настоящее время широко используются зарубежными разработчиками в проектах перспективных установок нового поколения.

Горьковская АСТ

Строительство Горьковской АСТ (ГАСТ), как было отмечено выше, началось в 1982 г. Площадка станции размещалась близ д. Федяково и ж/д станции Ройка в Кстовском районе Горьковской области в нескольких километрах к востоку от городской черты Горького.

Станция строилась по проекту ГИ ВНИПИЭТ и включала два энергоблока с РУ АСТ-500 единичной тепловой мощностью 500 МВт. Каждый блок обеспечивал отпуск тепла в количестве 430 Гкал/ч в виде горячей воды с давлением до 1,6 МПа и температурой до 150 О С. Планировалось, что ГАСТ будет снабжать тепловой энергией Нагорную часть г Горького. При вводе в действие ГАСТ предполагалось закрыть около 300 низкоэффективных котельных различной мощности в Нагорной части города.

Структура системы ЦТ на базе основного теплоисточника ГАСТ выглядела следующим образом:

■ базисный теплоисточник - ГАСТ установленной тепловой мощностью 1000 МВт (2x500 МВт);

■ пиковые котельные (ПК) - пять существующих промышленных и отопительных котельных тепловой мощностью от 35 до 750 МВт;

■ магистральные тепловые сети - кольцевые с тупиковыми ответвлениями;

■ распределительные станции теплоснабжения (РСТ) для подключения магистральных тепловых сетей по зависимой и независимой схемам.

Общая тепловая нагрузка нагорной части города, обеспечиваемая системой ЦТ, составляла примерно 2380 МВт.

Отпуск теплоты в системе ЦТ на базе ГАСТ планировался в объеме примерно 7,4 ГВт.ч, в том числе от ГАСТ 5,8 ГВт.ч (78%).

Выдача тепловой мощности от АСТ в транзитные тепловые сети обеспечивалась теплоносителем - сетевой водой с максимальной температурой 150 О С при температуре на входе в обратном трубопроводе 70 О С.

Крупные ПК предусматривались «полупиковыми» с возможностью выдачи свободной тепловой мощности в транзитные тепловые сети параллельно АСТ

Общая протяженность транзитных тепловых сетей от ГАСТ около 30 км. Рельеф местности переменный с абсолютными отметками от 90 до 200 м. Диаметры транзитных трубопроводов 800, 1000 и 1200 мм. Насосные подкачивающие станции располагались в РСТ.

При разработке системы ЦТ на базе ГАСТ было применено несколько новых технологических решений, в том числе:

1. количественное регулирование отпуска теплоты в транзитных тепловых сетях с постоянной температурой теплоносителя в подающих трубопроводах: в отопительный период - 150 О С, в летний - 90 О С;

2. последовательное включение (отключение) и изменение тепловой мощности ПК при уровнях теплопотребления более 1000 МВт при температурах наружного воздуха ниже +3 О С;

3. схема подключения ПК к АСТ через транзитные тепловые сети - параллельная, а не традиционная последовательная при дальнем теплоснабжении;

4. аккумулирование теплоты в баках запаса подпиточной воды (2 бака по 10000 м 3) для стабильной работы ГАСТ.

Здесь стоит отметить, что для теплоснабжения заречной части г. Горького с учетом того, что рядом расположено несколько небольших промышленных городов, предлагалось сооружение АТЭЦ с реакторами ВВЭР-1000 для энергоснабжения не только заречной части города, но и Дзержинска, Заволжья, Правдинска, Балахны и других населенных пунктов. Были приняты три варианта размещения АТЭЦ и выполнен полный комплекс изыскательских работ по всем трем площадкам. Соответствующее ТЭО было разработано ГоТЭПом в 1986 г., но эти планы так и остались на бумаге.

Решающие этапы сооружения ГАСТ совпали с Чернобыльскими событиями, последующей «ломкой» структур власти и ожесточенной политической борьбой в «перестроечный» период.

В середине 1988 г. в Горьком началось движение общественности за прекращение строительства ГАСТ (статьи в местной прессе, демонстрации и митинги с лозунгами о запрете строительства АСТ, требования о проведении референдума).

Не смогло переломить общий настрой против ГАСТ и положительное заключение международной экспертизы проекта и самой станции, проведенной МАГАТЭ в 1989 г., хотя эта экспертиза была предпринята по требованию общественности.

Нижегородский областной Совет народных депутатов, учитывая мнение населения, выступил против продолжения строительства станции и в августе 1990 г. принял решение «О прекращении строительства ГАСТ».

Следствием данного решения явилось распоряжение Совета Министров РСФСР от 29.11.1990 г. № 1345-Р «О прекращении строительства Горьковской АСТ» и приказ Минатом- энергопрома СССР (одно из очередных новых названий Минсредмаша) от 29.11.1991 г. № 523 «О ликвидации дирекции ГАСТ», предусматривающий передачу ГАСТ на баланс г. Нижнего Новгорода и Нижегородской области.

К этому времени были изготовлены и поставлены на станцию два комплекта оборудования РУ, изготовлены две активные зоны реакторов, общая строительная готовность по зданиям двух блоков составила 85-90%, монтажная готовность оборудования - около 70%, завершались строительно-монтажные работы по пусковому комплексу первого энергоблока, набран и подготовлен эксплуатационный персонал, разрабатывалась пуско-наладочная и эксплуатационная документация.

В соответствии с распоряжением Главы администрации Нижегородской области Б.Е. Немцова от 05.12.1991 г. № 3 и в соответствии с Гражданским Кодексом РФ и Федеральным законом от 14.11.2002 г. № 161-ФЗ «О государственных и муниципальных унитарных предприятиях», для целей максимального использования объектов промышленной площадки Горьковской АСТ и обеспечения сохранности уникального оборудования реакторных установок взамен Дирекции строящейся ГАСТ было создано Государственное предприятие Нижегородской области «Нижегородский производственно-энергетический комплекс» (подведомственное предприятие Министерства ЖКХ и ТЭК Нижегородской области).

Последние годы помещения Горьковской АСТ (рис. 2, 3) сдаются в аренду частным предприятиям, в числе которых Нижегородский ликероводочный завод «РООМ». Тепловые сети от Горьковской АСТ практически полностью демонтированы.

В 2006 г. и 2008 г. нынешнее Правительство Нижегородской области предпринимало несколько безуспешных попыток по инициированию строительства парогазовой ТЭЦ (электрической мощностью 900 МВт (2x450 МВт), тепловой - 825 Гкал/ч) на базе недостроенной АСТ.

До настоящего времени теплоснабжение Нагорной части города, которая составляет половину Нижнего Новгорода, осуществляется от одной крупной котельной тепловой мощностью около 700 Гкал/ч, двумя котельными по 150 Гкал/ч (которые планировалось переводить в пиковый режим при вводе ГАСТ) и множеством мелких котельных. В связи с интенсивным строительством жилья последние годы в данной части города имеется дефицит тепловой мощности.

Воронежская АСТ

Сооружение Воронежской АСТ (ВАСТ) было начато в 1983 г., о чем говорилось выше. Площадка строительства ВАСТ расположена на южной окраине г. Воронежа на правом берегу Воронежского водохранилища (удаление от городской застройки - 6,5 км). Станция строилась по проекту ГоТЭП, включала два энергоблока с реакторными установками АСТ-500 тепловой мощностью 500 МВт и отличалась от Горьковской АСТ наличием защитной оболочки (аналогичной ВВЭР-1000) для защиты от падения самолета и схемно-конструктивным исполнением отдельных систем безопасности (в ГАСТ защита от падения самолета обеспечивалась размещением реакторного блока в прочно-плотном боксе). При работе двух энергоблоков общей тепловой мощностью 860 Гкал/ч ВАСТ должна была обеспечивать до 29% годовой потребности г. Воронежа в тепловой энергии на нужды отопления и горячего водоснабжения города, устранив создавшийся на тот период дефицит в тепловой энергии и создать условия для дальнейшего развития города.

Как и ГАСТ, Воронежская АСТ стала картой в развернувшейся в городе и области политической борьбе за власть в «перестроечный» период.

Строительство ВАСТ было остановлено в 1990 г. по инициативе местных властей г. Воронежа (решение Воронежского городского совета народных депутатов от 05.06.1990 г.) с учетом результатов городского референдума по вопросу теплоснабжения г. Воронежа.

К моменту остановки строительства была создана строительно-монтажная база с необходимой инфраструктурой, путями и коммуникациями, выполнено более 50% проектного объема строительно-монтажных работ по сооружению ВАСТ, поставлен на станцию комплект оборудования РУ для первого энергоблока и частично для второго, изготовлена активная зона.

С 1992 г. и по настоящее время в соответствии с постановлением Правительства РФ от 28.12.1992 г. № 1026 и последующими распорядительными документами Минатома России, приказом Росатома РФ от 05.12.2006 г № 589 объект находится в режиме консервации (рис. 4). Недостроенная станция является федеральной собственностью, Дирекция строящейся Воронежской АСТ является филиалом ОАО «Концерн Росэнергоатом».

На цели консервации Воронежской АСТ концерном «Росэнергоатом» ежегодно выделяются солидные средства из резерва на развитие. Курирование вопросов консервации объектов Воронежской АСТ осуществляет департамент капитального строительства ОАО «Концерн Росэнергоатом». Территория станции охраняется.

В соответствии с Постановлением Правительства РФ от 28.12.1992 г. № 1026 в 1994 г. была проведена общественная экспертиза проекта и имеющегося задела по строительству при участии 28 специалистов и научных работников г. Воронежа, а в 1995 г. - госэкспертиза Минприроды РФ. Результаты обеих экспертиз подтвердили возможность и целесообразность завершения строительства ВАСТ.

Получено заключение Института государства и права РАН от 07.09.1998 г. за № 14202-24-2115-4 по правовой экспертизе решений, принятых по ВАСТ. Оно подтвердило, что решение городских властей г. Воронежа от 1990 г. о прекращении сооружения ВАСТ со ссылками на проведенный референдум не имеет юридической силы, а также подтвердило наличие всех условий для принятия Правительством РФ решения о расконсервации и завершении сооружения ВАСТ

В 2008-2010 гг. было подготовлено несколько предложений по решению проблемы ВАСТ, в т.ч.: достройки ВАСТ; перепрофилированию АСТ в АТЭЦ с реакторами ВБЭР-300 (разработчик ОАО «ОКБМ Африкантов») или ВК-300 (разработчик ОАО «НИКИЭТ»); созданию на площадке многоцелевого инновационного энерготехнологического и медицинского комплекса на базе установки РУТА-70 (разработчик ГНЦ РФ-ФЭИ) и др.

За истекшие с начала строительства годы ситуация с теплоснабжением в г. Воронеже только ухудшилась (см. также статью Е.Г Гашо на стр. 36-38), при этом альтернативные Воронежской АСТ варианты обеспечения города тепловой энергией так и не были разработаны.

Тем не менее, несколько десятков километров трубопроводов теплосетей для теплоснабжения Советского и Коминтерновского районов, проложенные практически по всему предполагаемому маршруту, были демонтированы весной - летом 2006 г

P.S. Статьей 29 Федерального закона от 21.11.1995 г. № 170-ФЗ «Об использовании атомной энергии» определено, что во всех случаях прекращения сооружения ядерного объекта, не связанных со снижением уровня его безопасности, ухудшением состояния окружающей среды или другими неблагоприятными последствиями, должен решаться вопрос о возмещении убытков, связанных с прекращением строительства, а также - об источниках возмещения этих убытков.

Статья подготовлена редакцией журнала НТ по следующим материалам:

1. Полвека в атомном машиностроении. Н.Новгород: КиТ- издат, 1997.

2. История ОАО «НИАЭП» в документах и воспоминаниях ветеранов (1951-2008)/ Сборник статей. Н.Новгород: Литера, 2008.

3. Что такое атомная станция теплоснабжения / О. Б. Самойлов, В.С. Кууль, Б.А. Авербах и др.; Под ред. О.Б. Самойлова, В.С. Кууля. - М.: Энергоатомиздат, 1989. - 96 с.

4. Г. Юрьева. Уникальный атомный комплекс был спроектирован 30 лет назад (интервью с В.Н. Чистяковым) // «Россия: атомный проект», вып. 8, 2010.

5. Сайт Министерства ЖКХ и ТЭК Нижегородской области - www.mingkh.nnov.ru.

6. Зингер Н.М., Еше Г.Г., Гилевич А.И. и др. // Теплоэнергетика, 1982. № 8. С. 27-30.

7. Востоков В.С., Друмов В.В., Еше Г.Г. и др. О повышении эффективности использования АСТ// Вопросы атомной науки и техники, 1983, выпуск 6.

8. О. Александрова. Операция «Расконсервация» // газета «Коммерсантъ» (Воронеж), № 48 от 25.03.2008 г.

9. www.rosenergoatom.ru.

10. www.ru.wikipedia.org.

Редакция журнала НТ благодарит И.М. Сапрыкина, принимавшего участие в разработке системы ЦТ от Горьковской АСТ, за ценные замечания и дополнения к представленной выше статье.

Горьковская атомная станция теплоснабжения - одна из двух АСТ в нашей стране, строительство которых стартовало в начале 1980-х, но так и не было завершено по ряду причин, включая протесты общественности и, само собой, развал Союза.
Станция не была достроена, реакторная установка не была собрана, топливо еще даже и не думали привозить...

Строительство Горьковской АСТ (ГАСТ) началось в 1982 г.
Станция строилась по проекту ГИ ВНИПИЭТ и включала два энергоблока с реакторными установками АСТ-500 единичной тепловой мощностью 500 МВт. Каждый блок должен был обеспечивать отпуск тепла в количестве 430 Гкал/ч в виде горячей воды с давлением до 1,6 МПа и температурой до 150 ОС. Планировалось, что ГАСТ будет снабжать тепловой энергией Нагорную часть г Горького. При вводе в действие ГАСТ предполагалось закрыть около 300 низкоэффективных котельных различной мощности в Нагорной части города.

Структура системы ЦТ на базе основного теплоисточника ГАСТ выглядела следующим образом:
■ базисный теплоисточник - ГАСТ установленной тепловой мощностью 1000 МВт (2x500 МВт);
■ пиковые котельные (ПК) - пять существующих промышленных и отопительных котельных тепловой мощностью от 35 до 750 МВт;
■ магистральные тепловые сети - кольцевые с тупиковыми ответвлениями;
■ распределительные станции теплоснабжения (РСТ) для подключения магистральных тепловых сетей по зависимой и независимой схемам.
Общая тепловая нагрузка нагорной части города, обеспечиваемая системой ЦТ, составляла примерно 2380 МВт.
Отпуск теплоты в системе ЦТ на базе ГАСТ планировался в объеме примерно 7,4 ГВт.ч, в том числе от ГАСТ 5,8 ГВт.ч (78%).
Выдача тепловой мощности от АСТ в транзитные тепловые сети обеспечивалась теплоносителем - сетевой водой с максимальной температурой 150 *С при температуре на входе в обратном трубопроводе 70 *С.
Крупные ПК предусматривались «полупиковыми» с возможностью выдачи свободной тепловой мощности в транзитные тепловые сети параллельно АСТ
Общая протяженность транзитных тепловых сетей от ГАСТ около 30 км. Рельеф местности переменный с абсолютными отметками от 90 до 200 м. Диаметры транзитных трубопроводов 800, 1000 и 1200 мм. Насосные подкачивающие станции располагались в РСТ.
При разработке системы ЦТ на базе ГАСТ было применено несколько новых технологических решений, в том числе:
1. количественное регулирование отпуска теплоты в транзитных тепловых сетях с постоянной температурой теплоносителя в подающих трубопроводах: в отопительный период - 150 *С, в летний - 90 *С;
2. последовательное включение (отключение) и изменение тепловой мощности ПК при уровнях теплопотребления более 1000 МВт при температурах наружного воздуха ниже +3 *С;
3. схема подключения ПК к АСТ через транзитные тепловые сети - параллельная, а не традиционная последовательная при дальнем теплоснабжении;
4. аккумулирование теплоты в баках запаса подпиточной воды (2 бака по 10000 м3) для стабильной работы ГАСТ.

Здесь стоит отметить, что для теплоснабжения заречной части г. Горького с учетом того, что рядом расположено несколько небольших промышленных городов, предлагалось сооружение АТЭЦ с реакторами ВВЭР-1000 для энергоснабжения не только заречной части города, но и Дзержинска, Заволжья, Правдинска, Балахны и других населенных пунктов. Были приняты три варианта размещения АТЭЦ и выполнен полный комплекс изыскательских работ по всем трем площадкам. Соответствующее ТЭО было разработано ГоТЭПом в 1986 г., но эти планы так и остались на бумаге.

Решающие этапы сооружения ГАСТ совпали с Чернобыльскими событиями, последующей «ломкой» структур власти и ожесточенной политической борьбой в «перестроечный» период.
В середине 1988 г. в Горьком началось движение общественности за прекращение строительства ГАСТ (статьи в местной прессе, демонстрации и митинги с лозунгами о запрете строительства АСТ, требования о проведении референдума).
Не смогло переломить общий настрой против ГАСТ и положительное заключение международной экспертизы проекта и самой станции, проведенной МАГАТЭ в 1989 г., хотя эта экспертиза была предпринята по требованию общественности.
Нижегородский областной Совет народных депутатов, учитывая мнение населения, выступил против продолжения строительства станции и в августе 1990 г. принял решение «О прекращении строительства ГАСТ».







































Объясняется это тем, что в России существует централизованная система водяного отопления зданий, при наличии которой целесообразно применять атомные станции для получения не только электрической, но и тепловой энергии.

Первые проекты подобных станций были разработаны еще в 70‑х годах прошлого века, однако из‑за наступивших в конце 80‑х экономических потрясений и жесткого противодействия общественности до конца ни один из них реализован не был.

Вопросы технологии

Вместе с тем, рациональное зерно в такой идее есть. На производство горячей воды и пара (низкотемпературного тепла) для нужд городов и промышленности расходуется в полтора раза больше топлива, чем для выработки электроэнергии, при этом значительную часть тепла вырабатывают мелкие, малоэффективные установки, сжигающие наиболее ценные виды топлива – нефть и газ.

По некоторым подсчетам, предполагается, что уже в ближайшее время ежегодное потребление низкотемпературного тепла (его еще называют низкопотенциальным) достигнет весьма внушительных цифр. Для выработки такого количества тепла придется сжигать огромное количество топлива.

Решением проблемы могли бы стать атомные станции теплоснабжения – АСТ. Главная их особенность – здесь не требуется такого высокого температурного потенциала теплоносителя первого контура, как на АЭС, потому что в АСТ не нужно получать электроэнергию, получать пар на турбине, нужно только тепло. Это, естественно, упрощает реактор, удешевляет его эксплуатацию. Если говорить о водо охлаждаемых реакторах, то в них снижается давление: нужно уже не 160 атмосфер, например, а 30, то есть значительно меньше. Это первая отличительная особенность.

Кроме того, в АСТ должно быть такое число теплоотводящих контуров, чтобы радиоактивный теплоноситель никаким образом не мог бы попасть в теплосеть. Для этого строятся промежуточные теплообменники и т. д. Параметры и режимы их работы рассчитаны так, что станции вписываются в существующие сети как дополнительные источники тепла. Создание подобных мощных централизованных источников позволяет демонтировать устаревшие установки, работающие на органическом топливе, а достаточно технически совершенные, но мелкие использовать в режиме пиковых нагрузок, которые наиболее часто возникают в холодное время года. Сами же ACT могут взять на себя базовую часть нагрузки.

По управляемости ACT – весьма гибкий агрегат, который не предъявляет никаких специфических требований к управлению тепловыми сетями в смысле регулирования распределения тепла, что очень важно. В принципе, ACT может покрывать и пиковую нагрузку, но для атомной станции, как для всякого капиталоемкого оборудования (капиталовложения велики, а топливная составляющая мала), наиболее экономичен режим максимально возможной постоянной мощности, то есть базовый.

Как отмечают специалисты, когда в 70‑х годах XX века обсуждался этот вопрос, все были в большом воодушевлении. Ясно, что использование атомной энергии для получения низкотемпературного тепла способно дать огромный эффект. Однако у таких проектов был и есть существенный недостаток. Дело в том, что если электрическую энергию можно без существенных потерь передавать на десятки и даже сотни километров, то для горячей воды это невозможно: потери тепла в теплотрассах (особенно в наших) очень велики. А это значит, что АСТ целесообразно строить в непосредственной близости от городов или даже в их черте. Отсюда вытекает важное требование: АСТ должны обладать гораздо более высоким уровнем безопасности, чем АЭС.

Впрочем, особенности реактора ACT (применение естественной циркуляции и интегральной компоновки, а также низкого давления внутри корпуса) позволяют успешно решить задачу безопасности без чрезмерных затрат посредством довольно простой конструкции: наличия второго, страховочного корпуса, который не исключает возможности осмотра основного, несущего корпуса, не ослабляет требований к его надежности, но позволяет при крайних, непредвиденных нарушениях полностью удержать в своем объеме всю начинку реактора и весь теплоноситель, содержащий радиоактивные вещества.

Специалисты приводят модель подобного крайнего события: при разрыве основного корпуса внутренний объем, занимаемый теперь теплоносителем, несколько увеличится, соответственно, упадет давление (примерно на 30 процентов), уровень воды хотя и понизится, но она по‑прежнему будет охватывать всю активную зону и обеспечивать ее охлаждение. Благодаря такому соответствию характеристик работающего и защитного оборудования обеспечивается надежное охлаждение активной зоны.

Подобная технология делает АСТ более экологически безопасными источниками теплоснабжения, чем традиционные ТЭЦ. Поэтому в Советском Союзе была запланирована целая серия подобных станций, и уже начинались работы по первой очереди. Однако затем грянул Чернобыль, позже Советский Союз распался, и планы реализовать не удалось.

Нереализованные планы и современные перспективы

Первой атомной станцией, поставлявшей тепло, была Сибирская АЭС в Северске Томской области. С 1961 года она поставляла, кроме электроэнергии, и тепло. По состоянию на 2000‑е годы реакторы давали 30‑35 процентов тепла, необходимого для отопления одного из жилых массивов Томска, и более 50 процентов – для города Северска и Сибирского химического комбината. Кроме того, в нашей стране работал реактор АДЭ-2 на Красноярском горно-химическом комбинате, с 1964 года до его остановки в 2010‑м поставлявший тепловую и электрическую энергию для города Железногорска.

Сегодня как атомный источник теплоснабжения действует лишь маломощная (48 МВт) Билибинская АЭС в Чукотском автономном округе, снабжающая теплом и электричеством город Билибино (около 6 тысяч жителей) и местные горнодобывающие предприятия.

В Советском Союзе было начато строительство еще двух АСТ: Воронежской и Горьковской (в нынешнем Нижнем Новгороде), а также завершен проект Ивановской АСТ, сооружение которой начать не успели. Работы прекратились на рубеже 1980‑х – 1990‑х. Главное, на что упирали при закрытии почти достроенных Воронежской и Нижегородской атомных станций теплоснабжения, – это протесты общественности в условиях послечернобыльской радиофобии. В итоге города остались без нормальных источников тепла. Примечательно, что Нижегородскую АСТ прикрыл теперь уже покойный Борис Немцов, передав часть ее помещений ликероводочному заводу.

Кстати, эти атомные станции теплоснабжения относились к инновационному тогда проекту АСТ-500. В целях обеспечения высокой надежности и безопасности реакторной установки были заложены следующие основные технические решения: естественная циркуляция теплоносителя в первом контуре и трехконтурная схема реакторной установки. Интегральная компоновка оборудования первого контура позволила свести к минимуму разветвленность контура и избежать применения трубопроводов большого диаметра, а низкая удельная энергонапряженность активной зоны способствовала повышению надежности охлаждения активной зоны и снижению уровня аварийных последствий. Кроме того, технические решения обеспечивали сохранение активной зоны под водой при разгерметизации основного корпуса реактора и локализацию радиоактивных продуктов вследствие использования двойного корпуса. Высокая степень защищенности реактора от аварий обеспечивалась применением новой схемы системы теплоотвода, при которой возможен отвод остаточного энерговыделения даже при выходе из строя двух петель из трех, а также путем ряда других схемных и компоновочных решений.

Реинкарнация идеи

Так что же? Можно ли говорить о том, что от АСТ отказались исключительно из‑за того, что неудачно сложились обстоятельства? Не совсем. Беспристрастный анализ технико-экономических показателей атомных станций теплоснабжения выявил, что они слабо конкурентоспособны с источниками тепла на органическом топливе, потому что цены на тепловую энергию гораздо ниже, чем на электроэнергию. И срок окупаемости такой станции, если строить ее на условиях коммерческого кредита, получается очень большой. В современных российских условиях это серьезный минус. Но нельзя сказать, что от создания атомных станций теплоснабжения в России совсем отказались.
Есть вариант малой необслуживаемой АСТ на базе реактора «Елена» и передвижной (железнодорожным транспортом) реакторной установки «Ангстрем».

Наконец, сейчас в нашей стране строится головная плавучая атомная станция теплоснабжения «Академик Ломоносов», которую планируют сдать осенью этого года. Разместившись у побережья Чукотки, она заместит мощности Билибинской АЭС, которая в 2019 году будет выведена из эксплуатации. В «Росэнергоатоме» планируют, что «Академик Ломоносов» станет далеко не единственной плавучей энергоустановкой, и в дальнейшем и в других городах Крайнего Севера, Дальнего Востока появятся подобные ПАТЭС. Так что идея атомных станций теплоснабжения живет и развивается и перспективы у этого направления, безусловно есть.

Наука и жизнь №1 1981

  С того знаменательного дня, когда в Советском Союзе дала промышленный ток первая я мире атомная электростанция (АЭС), прошло более четверти века. За это время атомная электроэнергетика, ставшая генеральным направлением использовании ядерной энергии, достигла немалых успехов. В одиннадцатой пятилетке намечается дальнейший рост мощностей АЭС, увеличение их доли в общей выработке электроэнергии. Это позволит более рационально строить топливно-энергетический баланс страны, экономить такие ресурсы, как нефть, газ. Но атомная электроэнергетика но единственный путь использования энергии деления ядер. За последние годы получает развитие новое направление: атомное теплоснабжение, широкое внедрение которого должно дать в экономии дефицитных топливных ресурсов еще более существенный эффект, чем атомные электростанции.
  Наш корреспондент С. Кипнис попросил ответить на ряд вопросов об атомном теплоснабжении одного из ведущих ученых в этой области, профессора, доктора технических наук, лауреата Государственной премии СССР Виктора Алексеевича СИДОРЕНКО, директора отделения Института атомной энергии имени И. В. Курчатова.

ЗАДАЧА ОСОБОЙ ВАЖНОСТИ
Корреспондент. В одной из недавно опубликованных статей президент Академии наук СССР академик А. П. Александров писал: «Разработка и всемерное расширение видов технологических процессов, которые могут быть переведены на ядерные энергоресурсы, являются одной из важнейших практических задач, стоящих перед нашим поколением.
  С появлением возможности использовать энергию деления ядер определилось и первое направление ее применения- электроэнергетика. Но даже если все электростанции перевести, на атомное горючее, эффект был бы не очень значительным: потребление природного топлива уменьшилось бы лишь на 20 процентов, а расход нефти и газа и того меньше - лишь на 10 процентов (поскольку около половины электростанций работает на угле).
  Поэтому наступило время подумать и о других сферах применения атомной энергии. Выработка промышленного и отопительного тепла, включение атомной энергетики в металлургию и химическую промышленность являются задачей значительно более крупного масштаба, чем электроэнергетика. В ближайшие годы человечество, конечно, станет свидетелем проникновения ядерной энергетики в эти области».
  Для подавляющего большинства людей привычно считать, что основная профессия атома - производство электроэнергии, работа на атомных электростанциях. И очень трудно поэтому воспринимается утверждение, что у атомной энергии есть дела и помасштабнее.
В. Сидоренко. И тем не менее это так. Тепловые электростанции далеко не самый крупный потребитель топлива. Достаточно сказать, что, например, на производство горячей воды и пара (низкотемпературного тепла) для нужд городов и промышленности расходуется в полтора раза больше топлива, при этом значительную часть тепла вырабатывают мелкие, малоэффективные установки, сжигающие наиболее ценные виды топлива - нефть и газ.
  Ясно, что использование атомной энергии для получения низкотемпературного тепла должно дать огромный эффект.
  Мы не будем говорить о снабжении промышленности, в первую очередь металлургии и химии, высокотемпературным теплом (800-1000° С и выше). Это отдельная, самостоятельная большая тема. Замечу лишь, что с применением атомной энергии для получения высокотемпературного тепла также связаны большие надежды многих отраслей промышленности.

В МАСШТАБАХ СТРАНЫ
Корреспондент. Каковы же потребности жилищно-коммунального сектора и промышленности в низкотемпературном тепле?
В. Сидоренко. Прежде всего уточню, что основной теплоноситель для целей отопления и горячего водоснабжения городов - вода при температуре максимум 150° С (в зависимости прежде всего, конечно, от времени года), а что касается промышленного теплоснабжения, то здесь используются и горячая воде (около 30%) и насыщенный пар (примерно 70%) давлением от 3 до 40 атм (0,3-4 мегапаскаля - МПа). Диапазон потребителей низкотемпературного тепла в промышленности очень широк: ведь подавляющее число технологических процессов не может идти без горячей воды или пара, которые нужны для подогрева рабочих сред.
  Теперь о масштабах потребления в нашей стране низкотемпературного тепла.
  Потребности в низкотемпературном тепле действительно огромные. Например, городу с населением 300-400 тысяч человек для бытовых целей требуется в среднем 800-1000 Гкал тепла в час (гигакалория (Гкал) - миллиард калорий). Чтобы получить столько тепла (с учетом неизбежных потерь), пришлось бы ежечасно сжигать 300-400 т мазута.
  Предполагается, что уже в ближайшее время (через 15-20 лет) в СССР ежегодное потребление низкотемпературного тепла (его еще называют низкопотенциальным) достигнет весьма внушительной цифры - 6 млрд. Гкал. Для выработки такого количества тепла пришлось бы, например, сжечь около 600 млн. т нефти, то есть практически всю нашу годовую добычу, и, учтите, это лишь при условии стопроцентного использования ее теплосодержания, чего в действительности, конечно, нет.
  Еще раз подчеркну, что около 30-40% всех видов топлива расходуется именно для производства горячей воды и технологического пара.

Корреспондент. В чем отличие использования атомной энергии для теплоснабжения от традиционной схемы производства энергии на АЭС?
В, Сидоренко. Начнем не с различия этих двух процессов, а с их сходства. В обоих случаях производителем тепла служит атомный реактор. Напомню, что в его активной зоне происходит регулируемая цепная реакция деления ядер, например, урана-235. Образующиеся при этом осколки деления разлетаются с большими скоростями; при торможении их вся кинетическая энергия переходит в тепло, которое и отбирается теплоносителем, циркулирующим через активную зону для ее охлаждения. Схемы дальнейшего использования этого тепла могут быть разные: либо нагревать теплообменнике воду, циркулирующую во втором контуре, и превращать ее в пар, или непосредственно в самом реакторе перегревать воду и получать пар нужных параметров.
  Чтобы понять специфику процесса производства низкотемпературного тепла в атомном реакторе, остановимся на некоторых особенностях ядерного источника энергии.
  Во-первых, отметим, что такой источник энергии экономически выгоден, как показывает вся практика освоения атомной энергетики, только при довольно больших единичных мощностях. Поэтому замечу здесь, что когда речь идет о бытовом теплоснабжении городов, то применяемый иногда в этом случав термин «атомная котельная» нужно в некотором смысле рассматривать как весьма условный. Ведь со словом «котельная» мы можем связывать и довольно мелкие энергоисточники, при этом невольно возникают ассоциации с квартальными или домовыми котельными. Атомный же источник тепле по своим масштабам не может быть, исходя из требований экономики, столь мелким.
  Это должна быть достаточно крупная станция - с атомными реакторами общей мощностью 1000 МВт (по соображениям резервирования ее компонуют из двух блоков по 500 МВт каждый). Такая станция сможет обеспечить теплом город с населением 300-400 тысяч человек.
  Чтобы избежать нечеткости, которая возникает при пользовании термином «котельная», мы пустили в обиход другое название: атомная станция теплоснабжения -- ACT . Так мы ее и будем дальше именовать.
  Вторая существенная особенность атомного реактора - чувствительность к уровню температур, которые в нем развиваются. Именно этим в значительной степени определяется и выбор наиболее целесообразных технических решений использования ядерного топлива для теплоснабжения.
  Вспомним, что характерной чертой развития советской теплоэнергетики стало централизованное теплоснабжение. Это привело к тому, что у нас широко распространились разветвленные тепловые сети. И уже многие годы все новые города, новые жилые массивы развиваются именно на базе централизованного теплоснабжения. А раз так, то появилась возможность разумно, на основе научно-технической оптимизации подойти и к выбору способа снабжения теплом.
  Из соображений оптимизации теплосилового цикла следует, что наиболее экономически эффективна одновременная выработка тепла и электроэнергии. Вот почему теплоэлектроцентрали стали основным стратегическим направлением в разработке источников теплоснабжения.
  Вполне естественно было бы и, переходя к новому виду топлива - ядерному, обратиться к аналогичному решению, то есть созданию атомных теплоэлектроцентралей (ЛАТЭЦ) . Однако история техники свидетельствует, что специфика нового источника энергии всегда тянет за собой и какие-то другие оптимальные решения.
Корреспондент. Наверное, уже и история развития атомной энергетики подтверждает это положение?
В. Сидоренко. Да, конечно. Приведу пример, который касается выбора параметров пара для атомных электростанций.
  К тому времени, когда они начали развиваться, достаточно четко определилось основное направление совершенствования энергетического цикла традиционных тепловых электростанций: перегрев пара. Это, свою очередь, привело к созданию агрегатов на сверхкритические параметры. И вот когда настала пора выбирать для АЭС оптимальный вариант по паровому циклу, то остановились на насыщенном паре, а не на перегретом, хотя это было, подчеркну, очень непривычным для классической теплоэнергетики, которая затратила немало усилий, чтобы реализовать цикл с перегретым паром, и стремится к дальнейшему увеличению его параметров.
  Почему же конструкторы атомных электростанций приняли такое решение? С одной стороны, при переходе от насыщенного состояния пара к перегретому, для чего, естественно, и нужны высокие температуры, пар увеличивает свое теплосодержание, правда, эта прибавка относительно мала По сравнению с тем, что уже накоплено паром в результате испарения воды. С другой стороны, конструктивные особенности энергетической установки, надежность ее эксплуатации, экономичность использования ядерного топлива сильно зависят от того уровня температур, который мы хотим получить в атомном реакторе. Использование более высоких температур вынуждает применять и более жаростойкие материалы, а это, как правило, приводит к менее экономичному расходованию нейтронов, рождающихся в процессе деления (увеличивается их поглощение). И все это тянет за собой цепочку ухудшения экономических показателей использования ядерного топлива и удорожания самой энергоустановки.
  Если сопоставить все эти издержки с теми выгодами, которые даст перегрев пара в условиях АЭС, то сравнение оказывается не в пользу перегрева. По существу, в данном случае как раз и сказывается специфика нового теплового агрегата - атомного реактора. Для атомных электростанций.оптимальной на сегодня (конечно, с учетом главным образом имеющихся материалов) оказалась отжившая для традиционной энергетики технология с насыщенным паром средних параметров; при этом кпд теплового цикла АЭС остается еще на довольно приличном уровне - 30-34%.

ТРИ СПОСОБА
Корреспондент. Приведенный вами пример, раскрывающий логику выбора параметров пара для АЭС, мог бы, очевидно, служить и ответом на вопрос, почему атомный реактор не нашел пока еще применения для получения высокотемпературного тепла. Когда будут созданы материалы, необходимые для эффективной работы высокотемпературного реактора, наверное, отпадут и все проблемы, не только препятствующие использованию таких реакторов в металлургии, химической промышленности, но и для теплоснабжения.
В. Сидоренко. Совершенно верно. И здесь мы подошли к центральному вопросу: как наиболее рационально использовать для теплоснабжения атомный реактор, учитывая все те его особенности, о которых шла речь?
  Можно представить себе три способа централизованного теплоснабжения от атомного источника энергии.
  Во-первых, повторение традиционного для нашей энергетики способа одновременной выработки электроэнергии и тепла при помощи теплоэлектроцентрали (ТЭЦ), т.е. нашем случае это будет атомная станция - АТЭЦ . Здесь рабочее тепо - пар, прежде чем отдать тепло в сеть теплоснабжения, предварительно срабатывает свой потенциал в турбине для выработки электроэнергии. Собственно, этим и определяется термодинамическая эффективность такого комбинированного способа, то есть высокий кпд теплового цикла.
  Другой способ, который можно себе мыслить, такой: тепло, идущее к потребителю, получают не от пара паротурбинного цикла, а непосредственно отбором тепла от первичного теплоносителя атомного реактора. Таким образом, на границе реактора имеются два независимых потока тепла: один только для получения электроэнергии, а другой только для теплоснабжения (это наглядно поясняют схемы на стр. 52).
  Если разделить и сам источник тепла, тогда мы получим третий способ: два самостоятельно и независимо друг от друга работающих реактора - один для производства электроэнергии (атомная электростанция), а другой - специально для теплоснабжения.
  Это и есть одноцелевая станция атомного теплоснабжения, которая вырабатывает только тепло.
  Оказывается, что для целей теплоснабжения в некоторых условиях (о них мы скажем дальше) целесообразнее сооружать не двухцелевые станции - АТЭЦ, а одно-целевые - ACT. Чем же это объясняется? В случае атомных ТЭЦ мы вынуждены оставаться на том же уровне параметров пара, которые применяем для АЭС. Использование значительно более низких температур, чем в теплоэнергетике (что обусловлено, как уже говорилось, спецификой атомного реактора), подрывает основу экономичности двухцелевого использования тепла. Ведь традиционная теплоэлектроцентраль базируется на цикле перегретого паре. Какая-то часть пара, отбираемого от турбины, чтобы в бойлере нагреть воду для теплоснабжения, значительную долю своего потенциала уже использовала для выработки электроэнергии. А вот у насыщенного пара средних параметров, используемого на АТЭЦ, исходный запас энергии меньше, поэтому и количество электроэнергии, полученной с его участием, тоже меньше.
  Общее положение о принципиальной выгодности комбинированной выработки в одном агрегате электроэнергии и тепла, конечно, остается в силе, но при сравнении АТЭЦ с теплоэлектроцентралью на органическом топливе преимущество сегодня на стороне последней.

ГЛАВНЫЙ КРИТЕРИЙ - ЭФФЕКТИВНОСТЬ
Корреспондент. Но если мы примем схему раздельного производства электроэнергии на АЭС, а тепла на ACT, не проигрываем ли мы в итоге, ведь кпд у атомной электростанции из-за того, что больше тепла теряется в конденсаторах турбины, всегда меньше, чем у АТЭЦ?
В. Сидоренко , Чтобы оценить суммарную Эффективность того илииного способа, сравнить их по каким-то экономическим показателям, недостаточно опираться исключительно на значение кпд: ведь он характеризует лишь термодинамическую эффективность цикла. Надо брать более общий экономический показатель, который учитывает не только удельные расходы топлива на выработку конечного вида энергии, а и другие составляющие.
  Какие же это составляющие? Прежде всего капитальные затраты на сооружение самого энергоисточника. Они могут оказаться существенно или, во всяком случае, заметно разными для этих вариантов. В частности, из-за того, что АТЭЦ имеет те же параметры по реактору, что и АЭС, но должна быть несколько усложнена, чтобы, помимо электроэнергии, давать тепло, она будет по удельным показателям несколько дороже АЭС. С другой стороны, ACT благодаря своей специфике (работа при более низких температурах) будет по удельным показателям капитальных затрат дешевле АТЭЦ. Появляется уже явная возможность сравнивать различные варианты организации теплоснабжения: более дешевая ACT и средняя по стоимости АЭС или более высокая по стоимости АТЭЦ, но обеспечивающая лучший кпд цикла, то есть максимальное использование топлива.
  Следует учесть еще одну техническую особенность АТЭЦ, которая вносит свой существенный вклад в сопоставление вариантов. Речь идет о затратах на сооружение сетей для доставки тепла от энергоисточника к потребителю.
  В нашей практике атомные электростанции в соответствии с санитарными нормами размещают на расстоянии не менее 20 км от крупных населенных пунктов. А необходимость сооружения дополнительных десятков километров трасс увеличивает, конечно, расходы на теплоонабжение от АТЭЦ.
  При современном уровне знаний, развитии техники мы в состоянии при использовании любого атомного энергоисточника, при любой тепло и энергонапряженности активной зоны, при любых параметрах выполнить необходимые санитарные требования. Все дело сведется, естественно, к величине затрат. При этом источник энергии с меньшим уровнем температур, с меньшей напряженностью активной зоны требует для этого более дешевых технических решений. Поэтому в случае ACT мы можем применить разумные, экономически оправданные технические средства, которые позволяют надежно застраховаться от самых маловероятных и внешних и внутренних повреждений. Следовательно, появляется возможность приблизить атомный источник теплоснабжения непосредственно к населенному пункту. В результате сокращаются тепловые трассы, и тем самым удается повлиять еще на одну составляющую экономических затрат.
  До сих пор мы принимали во внимание лишь затраты средств на теплотрассы, А ведь они «пожирают» не только деньги, но и земли. Поэтому трудности с выделением земель для прокладки трасс могут оказаться не менее важным фактором, чем просто расход на эти теплотрассы.
  В конкретной ситуации может оказаться важным и такой фактор, как пропорции в обеспеченности данного района электричеством и теплом. По специфике энергоснабжения, которая сложилась в предыдущие годы, район может испытывать, например, острый недостаток в тепловой энергии, будучи достаточно хорошо обеспеченным электроэнергией. Сооружение в этих условиях двухцелевой станции, в частности АТЭЦ, приведет к тому, что избыточное количество электроэнергии придется передавать на сторону, а это тоже удорожает такой способ теплоснабжения.
Корреспондент. О чем же говорят расчеты эффективности различных вариантов, их сопоставление?
В. Сидоренко. Все технико-экономические проработки, учитывающие специфику энергопотребления различных частей нашей страны, обеспеченность их энергоресурсами и многие другие факторы, убедительно свидетельствуют, что существуют районы и области, где в ближайшее десятилетие реально применение как ACT, так и АТЭЦ, и такое атомное теплоснабжение надо развивать максимальным образом, особенно это относится к европейской части СССР.

НАДЕЖНОСТЬ...
В. Сидоренко . Еще раз подчеркну, что главное условие, определяющее все дальнейшие решения,- максимальная надежность реактора и выполнение самых жестких санитарных требований. Простота конструкции - вот ключ к решению этих проблем. С одной стороны, простота конструкции уже сама по себе в значительной степени предопределяет надежность реактора как источника энергии, а с другой - открывает путь для экономичного решения многих других важных вопросов.
  Возможности упрощения конструкции реактора заложены в самой идее его использования: только для производства низко-потенциального тепла. Напомню, что по сравнению с энергетическим реактором работа одноцелевого реактора протекает при существенно более низких температурах. Кроме того, величина теплонапряженности его активной зоны выбирается значительно меньшей. Такие облегченные условия эксплуатации позволяют отказаться от принудительного движения теплоносителя в первом контуре, то есть через активную зону реактора. А раз так, то не нужны циркуляционные насосы, системы их энергоснабжения и другое вспомогательное оборудование, назначение которых - обеспечивать надежную работу всех этих механизмов, приборов, устройств.
Корреспондент. А какие силы заставят воду циркулировать через активную зону реактора, если не будет насосов?
В. Сидоренко. Плотность воды горячей, уходящей из верхней части активной зоны, меньше плотности воды, охладившейся в теплообменнике (где она передает часть своего тепла воде другого контура) и поступающей снизу в активную зону. Благодаря этой разнице в плотностях и происходит естественное движение воды снизу вверх, без посторонней помощи.
  Переход на естественную циркуляцию, во-первых, позволяет, как я говорил, обходиться без механизмов, отсутствие которых уже само по себе повышает надежность установки, упрощает ее обслуживание, а, во-вторых, независимость естественной циркуляции от внешних источников питания исключает всякого рода повреждения, которые могли бы случиться в системе энергоснабжения.
  Здесь наглядно проявляются особенности ядерного источника энергии, рассчитанного только на получение тепла. Они все как бы стягиваются в один узел. Идя на пониженную энергонапряженность реактора, мы тем самым получили возможность упростить конструкцию: отказаться от всей весьма громоздкой и сложной системы принудительной циркуляции.
  Это решение открыло путь для следующего важного шага.

ЕЩЕ РАЗ НАДЕЖНОСТЬ...
  Основной источник всякого рода повреждений оборудования на АЭС обычно связан с разветвленным контуром циркуляции и с разветвленной системой вспомогательных трубопроводов, которые обеспечивают работу реакторной установки. Поэтому, желая уменьшить ее потенциальную аварийность и тем самым увеличить надежность, стремятся «истребить» вторичную паутину трубопроводов. Так вот, отказавшись от принудительной циркуляции, мы тем самым облегчили решение и этой задачи. Внешний циркуляционный контур можно убрать и естественную циркуляцию через теплообменник организовать, разместив его в пределах корпуса реактора.
  Таким образом, благодаря принятым конструктивным решениям удается осуществить интегральную компоновку реактора. При такой схеме за пределы корпуса реактора нужно вывести лишь трубопроводы второго, промежуточного контура, от которого тепло дальше будет передано в тепловую сеть, и механизмы управления системы регулирования и защиты.
Корреспондент. А как с размерами такого реактора? Ведь корпус энергетического водо-водяного реактора и без того достаточно велик, например, при мощности в 440 МВт диаметр его достигает 4 м, а высота - около 20 м?
В, Сидоренко. Конечно, интегральная компоновка приводит к некоторому увеличению габаритов корпуса. Но изготовление таких корпусов не становится слишком трудной технологической задачей. Это опять-таки связано с тем, что использование реактора для выработки низкотемпературного тепла позволило уменьшить давление внутри корпуса раз в десять - со 150-160 атм (15-16 МПа) до, 15, максимум 20 атм (1,5-2 МПа). Значит, толщина стенки корпуса может быть не 150-200 мм, как у энергетических реакторов большой мощности, а 30-40 мм. Благодаря этому сильно упрощается технология изготовления. Диаметр корпуса реактора мощностью 500 МВт - а именно из двух таких блоков и компонуют ACT на 1000 МВт - не превышает 6 м. И хотя это выходит за пределы допустимых железнодорожных габаритов (около 4,5 м), тем не менее особых трудностей с транспортировкой не возникает. Благодаря меньшей толщине стенки масса реактора получается не очень большой и его можно перевозить автотранспортом и водным путем.
  Вернемся к особенностям конструкции реактора ACT.
  Естественная циркуляция в пределах его корпуса и интегральная компоновка позволяют достаточно просто сделать еще один шаг по повышению надежности ACT.

И ЕЩЕ РАЗ НАДЕЖНОСТЬ
Корреспондент. Вы довольно часто - и это вполне закономерно - обращаетесь к проблеме надежности. Какими же критериями руководствуются при ее оценке?
В. Сидоренко. В качестве максимального повреждения от внутренних технических причин для АЭС обычно рассматривают разрыв наибольшего по диаметру трубопровода первого или второго контуров. Исходя из этого станцию обеспечивают всеми необходимыми техническими средствами, которые в состоянии нейтрализовать повреждение, локализовать все возможные последствия такого повреждения.
  Разрывы корпуса реактора или другого оборудования обычно для АЭС не рассматриваются, так как считается, что это крайне маловероятные события.
Специфика работы ACT - непосредственная близость к городу - заставляет учитывать даже и эти предельно редкие повреждения. Для этого надо создать технические средства, которым под силу обеспечить требуемые санитарные условия работы ACT не только при разрыве трубопровода, но и при повреждении корпуса реактора.
  Особенности реактора ACT (применение естественной циркуляции и интегральной компоновки, а также низкого давления внутри корпуса) позволяют эту задачу успешно решить на уровне приемлемых затрат. И сводится это к созданию довольно простой конструкции: второго, страховочного корпуса, который не исключал бы возможности осмотра основного, несущего корпуса, никак не ослаблял бы наших требований н его надежности как главного элемента установки, но позволял бы при самых крайних, непредвиденных нарушениях полностью удержать в своем объеме всю начинку реактора и весь теплоноситель, содержащий радиоактивные вещества.
  Вот модель такого крайнего события. При разрыве основного корпуса внутренний объем, занимаемый теперь теплоносителем, несколько увеличится, соответственно упадет давление, примерно на 30%, уровень воды хотя и понизится, но она по-прежнему будет охватывать всю активную зону и обеспечивать ее охлаждение. Благодаря такому соответствию характеристик работающего и защитного оборудования обеспечивается надежное охлаждение активной зоны.

ВЕСОМЫЙ ВКЛАД
Корреспондент. Когда и где будут строиться ACT с такими реакторами? Каковы ближайшие перспективы развития атомного теплоснабжения?
В. Сидоренко. Уже начато сооружение двух головных ACT: под Горьким и Воронежем. Каждая из них двухблочная - с двумя реакторами по 500 МВт, то есть общей мощностью 1000 МВт. Строительные площадки находятся за чертой города, на расстоянии 1,5-2 км. ACT будут обеспечивать теплом районы Горького и Воронежа, насчитывающие примерно по 300-400 тысяч жителей. Предполагается, что в строй действующих эти станции войдут через несколько лет.
  Говоря о перспективах атомного теплоснабжения, хочу обратить внимание еще на одну существенную особенность ACT. Параметры и режимы их работы рассчитаны так, что станции вписываются в существующие сети как дополнительный источник тепла. Создание таких новых мощных централизованных источников позволит демонтировать устаревшие установки, работающие на органическом топливе, а достаточно технически совершенные, но мелкие использовать в режиме пиковых нагрузок, которые наиболее часто возникают в холодное время года. Сами же ACT возьмут на себя базовую часть нагрузки.
  По управляемости ACT - весьма гибкий агрегат, который не накладывает никаких специфических требований к управлению тепловыми сетями в смысле регулирования распределением тепла, что очень важно. В принципе ACT может покрывать и пиковую нагрузку, но для атомной станции, как для всякого капиталоемкого оборудования (капиталовложения велики, а топливная составляющая мала), наиболее экономичен режим максимально возможной постоянной мощности, то есть базовый. ***   В заключение приведу высказывание вице президента Академии наук СССР академика А. П. Александрова о перспективах развития атомного теплоснабжения. Оценивая роль в этом деле ACT, он пишет, что в новой пятилетке «можно ожидать их широкое распространение, К 1990 году строительство таких станций будет иметь смысл в нескольких сотнях населенных пунктов СССР, поскольку ACT позволят сэкономить большое количество нефти, равное трети ее сегодняшней добычи в стране. Это будет весомый вклад в народное хозяйство, а главное, атомное тепло будет в два раза дешевле, чем то, которое дают котельные на органическом топливе» BR> ***
Об авторе .
  (р. 1929) - российский ученый, член-корреспондент РАН (1991; член-корреспондент АН СССР с 1981).
  Заместитель министра РФ по атомной энергии (1993-1996)
  Член редколлегии журналов "Атомная энергия", "Природа";
  член Международной консультативной группы по ядерной безопасности при генеральном директоре МАГАТЭ.
  Дважды лауреат Государственной премии СССР.
  Основные труды по созданию реакторов для АЭС.
***
Современная информация об атомных станциях теплоснабжения.
Воронежская АСТ (не путать с Нововоронежской АЭС) - атомная станция теплоснабжения (ВАСТ), в составе двух энергоблоков мощностью по 500 МВт предназначена для круглогодичной работы в базовом режиме в системе централизованного теплоснабжения г.Воронежа с целью покрытия существующего в городе дефицита тепла (ВАСТ должна была обеспечить 23% годовой потребности города в тепле и горячей воде). Строительство станции велось с 1983 по 1990 год и в настоящее время заморожено.
  Википедия

Атомная станция теплоснабжения.
  25.07.2010
  Россия - единственная страна, где серьёзно рассматриваются варианты строительства атомных станций теплоснабжения. Объясняется это тем, что в России существует централизованная система водяного отопления зданий, при наличии которой целесообразно применять атомные станции для получения не только электрической, но и тепловой энергии.

Первые проекты таких станций были разработаны ещё в 70-е годы XX века, однако из-за наступивших в конце 80-х гг экономических потрясений и жёсткого противодействия общественности, до конца ни один из них реализован не был. Исключение составляют Билибинская АЭС небольшой мощности, снабжающая теплом и электричеством посёлокБилибино в Заполярье (10 тыс. жителей) и местные горнодобывающие предприятия, а также оборонные реакторы (главной задачей которых является производство плутония):

Сибирская АЭС, поставлявшая тепло в Северск и Томск.
  Реактор АДЭ-2 на Красноярском горно-химическом комбинате, с 1964 г.поставляющий тепловую и электрическую энергию для города Железногорска.
  Было также начато строительство следующих АСТ на базе реакторов, в принципе аналогичных ВВЭР-1000:

Воронежская АСТ (не путать с Нововоронежской АЭС)
  Горьковская АСТ
  Ивановская АСТ (только планировалась)
  Строительство всех трёх АСТ было остановлено во второй половине 1980-х или начале 1990-х годов.

В настоящий момент (2006) концерн «Росэнергоатом» планирует построить плавучую АСТ для Архангельска, Певека и других заполярных городов на базе реакторной установки КЛТ-40, используемой на атомных ледоколах. Есть вариант малой необслуживаемой АСТ на базе реактора «Елена», и передвижной (железнодорожным транспортом) реакторной установки «Ангстрем».