10.07.2019

Услуги по подъему глубоководных кабелей связи. Облака в океане, или краткий экскурс в жизнь подводных кабелей. Подлодки России подбираются к американским кабелям


Описывая систему кабелей, которые поддерживают работу Интернета, Нил Стивенсон (Neal Stephenson) как-то сравнил Землю с материнской платой компьютера.

Ежедневно вы видите на улицах телефонные столбы, соединяющие сотни километров проводов, и знаки, предупреждающие о зарытых оптоволоконных линиях, но ведь на самом деле, это лишь малая часть физического облика глобальной Сети. Основные коммуникации прокладываются в самых холодных глубинах океана, и в сегодняшней статье мы перечислим 10 любопытных фактов об этих подводных кабелях.

1. Монтаж кабеля — это медленный, утомительный и дорогостоящий процесс

99% международных данных передается по проводам, лежащим на дне океана, которые называются подводными коммуникационными кабелями. В общей сложности, их длина превышает сотни тысяч миль, а прокладывают такие провода даже на глубине 9 км.

Установка кабелей производится специальными кораблями-укладчиками. Им нужно не просто сбросить на дно провод с прикрепленным грузом, но и проследить за тем, чтобы он проходил только по плоской поверхности, минуя коралловые рифы, обломки затонувших кораблей и другие распространенные препятствия.

Диаметр мелководного кабеля составляет примерно 6 см, а вот глубоководные кабели намного тоньше — толщиной с маркер. Разница в параметрах обусловлена обыкновенном фактором уязвимости — на глубине свыше 2 км практически ничего не происходит, поэтому кабель не нужно покрывать оцинкованным защитным слоем. Провода, расположенные на небольших глубинах, закапывают на дне, используя направленные струи воды под высоким давлением. Хотя стоимость прокладки одной мили подводного кабеля варьируется в зависимости от его общей длины и назначения, этот процесс всегда обходится в сотни миллионов долларов.

2. Акулы пытаются съесть Интернет

Никто не знает, почему именно акулам так нравится грызть подводные кабели. Возможно, это как-то связано с электромагнитными полями. Или же они просто любопытны. А может быть, таким образом они пытаются уничтожить нашу коммуникационную инфраструктуру перед сухопутной атакой. По сути, акулы в буквальном смысле жуют наш Интернет и иногда повреждают изоляцию проводов. В ответ на это такие компании, как Google, покрывают свои коммуникации слоем защитного кевлара.

3. Под водой Интернет уязвим так же, как и под землей

Ежегодно бульдозеры разрушают подземные коммуникационные кабели, и хотя в океане нет подобной строительной техники, под водой проводам угрожают множество других опасностей. Помимо акул, интернет-кабели могут быть повреждены корабельными якорями, рыбацкими сетями и различными стихийными бедствиями.

Одна из компаний, базирующаяся в Торонто, предложила прокладывать такие провода через Арктику, которая соединяет Токио и Лондон. Ранее это считалось невозможным, но климат изменился, и благодаря тающему ледяному покрову данный проект стал вполне реализуемой, но все еще невероятно дорогой задачей.

4. Использование подводных кабелей — это далеко не новая идея

Подводный телеграф между Америкой и Европой

В 1854 году начался монтаж первого трансатлантического телеграфного кабеля, который связывал Ньюфаундленд и Ирландию. Спустя 4 года, была отправлена первая передача с текстом: «Лоус, Уайтхаус получил пятиминутный сигнал. Сигналы катушки слишком слабы для передачи. Попробуйте отправлять медленно и размеренно. Я поставил промежуточный шкив. Ответьте катушками». Согласитесь, не очень вдохновляющая речь («Уайтхаусом» здесь называют Уилдмана Уайтхауса (Wildman Whitehouse), занимавшего на тот момент должность главного электрика Атлантической телеграфной компании).

Для исторической справки: в течение этих четырех лет конструирования кабеля Чарльз Диккенс (Charles Dickens) продолжал писать романы, Уолт Уитмен (Walt Whitman) опубликовал сборник «Листья травы» (Leaves of Grass), небольшое поселение под названием Даллас было официально присоединено к штату Техас, а Авраам Линкольн (Abraham Lincoln) — баллотирующийся в Сенат США — выступил со своей знаменитой речью о «Разделенном Доме».

5. Шпионы обожают подводные кабели

В разгар холодной войны СССР часто транслировала слабо закодированные сообщения между своими двумя основными военно-морскими базами. По мнению русских офицеров, в более мощном шифровании данных не было нужды, поскольку базы были напрямую соединены подводным коммуникационным кабелем, располагающимся в советских территориальных водах, которые кишели всевозможными датчиками. Они считали, что американцы никогда не рискнули бы начать Третью Мировую Войну, пытаясь получить доступ к этим проводам.

Советские военнослужащие не брали в расчет Halibut — специально оснащенную подводную лодку, способную проскользнуть мимо оборонных сенсоров. Эта американская лодка нашла подводный кабель и установила на него гигантское прослушивающее устройство, после чего ежемесячно возвращалась на место для сбора всех записанных сообщений. Позже эта операция под кодовым названием «Ivy bells» была скомпрометирована бывшим аналитиком АНБ, Рональдом Пелтоном (Ronald Pelton), который продал информацию о миссии «советам». В настоящее время прослушивание подводных интернет-кабелей является стандартной процедурой для большинства шпионских агентств.

6. Правительства используют подводные кабели, чтобы избежать шпионажа

В сфере электронного шпионажа Соединенные Штаты обладали одним весомым преимуществом перед другими государствами: их ученые, инженеры и корпорации принимали активное участие в построении глобальной телекоммуникационной инфраструктуры. Основные потоки данных пересекают американскую границу и территориальные воды, что позволяет перехватывать множество сообщений.

Когда документы, украденные бывшим аналитиком АНБ Едвардом Сноуденом (Edward Snowden), обнародовали, многие страны с возмущением восприняли действия американских шпионских ведомств, которые тщательно отслеживали передачу иностранных данных. В результате, некоторые государства пересмотрели саму инфраструктуру Интернета. Бразилия, к примеру, решила проложить подводный коммуникационный кабель аж до Португалии, полностью минуя территорию США. Более того, они не позволяют американским компаниям участвовать в разработке проекта.

7. Подводные интернет-кабели — быстрее и дешевле, чем спутники

Сейчас на нашей орбите находится около 1 000 спутников, мы отправляем зонды на кометы и даже планируем миссии с высадкой на Марс. Кажется, будто создавать виртуальную коммуникационную сеть нужно именно в космосе, хотя нынешний подход с использованием подводных кабелей ничем не хуже. Но разве спутники не превзошли эту устаревшую технологию? Как выясняется, нет.

Несмотря на то, что волокно-оптические кабели и спутники изобрели примерно в одно время, космические аппараты имеют два существенных недостатка: задержка и повреждение данных. Отправка сообщений в космос и обратно действительно занимает много времени.

Между тем, оптические волокна могут передавать информацию практически со скоростью света. Если вы хотите посмотреть, каким бы был Интернет без подводных кабелей, посетите Антарктиду — единственный континент, не имеющий физического подключения к Сети. Местные исследовательские станции полагаются на спутники с высокой пропускной способностью, но даже этой мощности не хватает, чтобы передать все данные.

8. Забудьте о кибервойнах — чтобы нанести Интернету реальный ущерб, вам понадобится акваланг и пара кусачек

Хорошая новость заключается в том, что перерезать подводный коммуникационный кабель довольно сложно, ведь в каждом таком проводнике напряжение может достигать нескольких тысяч вольт. Но как показал случай, произошедший в Египте в 2013 году, сделать это вполне возможно. Тогда к северу от Александрии были задержаны несколько человек в гидрокостюмах, которые намеренно перерезали подводный кабель длиной 12 500 миль, соединяющий три континента. Скорость интернет-соединения в Египте была снижена на 60% до тех пор, пока линию не восстановили.

9. Подводные кабели нелегко ремонтировать, но за 150 лет мы все-таки научились нескольким трюкам

Если вы считаете, что замена кабеля локальной сети, который находится за вашим столом — это сложный и мучительный процесс, попробуйте починить твердый садовый шланг на дне океана. Когда подводные коммуникации повреждаются, на место отправляются специальные ремонтные корабли. Если провод находится на мелководье, роботы фиксируют его и тащат на поверхность. Если же кабель расположен на большой глубине (от 1900 метров), инженеры опускают на дно специальный захват, подымают провод и ремонтируют его прямо над водой.

10. Срок службы подводных проводников Интернета — не более 25 лет

По состоянию на 2014 год, на дне океана было проложено 285 коммуникационных проводов, 22 из которых все еще не используются. Срок эксплуатации подводного кабеля не превышает 25 лет, ведь в дальнейшем он становятся экономически невыгодным с точки зрения мощности.

Тем не менее, за последние десять лет мировое потребление данных пережило настоящий «взрыв». В 2013 году на одного человека приходилось 5 гигабайт интернет-трафика, и по мнению экспертов, к 2018 году этот показатель увеличится до 14 Гб. Вполне возможно, что при таком стремительном росте мы столкнемся с проблемами мощности и будем вынуждены обновлять коммуникационные системы намного чаще. Однако в некоторых местах за счет новых методов фазовой модуляции и улучшенных автоматизированных подводных терминалов мощность удалось повысить на 8000%. Так что, судя по всему, к большим потокам трафика подводные провода более, чем готовы.

25 сентября 1956 года был введен в эксплуатацию первый трансатлантический телефонный кабель. Перед вами небольшой FAQ на тему того, почему Интернет и по сей день живет не в небе, а под водой.

Почему телекоммуникационные компании не используют спутники вместо кабелей?

Спутники отлично подходят для некоторых целей: их можно использовать для той местности, где ещё нет оптоволоконных кабелей, плюс они могут транслировать информацию из одной точки в несколько других.

Однако для поразрядной передачи данных нет ничего лучше, чем оптоволокно. Такие кабели могут передавать бо льшие объёмы данных с меньшими затратами.

Сложно точно узнать объёмы международного трафика, проходящего через спутники, но можно точно сказать, что эти объёмы крайне малы. Статистика, опубликованная Федеральной комиссией по связи США, указывает, что на спутники приходится лишь 0,37% всех международных мощностей США.

Хорошо, а что насчёт моего смартфона, он же использует беспроводной обмен данных?

Когда вы используете телефон, то передаёте данные беспроводным методом только до первой вышки связи, которая передаёт данные уже наземным или подводным путём.

Сколько всего подводных кабелей?

В начале 2017 года насчитали около 428 рабочих подводных кабелей по всему миру. Число постоянно меняется, так как подключают новые кабели и списывают старые.

Как они работают?

Современные подводные кабели используют, как мы уже сказали выше, оптоволоконные технологии. Электрический сигнал превращается в свет, излучаемый микролазерами, и передается на высоких скоростях по волокну к приемнику на другом конце, который, в свою очередь, преобразует свет обратно в электрический сигнал.

Они толстые?

Сам кабель с учетом обмотки толщиной примерно с поливальный шланг. А толщина внутренних элементов кабелей, через которые передаётся сигнал, сравнима с человеческим волосом.

Внутренние волокна кабеля покрыты несколькими слоями изоляции и защитного материала. Те участки кабелей, которые пролегают в прибрежной зоне, покрывают дополнительными слоями для повышения прочности.

Подводный кабель в разрезе: 1. полиэтилен; 2. «майларовая» лента; 3. скрученная стальная проволока; 4. алюминиевая водоизолирующая перегородка; 5. поликарбонат; 6. медная или алюминиевая труба; 7. гидрофобный заполнитель; 8. оптические волокна. Спасибо Wikipedia

Кабели действительно лежат прямо на дне океанов?

Да. Ближе к береговой линии их укладывают под грунтом, чтобы избежать повреждений, собственно поэтому их и не видно на пляжах.

Разумеется, кабели должны прокладываться в наиболее безопасных зонах морского дна, где нет разломов, мест рыболовного промысла, участков для сброса якорей кораблями и прочих опасностей для кабеля. Компании, занимающиеся прокладкой подводных кабелей, открыто сообщают о том, где расположены кабели, чтобы уменьшить вероятность их непреднамеренного повреждения.

Их едят акулы?

Повреждения кабелей акулами - один из мифов СМИ. Это стало популярной темой для статей после того, как в прошлом акулы пару раз «напали» на кабель. На сегодняшний день они не являются основной угрозой для кабелей. Тем не менее кабели часто повреждаются, в среднем более 100 раз в год. Вы редко слышите о повреждениях из-за того, что многие компании, работающие в этой сфере, используют подход «безопасность в цифрах»: до тех пор, пока кабель не будет восстановлен, тот поток данных, который он должен был обслуживать, будет распределён между другими кабелями.

Какова общая длина всех кабелей?

По состоянию на 2017 год общая длина всех действующих кабелей составляет около 1,1 миллиона километров.

Некоторые кабели очень короткие: кабель компании CeltixConnect, соединяющий Ирландию и Великобританию, протянут всего на 131 километр. Другие же кабели могут быть невероятно длинными, например, кабель Asia America Gateway, длина которого составляет 20 000 километров.

Карту-то дайте

Почему между одними странами много соединений, а между другими их вообще нет?

Давайте для начала обратимся к цитате Генри Дэвида Торо:

Наши изобретения обычно похожи на привлекательные игрушки, которые отвлекают наше внимание от действительно важных вещей. Мы спешим строить магнитный телеграф от штата Мэн до Техаса, однако, возможно, Мэн и Техас не имеют никаких важных данных, которые нужно было бы передавать через этот телеграф.

Европа, Азия и Латинская Америка постоянно обмениваются большим количеством данных с Северной Америкой. Из-за того, что Австралия и Латинская Америка данными в таких количествах не обмениваются, между ними и нет никаких кабелей. Зато если кабели появятся, мы будем знать, что там происходит что-то интересное 🙂

Кому принадлежат кабели?

Традиционно кабели принадлежали телекоммуникационным агентствам, которые формировали консорциум из тех, кто заинтересован в использовании кабелей. В конце 90-х годов прошлого столетия приток новых компаний создал большое количество частных кабелей, мощности которых продавались их пользователям.

На сегодняшний день существуют и частные, и принадлежащие консорциумам кабели. Самое большое изменение в организации передачи данных через кабели произошло в типе компаний, занимающихся этим.

Поставщики контента, такие как Google, Facebook, Microsoft и Amazon - главные инвесторы в кабельный бизнес. Объём мощности, развёрнутый частными операторами вроде поставщиков контента, превысил за последние годы тот объём мощности, который обеспечивали операторы интернет-магистралей.

Кто использует эти кабели?

Вы, например. Пользователи мощностей подводных кабелей - разные люди и компании, правительства, операторы сотовой связи, транснациональные корпорации и поставщики контента. Любой человек, который вышел в Интернет, уже пользуется подводными кабелями, независимо от устройства.

Какие объёмы информации они могут передавать?

Пропускная способность у всех кабелей разная. Новые кабели могут пропускать больший объём данных, чем те, которые были проложены 15 лет назад. Готовящийся к эксплуатации кабель MAREA сможет передавать данные со скоростью 160 терабит в секунду.

Принципиально новый, качественный скачок в технике подводных линий связи произошел при появлении оптических кабелей. В первой половине 1980-х годов осуществилась прокладка ОК для регулярной эксплуатации линий длиной от 300 до 10000 км на глубине до 7500 м . Коэффициент затухания кабелей с одномодовыми волокнами на длине волны 1,3 мкм составлял 1 дБ/км, длина регенерационного участка – 35 км.

В 1985 г. был проложен первый глубоководный оптический кабель связи большой емкости между двумя Канарскими островами (ОК первого поколения ).

Эта глубоководная система содержала несколько регенераторов, скорость передачи составляла 280 Мбит/с на 2 ОВ, передача осуществлялась на длине волны 1,3 мкм.

В настоящее время подводные волоконно-оптические кабели имеют протяженность более 300000 км и обеспечивают связь между 90 странами. Запущенная в 1988 г. Трансатлантическая линия ТАТ-8 между США, Францией и Англией, работала также на длине волны 1,3 мкм и обеспечивала емкость 280 Мбит/с на 2 ОВ. До этого момента 65% всех международных каналов между США и Европой обеспечивалось с помощью спутников. В настоящее время более 75% всех каналов обеспечивается с помощью ОК. Через несколько месяцев после введение ТАТ-8 была запущена Транстихоокеанская линия ТРС-3, соединяющая США и Японию.

Второе поколение ОК также использовало регенераторы, но уже работало на длине волны 1,55 мкм и на скорости передачи 560 Мбит/с на 2 ОВ. К этому поколению относятся ТАТ-9 (США – Канада – Англия, Франция – Испания), ТАТ-10 (США – Германия), ТАТ-11 (США – Англия – Франция) и ТРС-4 (США – Канада – Япония). ТАТ-9 обеспечивало электронное мультиплексирование и демультиплексирование в подводной части системы.

Третье поколение ОК (1995 г.) обеспечивало начальный сегмент первой трансокеанской кольцевой системы ТАТ-12, ТАТ-13 и ТРС-5. На пару ОВ обеспечивалась скорость 5 Гбит/с синхронной цифровой иерархии, использовались эрбиевые усилители оптических сигналов и длина волны 1,55 мкм.

Четвертое поколение ОК позволило использовать системы, которые обеспечивают прямое усиление оптических сигналов.

Прогноз роста объемов передачи информации дальней связи отмечает, что пропускная способность и скорость передачи удваивается каждые два года.

Подводные ОК должны обладать повышенной прочностью на разрыв и выдерживать давление воды – до 75 МПа. При конструировании подводных ОК приходится учитывать такие требования, как гибкость, устойчивость к шторму, необходимые при прокладке на дне и извлечении непосредственно со дна и из траншеи, подвеске к бонам при ремонте; простоту и быстроту ремонта. Необходимо учитывать, что стоимость самого ОК составляет значительную часть от стоимости всей системы.

Конструкция кабеля для подводной системы зависит от места их прокладки. Существуют: глубоководные кабели с защитой от значительного гидростатического давления; кабели для прокладки в мелководных местах с защитой от сетей и якорей; кабели для прибрежной прокладки с повышенной механической защитой и кабели для прокладки в земле, траншеях к распределительному пункту для присоединения к наземной сети.

При изготовлении кабеля необходимо добиваться минимума остаточных напряжений в ОВ. В настоящее время в лучших образцах она составляет 0,05% от допустимой. ОВ очень чувствительны к воздействию морской воды . При ремонте линии необходимо удалить куски ОК, в которых обнаружены следы воды. При наличии постоянного гидростатического давления скорость проникновения воды вдоль кабеля постоянна, но может быть уменьшена за счет применения гидрофобного заполнения. Структура заполнителя должна быть такой, чтобы он проникал во все пустоты внутри ОК, не оказывая влияния на ОВ и эффективно герметизируя кабель в продольном направлении.

Другая проблема заключается в появлении внутри кабеля водорода, который отрицательно действует на ОВ. Водород может выделяться вследствие взаимодействия материалов, из которых изготовлен ОК, с морской водой. Недавние исследования показали, что наименьшего влияния водорода на ОВ достигают за счет металлизации поверхности волокна. Начаты исследования триаксиальной конструкции ОВ, которая также повышает его стойкость к воздействию водорода.

Уменьшить влияние гидростатического давления на ОВ можно за счет использования в конструкции кабеля полой трубки, которая может быть выполнена из металла и несет на себе функции токопроводящей жилы. Сечение трубки и ее размеры часто определяет не давление, а требование по передаваемой электрической мощности. Трубку довольно часто выполняют из меди или алюминия.

Кроме этого способа защиту от гидростатического давления можно осуществлять путем применения скрутки стальными проволоками, которые образуют прочную конструкцию. Армирующие стальные элементы должны обеспечить прочность не только при воздействии статических, но и динамических нагрузок. При двухслойном расположении проволок (направление скрутки проволок в слоях противоположное) добиваются нейтрализации крутящих моментов и исключают возможность возникновения петель.

В приведенные конструкции и характеристики подводных ОК для различных условий эксплуатации и глубины водоемов зарубежных фирм и ЗАО «Севкабель-оптик», г. Санкт-Петербург. Следует отметить, что выпуск глубоководных ОК начинает осуществляться на отечественных заводах. Так, специалистами ЗАО «Севкабель-оптик» разработаны оптические кабели для подводной морской прокладки на глубину до 400 м и до 1000 м.

Кабель представляет собой аксиальную конструкцию, в центре которой расположен оптический модуль в виде герметичной трубки, изготовленной из нержавеющей стали со свободно расположенными оптическими волокнами. Поверх модуля располагается повив медных проводников дистанционного электропитания. Далее следуют промежуточная полиэтиленовая оболочка и внешние покровы, состоящие из бронеповива стальных проволок и наружной полиэтиленовой оболочки.

На рисунке 2.15 представлена конструкция подводного ОК для прокладки на глубину до 400 м марки ПОК-400.

Рис. 2.15. Конструкция подводного ОК марки ПОК-400 производства ЗАО «Севкабель-Оптик» с медными жилами для дистанционного питания: 1 – центральная трубка из полимерных композиций со свободно уложенным оптическим волокном или пучками волокон, заполненная гидрофобным компаундом; 2 – медная проволока (токопроводящая жила дистанционного электропитания); 3 – водоблокирующая лента; 4 - медная лента; 5 – промежуточная оболочка из полиэтилена высокой плотности; 6 – круглая стальная оцинкованная проволока; 7 – гидрофобный компаунд; 8 – наружная оболочка из полиэтилена высокой плотности

Основные технические характеристики подводного кабеля марки ПОК-400:

Количество оптических волокон в кабеле

Диаметр кабеля, мм

Масса кабеля, кг/км
- в воздухе;
- в воде

Не более 972
не более 625

Радиус изгиба, мм

не менее 322

Стойкость к продольному растяжению, кН

не менее 50

Стойкость к раздавливающим усилиям, кН/см

не менее 1,5

Стойкость к радиальному гидростатическому
давлению, МПа

не менее 4,0

Температурный диапазон эксплуатации, ° С

от минус 40 до плюс 40

Электрическое сопротивление токонесущего
элемента дистанционного питания (совокупности медных проволок), Ом/км

не более 1,0

Максимальная строительная длина кабеля, км
- при поставке на барабане;
- при отгрузке на судно-кабелеукладчик

8
50

В стадии разработки и испытаний находятся и более мощные подводные оптические кабели.

Уникальное географическое положение ЗАО «Севкабель-оптик» - цех по производству оптических кабелей расположен на берегу залива и имеет собственный глубоководный причал – позволяет существенно модернизировать процесс подготовки подводного кабеля к прокладке. Предприятие, обладая тенксами – емкостями для хранения больших строительных длин подводного кабеля, готово проводить комплексные работы по созданию будущих подводных ВОСП, включая монтаж муфт и оптических усилителей, накладку и тестирование линейного тракта. Причем эти работы возможно проводить в пределах кабельной секции на берегу в заводских условиях с последующей перегрузкой участка линии на борт судна – кабелеукладчика.


Сколько лет Интернету?
Ну, это как считать, поскольку создан он был не на пустом месте. 1 января 1983 года сеть ARPANET запустила в работу модернизированные сетевое оборудование и программное обеспечение, которые позволили ей взаимодействовать с другими сетями, построенными на других технических стандартах с такой простой, которая до сих пор была недостижима, что и позволило называть её «Interconnected Networks» (объединённые сети) или коротко – Интернет.

Cеть ARPANET (Advanced Research Projects Agency Network) была создана в 1969 году в США, и первое сообщение по ней сумели переслать 1 октября 1969 года. Несмотря на достижения ARPANET, довольно скоро у нее появился серьезный противник, межуниверситетская сеть NSFNet, которая имела заметно большую пропускную способность, и в 1990 году, проиграв в конкурентной борьбе, ARPANET прекратила свое существование. Тем не менее, при желании мы вполне можем в октябре этого года отметить тридцатилетие Интернета.

Кто всё это придумал?
Понятно, что такая глобальная структура – это результат сотрудничества тысяч ученых и инженеров, но основы технологии пакетной коммуникации были независимо друг от друга изобретены Полом Бараном и Дональдом Ватт Дэвисом.
Пол Баран, родившийся в 1926 году в тогда еще польском городе Гродно, переехал с родителями в США в двухлетнем возрасте. В 1960 году он уже был сотрудником «мозгового центра» компании «Rand Corporation», и в рамках поставленной задачи (создать универсальный способ организации коммуникаций между различными научными центрами) решил производить передачу информации по аналогии с пчелиными сотами, которые пчелы достраивают сами, обладая лишь информацией о параметрах, позволяющих точно состыковать новые соты с уже построенными. В процессе работы Пол придумал более подходящий для этой цели, чем аналоговый, способ записи – цифровой, и обо всех своих находках написал статью, напечатанную уже в секретном препринте «Rand Corporation» в 1962 году.

Независимо от Барана подобную теорию развивал и Дональд Дэвис, сотрудник английской, в то время тоже засекреченной, Национальной физической лаборатории. Он построил для лаборатории небольшую сеть на основе новых принципов коммуникации и ввел в обиход термин «пакет».

Сколько лет Всемирной паутине?
В 1980 году английский физик Тим Бернес-Ли всего на полгода устроился на работу в женевскую Европейскую лабораторию CERN на должность консультанта по разработке программного обеспечения. Проявил он себя неплохо, но полноправным сотрудником лаборатории он стал только в 1984 году, когда и приступил к решению проблемы обработки и предоставления результатов научных исследований в режиме реального времени.

В 1989 году задача была решена, и уже осенью 1990 года сотрудники CERN получили в пользование первые «веб-сервер» и «веб-броузер», написанные Тимом. Удобство европейского проекта «WWW» - «World Wide Web» (Всемирная паутина) было настолько очевидно, что уже летом 1991 года его на вооружение принял американский проект «Internet», и сегодня каждый из нас имеет дело с Всемирной паутиной практически ежедневно.

Сколько людей пользуется услугами Сети?
Прежде всего, нужно понимать, что точно этого знать никто не может, поскольку это число меняется каждую секунду. И всё же, подсчеты ведутся постоянно, и это понятно – такая информация интересует многих – от коммерсантов до военных, а потому она стоит денег, и немалых. На рынке этих услуг существую явные лидеры, это коммерческие структуры Nielsen//NetRatings, NUA, e M arketer, IDC, eTForecast. Обзоры по использованию Интернета и прогнозы составляют также UNESCO Observatory of the Information Society, International Telecommunication Union (ITU).

Как обеспечивается связь между континентами?
Для этих целей служит подводный коммуникационный кабель. В 1851 г. инженер по фамилии Брет проложил первый подводный кабель через Ла-Манш, соединив таким образом телеграфной связью Англию с континентальной Европой. Это стало возможным благодаря изобретению гуттаперчи - вещества, способного изолировать в воде провода, несущие ток. Первой телеграммой, переданной по подводному кабелю, было поздравление президента США Джеймса Бьюкенена королевой Великобритании Викторией в 1856 году. Тот старый армированный кабель, изолированный гуттаперчей (изобретение инженера Сименса) связал берега Ирландии и Ньюфаундленд. Это было дорого, это было недоработано технически, но уже с 1866 г. телеграфная линия начала устойчиво работать, при этом скорость передачи информации составляла всего 17 слов в минуту. Современные подводные кабели используют оптоволоконные технологии. Первый такой кабель был проложен в 1988 году.

Оптоволоконный кабель в разрезе. 1 – полиэтилен, 2 - пленка Mylar, 3- металлические несущие жилы, 4-алюминиевый гидрозащитный слой, 5 –поликарбонат, 6- медная (или алюминиевая) трубка, 7 - жидкий парафин (вазелин), 8 – оптоволоконные жилы.

Сегодня такие кабели, проложенные по дну водоемов и Мирового океана, соединяют между собой все континенты, кроме Антарктиды. Примерно через каждые 100 км для восстановления мощности оптического сигнала, устанавливается EDFA-усилитель. В Интернете есть список подводных коммуникационных кабелей.
http://en.wikipedia.org/wiki/List_of_international_submarine_communications_cables

Карта подводных коммуникационных кабелей

В жизни подводный кабель выглядит совсем не романтично, его километр весит до 10 тонн, его диаметр - 69 мм, и, как любой подводный кабель, он может быть поврежден – якорями, землетрясениями, разрушен специально, как это делалось неоднократно во время Второй мировой войны, а может быть просто сворован контрабандистами, которые могут сдать в металлолом используемую в нем медь.

Где в мире наблюдается самый напряженный трафик коммуникаций?
Карта трафика, то есть объёма информации, передаваемой по Сети, удивительным образом совпадает с картой доступности Земли, что само по себе объяснимо.

Карта глобального трафика

При этом география передачи информации, к большому неудовлетворению американских спецслужб, за последние 10 лет заметно изменилась: если раньше 70% мирового трафика двигалось через американские линии связи, то теперь этот показатель не превышает и 25%. Но такова природа Сети и сделать с этим ничего нельзя. В свое время американцы отказались вкладывать большие деньги в оптоволокно, и результат не замедлил сказаться. При этом Индия и Китай активно вкладывают огромные средства в интернет-технологии следующего поколения, и вполне очевидно, мы еще увидим соответствующие изменения в трафике.

Если соотношения числа пользователей Интернета по континентам в отношении к общей численности населения, на них проживающих, то видно, что наибольшие перспективы роста этого показателя и, соответственно, роста трафика, остаются у азиатского региона и Африки. Это значит, что это и есть наиболее перспективные и с коммерческой точки зрения регионы, что не упустят из виду транснациональные финансовые корпорации.

Карта доступности Земли.

...
Одновременно производятся вложения в подводный кабель Unity, первые 10 000 км, соединяющие тихоокеанское побережье США с Японией уже в проекте. Этот кабель будет иметь 5 волокон, у каждого из которых будет пропускная способность в 960 Гбит/с. Кличество волокон можно будет увеличить до 8, тогда пропускная способность канала составит 7.68 Тбит/с, что почти вдвое лучше сегодняшнего показателя. Так почему бы не сделать глобальную перестройку подводных коммуникаций? Всё упирается в деньги, которых требуется уже сейчас (по мнению той же Nemertes Research), как минимум, 91 миллиард фунтов стерлингов. Вот почему в первую линию кабеля Unity вкладывают деньги аж шесть корпораций (в том числе и Google). Так, может, стоит массово ереходить на спутниковую связь? И снова деньги: стоимость систем на основе подводных оптоволоконных кабелей изначально ниже (один телефонный канал – $ 5-10 в год), чем систем спутниковой связи с аналогичной пропускной способностью (один телефонный канал - около $50 в год), и, как мы уже знаем, в космосе тоже тесно.

Подводные коаксиальные кабели предназначены для телеграфно-телефонной связи с. уплотнением в диапазоне частот до 150 кгц. Наиболее совершенной конструкцией подводных кабелей связи в больших длинах являются коаксиальные кабели с полиэтиленовой изоляцией, вытеснившей изоляцию из гуттаперчи, парагутты и др. Кабель- с полиэтиленовой изоляцией допускает высокочастотное уплотнение цепей при сравнительно больших расстояниях между усилительными пунктами, обеспечивая длительную и надежную эксплуатацию. Разработанные в 1950-1955 гг. встроенные в кабель подводные усилители открыли возможность осуществить многоканальную связь на требуемые расстояния. Электропитание усилителей осуществляют дистанционно по внутреннему проводнику кабеля.

Основным типом подводного коаксиального кабеля с полиэтиленовой изоляцией, выпускаемого отечественной промышленностью для прокладки на прибрежных участках, является кабель марки КПЭК-5/18 (рис. 20-6).

Трансокеанические подводные кабели связи

Внутренний проводник этого кабеля изготовляют из отожженной медной проволоки диаметром 3 мм и повива из 12 проволок диаметром 1,0 мм (наружный диаметр 5± ±0,3 мм). Изоляцию кабеля накладывают из смеси полиэтилена с полиизобутиленом толщиной 6,5 мм. Внешний проводник кабеля изготовляют из отожженных прямоугольных медных проволок шириной 5,3 и толщиной 0,6 мм, обматывают медной лентой толщиной 0,08 мм, двумя стальными лентами толщиной 0,10-0,15 мм и прорезиненной лентой и накладывают оболочку из полиэтилена или поливинилхлоридного пластиката толщиной 2 мм и подушку из кабельной пряжи, пропитанной противогнилостным составом. В кабелях марки КПЭК-5/18 на подушку накладывают двухслойную броню из круглых оцинкованных стальных проволок диаметром 4 и 6 мм, наружный покров из предварительно пропитанной противогнилостным составом кабельной пряжи толщиной не менее 1,6 мм и слой битума и мелового раствора.

Для подводной прокладки на глубину до 3 500 м предназначен кабель марки КПК-5/18 только с одним слоем круглой оцинкованной стальной проволоки диаметром 2,6-6 мм.

В кабелях КПЭБ-5/18 для прокладки в земле поверх подушки применяют две стальные ленты толщиной 0,5 мм и защитные покровы из кабельной пряжи, слоя битума и мелового раствора.

Сопротивление изоляции подводных кабелей не менее 50 000 Момoкм, емкость 100 нф/км; волновое сопротивление кабеля 51-54,5 ом, затухание 13,3 — 67мнеп/км и угол фазы 0,065-3,17 рад/км.

Трансантлантический кабель между Европой и США протяженностью свыше 5 000 км (проложен на глубине до 4,2 км) имеет внутренний проводник, состоящий из медной проволоки диаметром 3,34 мм и трех медных лент толщиной по 0,368 мм (диаметр 4,1 мм), и сплошную изоляцию из полиэтилена диаметром 15,75 мм. Внешний проводник кабеля состоит из 6 медных лент толщиной 0,4 мм и медной скрепляющей ленты толщиной 0,076 мм. Поверх внешнего проводника накладывают ленту из сплава телканекс, подушку из кабельной пряжи, броню из круглых оцинкованных.стальных проволок и наружный защитный покров из кабельной пряжи, слой битума и меловое покрытие. Кабель для глубоководных участков трассы изготовляют бронированным круглой стальной проволокой диаметром 2,2 мм высокой механической прочности. Кабель для прибрежного участка изготовляют с двойной броней из круглых стальных проволок диаметром 7,6 мм. Встроенные усилители размещены на расстоянии 68,5 км один от другого.

В 1956 г. была разработана новая конструкция подводного коаксиального кабеля для глубоководных участков, в котором на несущий трос диаметром 7,4 мм накладывают внутренний проводник из медной ленты толщиной 0,6 мм со сварным швом, калиброванным на диаметр 8,4 мм, полиэтиленовую изоляцию диаметром 26,5 мм, которую калибруют до диаметра 25,4 мм. Затем продольно накладывают внешний проводник из медной ленты толщиной 0,25 мм с перекрытием и оболочку из светостабилизированного полиэтилена толщиной 3,2 мм (рис. 20-7). Кабель предназначен для уплотнения системой связи на 128 каналов с дальнейшим расширением передаваемого спектра частот до 3 Мгц и увеличением числа каналов до 720. (В последующем спектр передаваемых частот достигнет 10 Мгц.

Симметричные подводные кабели связи марок СЭПК-4 изготовляют с токоподводящими жилами из семи медных проволок диаметром 0,52 или 0,73 мм с полиэтиленовой изоляцией толщиной 2 мм. На изолированные токопроводящие жилы, предназначенные для телеграфной связи, накладывают экран из медных лент. Четыре жилы скручивают вместе, обматывают прорезиненным миткалем и кабельной пряжей, поверх которой накладывают броню из оцинкованных стальных проволок. Кабель с жилами 7×0,73 мм в диапазоне частот 0,8-30 кгц имеет волновое сопротивление 349-160 ом, затухание 45-130 мнеп/км и угол фазы 0,06- 1,20 рад/км.

Ниже приведено 10 малоизвестных фактов о подводных Интернет-кабелях.

При описании системы проводов, из которой состоит Интернет, Нил Стивенсон однажды сравнил нашу землю с материнской платой компьютера. От телефонных столбов, с которых свисают связки кабеля, до знаков, предупреждающих о погруженных в землю волоконно-оптических линий передачи, мы постоянно окружены доказательствами присутствия системы Интернет. Однако, мы видим лишь малую часть физического состава сети. Остальную часть можно найти только в самых холодных водах глубоководного океана. Ниже приведено 10 малоизвестных фактов о подводных Интернет-кабелях.

1. УСТАНОВКА КАБЕЛЯ ЯВЛЯЕТСЯ МЕДЛЕННОЙ, УТОМИТЕЛЬНОЙ И ДОРОГОСТОЯЩЕЙ РАБОТОЙ.

99% международных данных передается по проводам, находящимся на дне океана. Они называются подводными коммуникационными кабелями. В общей сложности они протягиваются на сотни тысяч миль, а глубина их расположения может быть высотою с Эверест. Кабеля по океану прокладываются специальными судами - так называемыми кабелеукладчиками. Прокладка кабеля очень трудоемкая работа - поверхность океанского дна под прокладку кабеля должна быть обязательно ровной, также нужно предусмотреть, чтобы кабель не оказался на коралловых рифах, затонувших кораблях, местности богатой окаменелыми останками рыб или другой экологической среды обитания, и других препятствий.

Диаметр мелководного кабеля примерно равен диаметру жестяной банки содового напитка. Глубоководные кабеля намного тоньше - примерно равны диаметру маркера. Разница в размере связана с элементарной уязвимостью к повреждениям - на глубине более 2000 метров мало что происходит. Следовательно, и нет такой необходимости в оцинковании экранированного кабеля. Кабели, расположенные на небольших глубинах, закапывают под океаническое дно с помощью струй воды под высоким давлением.
Цена за укладку мили подводного коммуникационного кабеля зависит от общей длины и конечного пункта назначения. Однако, в общем укладка интернет-кабеля через океан неизменно стоит сотни миллионов долларов.

2. АКУЛЫ ПЫТАЮТСЯ СЪЕСТЬ ИНТЕРНЕТ.

Существует разногласие насчет того, почему акулам так нравится грызть подводные коммуникационные кабеля. Возможно, это как-то связано с электромагнитными полями. Возможно, это просто их любопытство. А возможно, они пытаются разрушить нашу инфраструктуру связи перед тем, как начать захват мира. В любом случае акулы продолжают грызть подводные кабеля, и это является самой распространенной причиной их повреждения. Компания Google решила проблему обернув свои подводные океанские кабеля в кевраловое покрытие.

3. ПОДВОДНЫЙ ИНТЕРНЕТ КАБЕЛЬ НАСТОЛЬКО ЖЕ УЯЗВИМ К ПОВРЕЖДЕНИЯМ, КАК И ПОДЗЕМНЫЙ КАБЕЛЬ.

Каждые несколько лет какой-нибудь благонамеренный строитель, маневрируя бульдозером, отключает интернет на весь регион. На океанском дне же хоть и нет всего этого строительного оборудования, которое могло бы вызвать разрушения, все же достаточно постоянных водных угроз для повреждения кабеля. Кроме акул, подводный коммуникационный кабель могут повредить якоря лодок, рыбацкие тралы и стихийные бедствия.

Одна компания из Торонто предложила проложить кабель через Арктику для соединения Токио и Лондона. Раньше такую затею считали невыполнимой, но с изменением климата и таянием ледников, эта идея стала реальной, хоть и очень дорогостоящей.

4. СОЕДИНЕНИЕ КОНТИНЕНТОВ ПОДВОДНЫМИ КАБЕЛЯМИ НЕ ЯВЛЯЕТСЯ НОВИНКОЙ.

Первый трансатлантический телеграфный кабель, который соединял Ньюфаундленд и Ирландию, начали прокладывать еще в 1854 году. Четыре года спустя было отправлено первое сообщение, в котором говорилось: «Господи, Уайтхаус получил пятиминутный сигнал. Сигнал от катушки слишком слабый, чтобы понять. Попробуйте медленнее и регулярнее. Я установил промежуточный шкив. Отвечайте с помощью катушки.» Конечно, не самое вдохновляющее начало. (Уилдман Уайтхаус был главным электриком Атлантической телеграфной компании)

5. ПОДВОДНЫЕ КОММУНИКАЦИОННЫЕ КАБЕЛЯ ИМЕЮТ ОСОБЫЙ ИНТЕРЕС У ШПИОНОВ.

В разгар холодной войны, СССР часто передавала слабо кодированные сообщения между двумя основными военно-морскими базами по кабелю проложенному между этими двумя базами через советские территориальные воды. Чрезмерным шифрованием советские офицеры не хотели заморачиваться. Они считали, что американцы не станут рисковать вызвать третью мировую войну, пытаясь получить доступ к данным этого кабеля. Они не рассчитали, что U.S.S. Halibut, специально оборудованная подводная лодка, может проникнуть через оборону советских войск.

Американская подводная лодка нашла кабель и установила на нем мощное подслушивающее устройство, затем каждый месяц возвращалась для сбора перехваченных сообщений. Эту операцию, которая называлась IVY BELLS, позже скомпроментировал бывший аналитик Агенства национальной безопасности Рональд Пелтон, который продал информацию о миссии советским властям. На сегодняшний день, перехват сообщений, передаваемых подводными коммуникационными кабелями является обычной процедурой спецслужб.

6. ПРАВИТЕЛЬСТВА МНОГИХ СТРАН ПЕРЕХОДЯТ НА ПОДВОДНЫЕ КАБЕЛЯ, ЧТОБЫ УБЕРЕЧЬ СЕБЯ ОТ ЭТИХ ЖЕ ШПИОНОВ.

Что касается электронного шпионажа, Соединенные Штаты имеют одно большое преимущество - их ученые, инженеры и корпорации сыграли важнейшую роль в изобретении и создании инфраструктуры глобальных коммуникаций. Самые крупные линии передачи, как правило, проходят через территорию и водные пространства США. В результате чего, они с легкостью могут перехватывать пересылаемые данные.

Когда бывший аналитик АНБ Эдвард Сноуден украл и обнародовал секретные документы, многие страны были возмущены тем, сколько их информации перехватывают американские разведывательные службы. В результате, некоторые страны пересматривают инфраструктуру Интернета. Бразилия, например, запустила проект по строительству подводного коммуникационного кабеля до Португалии, который не только полностью минует границы Соединенных Штатов, но в то же время исключает американские компании в участии данного проекта.

7. ПОДВОДНЫЕ КОММУНИКАЦИОННЫЕ КАБЕЛЯ ДЕШЕВЛЕ И БЫСТРЕЕ ПЕРЕДАЮТ ДАННЫЕ ПО СРАВНЕНИЮ СО СПУТНИКАМИ.

На орбите находится более тысячи спутников.

Мы также отправляем зонды на кометы и планируем миссии на Марс. Мы живем в будущем! Казалось бы космос должен быть лучшим методом для «виртуального проложения проводов» между странами, чем нынешний метод проложения несоразмерно-длинных проводов через океанское дно. Разве спутники не лучше технологий, используемых еще даже до изобретения телефона? Как оказывается - нет, не лучше (или пока что нет). Хотя волоконно-оптические кабели и спутники связи были разработаны в 1960-х годах, у спутников существует две проблемы: большие задержки и потери сигнала. Передача и прием сигналов из космоса занимает много времени. В то же время, исследователи разработали оптические волокна, которые могут передавать информацию со скоростью равной 99,7% скорости света.

Если хотите понять каким был бы интернет без подводных коммуникационных кабелей можете посетить Антарктику - единственный континент без физического подключения к сети. Связь с миром осуществляется исключительно при помощи спутников. Интересен тот факт, что антарктические исследовательские станции производят гораздо большее количество информации, чем они могут передавать через космическое пространство.

8. ЗАБУДЬТЕ О КИБЕРВОЙНАХ - ЧТОБЫ ПАРАЛИЗОВАТЬ ИНТЕРНЕТ, НУЖНО ВСЕГО ЛИШЬ АКВАЛАНГ И ПАРА КУСАЧЕК.

Хоть перерезать подводный коммуникационный кабель и довольно трудно (тысячи вольт протекающих по каждому из них, как одна причина), как показывает практика (Египет, 2013 год), возможно.

Подводный кабель связи

К северу от Александрии было задержано несколько людей в гидрокостюмах, которые намеренно пытались прорезать кабель Юго-Восток-Азия-Ближний Восток-Запад-Европа 4, который протягивается на 12,500 мили и соединяет три континента. Эта попытка оставила 60% населения Египта без доступа к Интернету.

9. ПОДВОДНЫЕ КАБЕЛЯ ОЧЕНЬ ТРУДНО РЕМОНТИРОВАТЬ, НО 150 ЛЕТ ОПЫТА НАУЧИЛИ НАС НЕКОТОРЫМ УЛОВКАМ.

Если у вас вызывает затруднение замена одного Интернет-кабеля за вашим столом, представьте сколько труда уходит на замену твердого, сломанного кабеля на дне океана. При повреждении подводного коммуникационного кабеля на починку отправляют специальные ремонтные корабли. Если кабель находится на мелководье, активируют роботов, которые захватывают кабель и буксируют его к поверхности. Если же кабель находится на глубоководье, на глубине 2000 метров и ниже, то корабли опускают на дно специально разработанные крюки, которые также захватывают кабель и поднимают его на поверхность для починки. Чтобы упростить работу, эти крюки иногда разрезают кабель пополам. Затем ремонтный корабль по очереди поднимает на поверхность каждую часть для починки.

10. СРОК СЛУЖБЫ ПОДВОДНЫХ КОММУНИКАЦИОННЫХ КАБЕЛЕЙ СОСТАВЛЯЕТ 25 ЛЕТ.

По состоянию на 2014 года, на дне океана находится 285 подводных коммуникационных кабеля. 22 из них еще не используются. Их называют «темными кабелями» (когда их активируют, они будут считаться «включенными»). Подводные коммуникационные кабеля имеют срок службы равный 25 годам, в течение которых они считаются экономически целесообразными с точки зрения потенциала.
Однако, за последнее десятилетие, потребление Интернет-данных резко возросло. В 2013 году потребление интернет-трафика составило 5 гигабайт на душу населения; это число, как ожидается к 2018 год, достигнет 14 гигабайт на душу населения. Такое увеличение, очевидно, представит проблему нагрузки и вызовет необходимость более частого обновления кабелей.

Источник

Коммуникационная инфраструктура – это то, что помогает нам почти мгновенно узнавать новости с других стран и континентов, она тесно связано с технологиями управления и обработки данных, компьютерными и интернет технологиями.

Но задумывались ли вы о том, как к нам попадает вся эта информация. Города буквально закутаны сетью кабелей, проводов, умело спрятанных в стены зданий и под землю. Но не только города и страны, вся планета окутана своеобразной паутиной, поскольку миллионы подводных кабелей проложены по морскому дну.

Подводные оптические кабели связи

Подводная коммуникационная инфраструктура в мире существует давно и активно продолжает развиваться. На этой интерактивной карте показаны главные мировые кабели, которые позволяют интернет и другим данным попадать из одной стороны света в другую, через океаны, и, в конечном счете, в ваш дом.

Подводные коммуникации. Карта

Если навести мышку или кликнуть на любой из показанных кабелей (или выбрать его в меню сайта), то можно узнать более подробную информацию (название, длину, соединяемые страны и др.).
А для тех, кто любит позаботиться обо всем заранее, следует учесть что не за горами и год дракона 2012 который ассоциируется с водной стихией, но в тоже время относится к стихии огня, поэтому следует заранее продумать что подарить близким на этот праздник.