31.08.2019

Что такое сжатый воздух. Уравнение состояния идеального газа. Основные технико-экономические показатели губт


Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Теоретические основы технологии сжатия воздуха

2. Потребление сжатого воздуха на металлургическом предприятии

3. Характеристики компрессорных установок

4. Энерогосбережение сжатого воздуха на промышленном производстве

5. Система воздухоснабжения комбината «Запорожсталь» .Снижение затрат на производство сжатого воздуха

6. Система автоматизированного управления компрессорами на комбинате «Запорожсталь»

Список используемой литературы

1. Теоретические основы технологии сжатия воздуха

воздух металлургический компрессорный комбинат

Производство сжатого воздуха в металлургической отрасли выполняет свою самую древнюю функцию -- участвует в технологических процессах в качестве реагента, содержащего кислород. Главная функция сжатого воздуха в металлургии -- дутье, т.е. подача сжатого воздуха в самые различные производственные агрегаты -- домны, мартены, конвертеры. Дутье является необходимым фактором технологических процессов в этих агрегатах, так как без воздуха, а точнее без кислорода, нет горения

Сжатый воздух настолько широко используется в промышленности, что любой перечень его использования будет неполным. Ни одно промышленное или единичное производство не может обойтись без сжатого воздуха; ни одна больница, отель, электростанция или корабль не могут функционировать без него. Он используется в горнодобывающей промышленности, лабораториях, аэропортах и портах. Сжатый воздух необходим как для производства пищевых продуктов, так и для производства цемента, стекла, бумаги и тканей, в лесоперерабатывающей и фармацевтической промышленности.

Применение сжатого воздуха позволило механизировать и интенсифицировать ряд технологических процессов в промышленности. Широкому использованию сжатого воздуха как энергоносителя способствовали его особые свойства: упругость, прозрачность, безвредность, негорючесть, неспособность к конденсации, быстрая передача давления и неограниченный запас в природе. Однако производство сжатого воздуха дорогостоящий процесс, так как он требует большого количества электрической энергии на привод компрессоров. На ряде предприятий расход электрической энергии на выработку сжатого воздуха достигает 20...30% от общего количества потребляемой электрической энергии.

Сжатый воздух используют: все типы машин и устройств имеющие пневматический привод и управление. Пневматический инструмент используется для растяжения, распыления, полирования и затачивания, для штамповки, продувки, очистки, сверления и перемещения. Бесчисленные химические, технические и физические процессы и технологии управляются с использованием сжатого воздуха.

Неиспользование сжатого воздуха в качестве источника энергии невозможно в нашем высокотехнологическом мире.

Но что представляет собой сжатый воздух?

Сжатый воздух - это сжатый атмосферный воздух. Атмосферный воздух - это воздух, которым мы дышим. Это смесь различных газов: 78% азот, 21% кислород и 1% другие газы.

Состояние газа описывается тремя параметрами: давление р температура Т удельный объём V удел ьный объем

Воздух среднего давления необходим для пуска основных и/или вспомогательных судовых дизельных двигателей, генераторов на дизельных электростанциях. Сжатый до 30-40 бар воздух используется в промышленности, например, для испытания изделий на герметичность и прочность, а также для производства полимерной тары (т.е. в ПЭТ индустрии).

Высокое давление необходимо в большинстве областей использования для хранения больших объемов сжатого воздуха в максимально малых емкостях. Например, для получения и хранения атмосферного воздуха в сосудах под давлением 225 и 330 бар, которые используют аквалангисты, профессиональные водолазы, спасатели и пожарные.

Применение сжатого воздуха высокого давления в сочетании с высокой температурой создает оптимальные условия при покраске изделий свинецсодержащими красками. В металлургии при удалении окалины сжатый воздух управляет струей воды под высоким давлением. В гидрометаллургии сжатый воздух применяется в автоклавном производстве никеля, вольфрама.

Компрессоры высокого давления применяются при разведке, освоении, эксплуатации и обслуживании месторождений, при строительстве новых и модернизации существующих объектов нефтяной и газовой промышленности, при обучении технического персонала по эксплуатации трубопроводных систем. Сжатый воздух применяется для продувки и осушки трубопроводов, при ремонтных работах на действующих, а также при сварочных работах на новых трубопроводах, когда необходимо обеспечить герметичность швов.

На распределительных трансформаторных подстанциях компрессоры высокого давления (100-420 бар) используется для активации электрических переключателей, с помощью которых регулируется подача электроэнергии, передаваемой с подстанции конечным потребителям. Сухой сжатый воздух используется для изоляции силовых переключателей от окружающего воздуха высокой влажности. Сжатый воздух за доли секунды гасит высоковольтную дугу в высоковольтных размыкателях.

На ГРЭС, ТЭЦ сжатый воздух применяют для вентиляции и очистки хранилищ сырья от угольной пыли, очистки котельных от сажи, образующейся при сжигании углеводородного топлива, очистки от нагара внутренней поверхности дымовых труб. Сжатый воздух применяется для пуска и остановки турбин, охлаждения отработавшего в турбине ГРЭС водяного пара. На ГЭС сжатый до 40-70 бар воздух в сочетании с гидравликой позволяет корректировать мощность, выдаваемую гидротурбинами. Корректировка обеспечивается изменением положения лопастей рабочего колеса и направляющего аппарата, изменением сечения сопел гидротурбин.

Производство сжатого воздуха очень весьма энергозатратное как с вязи с низким КПД установок

Применяемые для получения сжатого воздуха машины характеризуются производительностью (подачей) V (м3/с) и степенью повышения давления _. Подача (производительность) компрессора рассчитывается по формуле

где л-- коэффициент подачи, учитывающий снижение производительности машины в реальном процессе; V т--теоретическая подача.Сегодня от 25 % до 40 % потребляемой на предприятиях электроэнергии приходится на производство сжатого воздуха.К сожалению, большинство традиционно применяемых систем подготовки и транспортировки сжатого воздуха крайне неэффективны -- их общий КПД не превышает 20 %. Соответственно, повышение эффективности этих систем по зволит достичь существенной экономии энергоресурсов Коэффициент подачи л находится по формуле

где з v -- объемный КПД компрессора, характеризующий снижение производительности вследствие неполного за3 полнения цилиндра или межлопастного пространства (с ростом конечного давления p 2 _v снижается, а при значительном увеличении степени повышения давления становится равным нулю и подача прекращается), для поршневого компрессора _зv = 0,7...0,9; зp учитывает снижение подачи вследствие сопротивления всасывающего тракта (воздуховод, воздушный фильтр, влагоотделитель), зp = 0,8...0,95; зt учитывает снижение производительности компрессора вследствие нагрева поступающего в компрессор воздуха за счет контакта с горячими металлическими стенками, зt = 0,9...0,95; зw учитывает снижение подачи вследствие влажности засасываемого воздуха, зw = = 0,98...0,99; зн учитывает влияние утечек и перетоков воздуха, зн = 0,95...0,98. Сжатый воздух, в силу своих свойств, существенно отличается от других энергоресурсов:

1. Сжатый воздух не обладает собственной калорийностью, характеризующей объемы использования пара и теплофикации;

2. Сжатый воздух не обладает теплотворной способностью, являющейся основной характеристикой всех видов топлива;

3. Сжатый воздух не используется в химических реакциях как кислород и твердое топливо;

4. В силу своей многокомпонентности сжатый воздух не может быть использован для образования защитной среды как азот и аргон;

5. Сжатый воздух не обладает высокой удельной теплоемкостью (как вода), характеризующей объемы перекачки технической воды;

6. Сжатый воздух, отчасти, как и электроэнергия, используется в различных по принципу действия приводах для трансформации в механическую работу;

7. Отличительной особенностью является возможность преобразования кинетической энергии струи энергоносителя (струйные пневмоприемники) в механическую.

Все эти отличия обусловливают специфику использования сжатого воздуха как энергоресурса. Основной характеристикой ресурса является способность выполнения работы единицей объема при рабочих параметрах. Отсюда вытекает прямая зависимость расхода ресурса от его плотности в сжатом состоянии. В свою очередь, плотность расходуемого воздуха зависит от давления и температуры.

Перечисленные выше свойства сжатого воздуха как энергоресурса и специфические особенности его выработки определяют необходимость организации работы по энергосбережению у потребителей, в сетях и на источниках сжатого воздуха. Необходимо искать и реализовывать наиболее эффективные способы выполнения этой работы, направленной на изменение и настройку системы распределения (конфигурацию и параметры сетей сжатого воздуха) в условиях изменения структуры основных потребителей и постоянно меняющихся требований к параметрам ресурса.

На металлургическом комбинате источником сжатого воздуха являются компрессорные станции кислородного цеха и локальное компрессорное оборудование, установленное непосредственно в подразделениях комбината. Спецификой распределения сжатого воздуха являются значительная протяженность сетей, различные требования к параметрам сжатого воздуха (давлению, степени осушки) у потребителей, географическая разбросанность источников и основных потребителей.

Одними из основных потребителей эл.энергии в кислородном производстве крупных металлургических предприятий являются компрессоры.В основном для воздушной компрессии применяются центорбежные многоступенчатые компрессоры с промежуточным охлаждением воздуха между ступенями типа К-1700,К-1500 ,К-500,К-250.

2. Потребление сжатого воздуха на металлургическом предприятии

Не меньшую роль играет сжатый воздух при выплавке стали. В мартеновские печах если процесс выплавки чугуна -- восстановительный, то выплавка стали из чугуна и металлического лома -- окислительный процесс При выплавке стали удаляются примеси -- углерод, кремний, марганец, которые окисляются. А для окисления нужен кислород.

Сжатый воздух, производимый в кислородно компрессорном цехе используется на технологические нужды в мартеновских (25-70%), прокатных (15-35%) и доменных цехах (5-15%). Расход сжатого воздуха в доменных цехах значительно превышает расход воздуха в каких-либо других производствах. Так, для получения 1т чугуна необходимо около 3000 м3 воздуха при нормальных условиях. Для дутья в доменные печи необходим воздух давлением 0,3-0,4 МПа.

Удельные расходы электроэнергии на основные виды продукции составляют:

Продукция

Металлургическое предприятие

М кал/т

Мкал/т

15 кВт·ч/т

Сталь мартеновская

11 кВт·ч/т

Электросталь

727 кВт·ч/т

94 кВт·ч/т

47 кВт·ч/т

Кислород

490 кВт·ч/тыс. м 3

Сжатый воздух

550 кВт·ч/ тыс. м 3

Агломерат

37 кВт·ч/т

Сжатый воздух к потребителям транспортируют с помощью развитой сети воздухопроводов, с воздуходувной и компрессорной станций раздельно. Воздухопроводы к доменной печи теплоизолированы, так как температура воздуха после сжатия повышается до 200 0 С. Эти воздухопроводы имеют диаметры, достигающие 2500 мм.

Для сжигания топлива в обжиговых, нагревательных и термических печах используют сжатый воздух давлением 0,003-0,01 МПа, подаваемый центробежными нагнетателями (вентиляторами), устанавливаемыми в непосредственной близости от потребителя.

Общее требование для сжатого воздуха - отсутствие механических примесей, влаги, паров масла. Очистка от механических примесей осуществляется с помощью фильтров, а от влаги и паров масла - путём охлаждения сжатого воздуха. Однако при этом не вся влага конденсируется, и её наличие в трубопроводах может привести к образованию зимой ледяных пробок. Получение сжатого воздуха требует значительных затрат (так, стоимость доменного дутья - 30% стоимости чугуна).

СВС промышленного предприятия строго соответствует данному выше определению системы, включая основные ее элементы: генератор - компрессорную станцию, коммуникации сжатого воздуха и распределительные устройства потребителя. Она предназначена для централизованного обеспечения разнообразных промышленных потребителей сжатым воздухом требуемых параметров (давление, температура, расход, влажность) в соответствии с заданным графиком потребления. СВС включает в себя компрессорные и воздуходувные станции, трубопроводный и баллонный транспорт для подачи сжатого воздуха к потребителям и распределительные устройства сжатого воздуха самого потребителя.

Сжатый воздух на промышленном предприятии используется по двум основным направлениям: технологическому (для выплавки чугуна и стали в металлургии, получения кислорода в воздухораспределительных установках и т.д.) и силовому (для привода различных машин и механизмов в машиностроении, горнодобывающей промышленности, кузнечном и других производствах).

Компрессорная станция для производства сжатого воздуха включают в свой состав устройства для забора воздуха, очистки его от пыли, компрессоры и приводные двигатели, теплообменники охлаждения, вспомогательное оборудование, предназначенное для дополнительной обработки воздуха (осушка, очистка, изменение давления, аккумуляция).

В зависимости от необходимых потребителям расхода воздуха и его давления станции оборудуются центробежными компрессорами с избыточным давлением сжатого воздуха 0,35-0,9 МПа и единичной производительностью 250-7000 м 3 /мин или поршневыми - соответственно с давлением 3-20 МПа и единичной производительностью не более 100 м 3 /мин.

Коммуникации сжатого воздуха имеют радиальные (III на рис. 1а) и кольцевые (IV на рис. 1б) участки. Последние применяют при компактном, сосредоточенном расположении потребителей, а также при повышенных требованиях к надежности обеспечения сжатым воздухом потребителя (позиция 3).

При воздухоснабжении от поршневых компрессоров в линии сжатого воздуха всегда устанавливаются ресиверы 11 выполняющие роль аккумуляторов при различии расходов воздуха, выработанного компрессором и необходимого потребителю. Для СВС с турбокомпрессорами роль аккумулирующих емкостей выполняют трубопроводы, диаметр и протяженность которых достаточно велики. Наиболее распространенная схема воздухоснабжения крупных технологических потребителей сжатого воздуха (например, доменных печей) показана

Рис. 1 .1Схема воздухоснабжения промышленного предприятия

Рис.2.1 Схема воздухоснабжения крупных потребителей сжатого воздуха

Доля расхода первичной энергии для производства сжатого воздуха на различные нужды колеблется от 5 до 30% от общего энергопотребления на производство конечного технологического продукта.

Большое значение сжатого воздуха как энергоносителя определяется еще и тем, что от надежности систем воздухоснабжения зависит и надежность, а в ряде случаев и безопасность осуществления технологического процесса.

Прекращение подачи воздуха в большинстве случаев ведет к крупной аварии на предприятии.

В металлургии сосредоточены и самые крупные компрессорные агрегаты как поршневые, так и турбокомпрессоры. Некоторые из них, например, КТК-25 и КТК-12,5, созданы специально для доменных печей заводов черной металлургии. На предприятии металлургии наибольший процент турбокомпрессоров из общего количества компрессорных машин, а доля поршневых компрессоров составляет около 20% и имеется тенденция к ее уменьшению.

Доля энергопотребления на производство сжатого воздуха на предприятиях составляет 5 7% от общего расхода энергии на производство основного продукта цеха, предприятия, а удельные расходы энергии на производство сжатого воздуха составляют от 80 до 140 кВт*ч/1000 м 3 (в зависимости от типа компрессоров, условий охлаждения и эксплуатации).

Расход сжатого воздуха на единицу продукции для наиболее крупных технологических потребителей составляет: для производства чугуна 800-1000 м 3 /т чугуна, мартеновской стали 60-140 м 3 /т стали, конвертерной стали 30 м 3 /т стали, электростали 70 м 3 /т стали, на прокатных станах 20 50 м 3 /т проката. Большие количества потребления сжатого воздуха единичным потребителям и индивидуальный технологический режим потребления приводят к необходимости блочной компоновки компрессора и технологического агрегата с индивидуальным регулированием и расположением компрессора у потребителя.

Сопоставимо с черной металлургией по абсолютным масштабам потребление сжатого воздуха на предприятиях цветной металлургии, хотя в этой отрасли и отсутствуют такие крупные единичные потребители, как доменные печи или конверторы. Этим объясняется и большое разнообразие применяемых для воздухоснабжения нагнетательных машин: отличающихся по производительности и давлению поршневых компрессоров, турбокомпрессоров и особенно воздуходувок с давлением нагнетания от 0,15 до 0,25 МПа.

Крупные потребители сжатого воздуха сосредоточены в литейных и кузнечных цехах машиностроительных заводов (пескоструйные аппараты, прессы, трамбовки, вибраторы, обрубные машины).

Также потребители сжатого воздуха сосредоточены в литейных и кузнечных цехах.Большое разнообразие мелких потребителей, индивидуализация режимов их работы определяет сложные графики воздухопотребления, характеризующиеся значительной суточной и недельной неравномерность. Большие количества сжатого воздуха потребляют воздухоразделительные установки (ВРУ). Этот тип потребителя может рассматриваться как обособленно, так и в качестве под отрасли.

Особенность потребления воздухоразделительными станциями определяется спецификой самих ВРУ, эксплуатационные режимы которых трудно поддаются регулированию. Поэтому графики нагрузок воздушных компрессоров для ВРУ постоянны. Параметры сжатого воздуха как исходного сырья для воздухоразделительных установок разнообразны и также определяются типом установок.

Установки большой производительности и низкого давления с единичным потреблением воздуха (20000 90000)м 3 /ч обслуживаются турбокомпрессорами К-1500-62-2, К-250-41-2, К-500-42-1.В установках средней и малой производительности давление потребляемого воздуха может быть 3 20 МПа, и для этих ВРУ используются поршневые, а в последнее время и винтовые компрессоры.

Для ВРУ характерно, что затраты энергии на сжатие воздуха составляют, в зависимости от типа установок, от 70 до 90% всех энергозатрат установки.

Снабжение потребителей на промышленных предприятиях воздухом в значительной мере осуществляется от локальных воздухоподающих установок и станций. Общая централизованная система вохдухоснабжения применяется только для некоторых отдельных параметров, в первую очередь компрессорного воздуха. Обычно промышленное предприятие оборудовано одной или несколькими компрессорными станциями, которые обеспечивают всех потребителей сжатого воздуха давлением 4-7 ати. Воздух других параметров подаётся потребителям от местных установок. Подобная структура схемы воздухоснабжения вызвана рядом соображений. Во-первых, большинство потребителей требует каждый своих конкретных параметров воздуха. Обеспечить централизованным воздухоснабжением весь набор этих параметров весьма сложно. Транспортировка воздуха от общих воздухоподающих станций потребовала бы большого числа длинных и разветвлённых трубопроводов разного диаметра, пересекающих во всех направлениях территорию завода. Стоимость сооружений всей этой системы была бы очень велика. Во-вторых, транспортировка больших масс воздуха на большие расстояния вызвала бы большие потери напора и, следовательно, потребовала бы установки высоконапорных машин и большого перерасхода энергии. В-третьих, регулирование расхода или давления воздуха данных параметров, учитывая небольшое число крупных потребителей этого воздуха и их взаимное влияние, было бы крайне осложнено.

Подавляющее большинство металлургических потребителей, особенно крупных, снабжаются воздухом от собственных установок. При этом установка или станция может обслуживать либо отдельный агрегат (например, печь), либо группу агрегатов, в основном, однотипных.

3. Характеристики компрессорных установок

На рис.3.1 показана эксергетическая диаграмма потоков системы воздухоснабжения, из которой видно, что наибольшая часть потерь (до 50%) приходится на 1-й элемент системы - компрессорную станцию, в том числе и потери со сбросным теплом охлаждения компрессора, составляющими около 15%. С учетом потерь в коммуникации () и у потребителя () КПД системы составляет 30%.

Таблица 2.1.

Структура приведенных затрат

Как видно из табл. 2.1., капитальные вложения в структуре приведенных затрат составляют не более 8%, что указывает на важность любых мероприятий, направленных на улучшение эксплуатационных показателей компрессораУвеличение единичной мощности агрегатов на станции № 2 (например, полная или частичная замена компрессоров К-250-61-5 на компрессоры К-500-62-1 или К-1500-62-1) может привести к снижению себестоимости сжатого воздуха на 5-11%. К значительному снижению себестоимости сжатого воздуха на 15-25% приводит утилизация теплоты сжатия.

Сжатый воздух применяется на электроподстанциях для приведения в действие пневматических приводов выключателей и разъединителей. В воздушных выключателях сжатый воздух используется для гашения электрической дуги и вентиляции внутренних полостей выключателей для удаления осаждающейся на них влаги. В выключателях с воздухонаполненным отделителем, а также в выключателях серий ВВБ, ВНВ и др. сжатый воздух выполняет роль основной изолирующей среды между главными контактами выключателя, находящегося в отключенном положении.

Потенциальная энергия сообщается воздуху в процессе его сжатия и используется затем в пневматических приводах для совершения механической работы. Потенциальная энергия преобразуется в кинетическую энергию струи расширяющегося сжатого воздуха.

Для работы воздушных установок сжатый воздух накапливается в резервуарах этих установок. В свою очередь резервуары пополняются от систем, предназначенных для получения сжатого воздуха.

Подбор оптимальной схемы распределения и рациональных режимов производства и потребления сжатого воздуха ведет к экономии, что не может не оказать значительного влияния на энергобаланс предприятия в целом. Поскольку на производство сжатого воздуха расходуется электроэнергия, его экономия влечет за собой снижение затрат на покупку энергоресурсов.

Особенностью выработки сжатого воздуха является то, что производительность компрессорного оборудования зависит от сезонного изменения плотности атмосферного воздуха (летом плотность воздуха на 15-17% ниже, чем зимой) и давления нагнетания.

Увеличение давления с 5,0 до 6,0 кгс/см2 влечет снижение производительности компрессора на 4-7%, а затраты энергии на компремирование при этом возрастают на 7-10%. Существенным фактором, негативно влияющим на работу компрессорного оборудования, является неритмичное потребление сжатого воздуха, объемы которого доходят на некоторых компрессорных станциях до 40%. Для обеспечения стабильной работы потребителей, при наличии значительных объемов неритмичного потребления, персонал компрессорных станций вынужден поддерживать повышенное давление сжатого воздуха на источниках. Кроме того, знакопеременные нагрузки на оборудование при частых циклах «загрузки-разгрузки» компрессоров влекут преждевременный выход из строя отдельных узлов, на восстановление которых требуются значительные финансовые средства, время и трудозатраты.

Энергетические характеристики компрессора

На рис. 4 представлены энергетические характеристики компрессора К-1500 сразу после обработки ТСП ПЗС. Диапазон изменения производительности - 70...90 тм 3 /ч. Диапазон изменения давления - 6,0...6,6 кгс/см 2 . Показатели потребления электроэнергии снимались со счетчика активной составляющей электроэнергии. Все показания фиксировались штатными приборами.

На рис.1 представлены аналогичные характеристики по результатам повторных испытаний 22.07.12 г. Условия проведения испытаний хуже условий предыдущих, так как температура всасываемого воздуха была +24°С против +3°С 30.04.12 г.

После проведения обработки компрессор отработал 1944 часа. На этом же рисунке представлена кривая энергопотребления компрессора в 2011 г. Для корректности сравнения результатов энергопотребления выбраны одинаковые значения производительности компрессора, то есть сравнивается потребление электроэнергии агрегата при одинаковом выпуске объема продукции.

На рис.2и3 показано сравнение удельных норм потребления электроэнергии в трех временных точках (2011 г., 30.04.12г., 22.07.12 г.), при трех фиксированных значениях выработки воздуха (75 тм 3 /ч, 80 тм 3 /ч, 85 тм 3 /ч).

Рис.6 Временной график производства сжатого воздуха выбранный в определенный момент времени.

Рис.7 Замер расхода сжатого воздуха на линии мартеновского трубопровода к мартенам

По окончании замеров были получены следующие результаты:

· Пиковый расход на данном участке достигает величины 12,5 м3/мин.

· Однако на графике видно, что минимальная величина расхода при кратковременных рабочих перерывах соответствует величине 5,5 м3/мин. Во время данных перерывов потребители сжатого перезагружали печь.

· Из этого следует вывод, что данная величина соответствует утечкам в пневмосети данного участка. Действительно, во время визуального осмотра участка были обнаружены частичные утечки в запорной арматуре, нарушение трубы, в пневмоцилиндрах.

· Отняв величину утечек, получим реальное потребление в верхних пределах до 7 м3/мин.

· Реальная средняя величина расхода составляет от 3,5 до 5 м3/мин. Отдельные кратковременные пиковые значения до 2-х м3/мин сверх средней величины занимают не продолжительное время, интервалами от 0,5 до 1,5 минут. Такие кратковременные импульсы расхода сжатого воздуха легко компенсируются запасом сжатого воздуха в ресиверах-воздухосборниках имеющегося объёма.

· Таким образом, сократив величину утечек хотя бы до 0,5 м3/мин, можно взять за ориентир средний расход на данном участке 6,5 м3/мин.

Рис8 Замер производительности компрессорных установок компрессорной станции.

Замеры производительности компрессорных установок производились в рабочую смену, что бы исключить влияние рабочего процесса производства на выполнение и достоверность замеров.

Для каждого компрессора были созданы одинаковые условия. В мартеновском цеху был открыт вентиль обеспечивающий выход потока сжатого воздуха в атмосферу. Компрессоры включались поочерёдно согласно порядку указанному на графике ниже. Отводилось определённоё время для выхода компрессора на номинальный режим работы. По контрольным манометрам, установленным в компрессорной станции и на воздухосборниках, отслеживался момент, когда давление в системе стабилизировалось. Регулярно, это было давление величиной 0,25 МПа (или 2,5 бара). Проработав в этом режиме в течение 1-2 минут, для того чтобы расходомер зафиксировал стабильные показатели, компрессор выключался и процедура повторялась со следующим компрессором

Были получены следующие результаты:

· Наилучшие показатели выявлены у компрессоров №1 и №3 - 18,47 и 18,8 н.м3/мин. соответственно.

· Худшие показатели у компрессора №2 -16,65 н.м3/мин. и №4 - 15,7 18,8 н.м3/мин. Низкие показатели производительности говорят о плохом состоянии поршневой группы и системы клапанов данных компрессорных установок.

· При повышении нагрузки на компрессоры, то есть повышение давления в пневмосистеме до рабочего 6,5-7 бар, показатели производительности станут ещё ниже по указанной выше причине.

Высокие коэффиценты рабочего времени,использования производительности и заполнения годового графика имеют воздушные компрессора кислородного производства, ВТО время как общезаводские компрессорные станции менее загружены. Полученные показатели дают общее представление о работе компрессорного оборудования, но не оценивают в полной мере его техническое и термодинамическое состояние.

Для оценки совершенства сжатия воздуха в компрессорах с охлаждением принято пользоваться КПД,который зависит от ряда факторов:

Количества неохлаждаемых групп ступеней-секций;

Полной степени повышения давления;

Степени повышения давления секций;

Количества промежуточных охладителей4

Потерь давления в них;

Начальной температуры воздуха и охлаждаемой воды.

Изометрический КПД для идеального компрессора при 2-х промежуточных охладителях и полной степениповышения давления,равной 8,состовляет 90%.По результатам приборного энергетического обследования изометрический КПД колеблется 61-69%,что является приемлемым для компрессоров70-80-х годов Невского завода(НЗЛ).

При перерасчете с полезной мощности компрессора на электрическию принимались следующие значения КПД:

Мех.КПД з м =0,98-0,99;

КПД утечек з ут. =0,96-0,97;

КПД зубчатой передачи з з.п. =0,98-0,99;

КПД электродвигателей з эл.двиг. =0,97

Общий КПД с учетом политропного сжатия воздуха в ступенях колеблется от 72-82%.

Фактическая объемная производительность воздушных компрессоров турбокомпрессоров в летний период ниже паспортной, то же самой можно и о давлении на выходе из компрессора.Работа компрессора на меньшее давление, чем номинальное,приводит к неоптимальному распределению давления по ступеням. Таким образом,отклонение степени повышения давления от теоретически оптимального сопровождается увеличение удельной работы компрессора и в целом приводит к завышенному расходу эл.энергии.

Неэффективное промежуточное охлаждение воздуха водой в теплообменниках также приводит к увеличению удельной работы сжатия в ступенях и к повышению потребляемой мощности.

Были представлены результаты воздушного компрессора К-1500-62-2.Данные показывают,что недоохлаждение воздуха до начальной температуры 35-40 0 С ведет к повышению затраченной мощности на 1,5и 1,3 МВт.

Возможное снижение удельной работы сжатия и эл.мощности воздущных компрессоров в результате охлаждении воздуха до 40 и 35 0 С.Из рисунка видно,что охлаждение воздуха до 40 и 35 0 С позволяет снизить удельную работу сжатия и потребляемую мощность компрессора в среднем на 15-20%.

На рис показано, что за 10 лет эксплуатации компрессора стоимость энергии, необходимой для работы системы, существенно превышает начальные капиталовложения. На этом рисунке видно, что на долю техобслуживания приходится 7% совокупных затрат, но оно необходимо для достижения максимальной эффективности любого компрессора. На типичном промышленном предприятии на долю сжатого воздуха приходится до 10% совокупных затрат на электроэнергию, при этом на некоторых производствах эта доля выше.

Структура затрат определяется конкретными условиями. Ее примерный вид показан на рис. 1.

Самую большую долю затрат составляет оплата электроэнергии, потребленной компрессором. Эта сумма определяется двумя основными факторами:

Энергией, вкладываемой в сжатие 1 м3 воздуха, зависящей от давления нагнетания (рис),

Стоимостью киловатт-часа электроэнергии.

Так, при стоимости киловатт-часа 88 коп. и давлении нагнетания 7 бар затраты на электроэнергию, необходимую для производства 1 м3 сжатого воздуха, составляют 1,2 грн. Это нижняя граница диапазона стоимости кубометра воздуха, когда не учитываются стоимость оборудования и затраты на эксплуатацию. В действительности с учетом остальных статей затрат суммарная стоимость 1 м3 сжатого воздуха превышает "электрическую" составляющую в 1,5 - 2 раза. Таким образом, стоимость сжатого воздуха составляет в среднем 1,4 грн./м3. Конечно, возможны существенные отклонения от этой оценки, связанные с условиями на конкретном предприятии - стоимостью киловатт-часа, стоимостью оборудования, затратами на техобслуживание и т. п.Вооружившись этими данными, можно оценить масштабы убытков, связанных с утечками воздуха. Рассмотрим конкретный пример из практики пневмоаудитов - линию упаковки косметической продукции, состоящую из шести машин. На рис. 3 показана запись расхода сжатого воздуха, поступающего в линию.

На диаграмме четко видны два режима работы линии:

1. Линия работает, при этом пиковые значения расхода воздуха достигают 6 - 7 м3/мин.

2. Линия стоит, при этом она потребляет около 1 м3/мин.Согласно документации, потребление воздуха машинами в режиме останова должно равняться нулю. В действительности даже остановленная линия непрерывно потребляет сжатый воздух, что объясняется утечками. Потери воздуха происходят в соединениях, в клапанах отвода конденсата, в изношенных пневмораспределителях и исполнительных механизмах. Так, среднее измеренное потребление одной из машин этой линии оказалось в 2,4 раза выше, чем указанное в документации. В отключенном состоянии машина потребляет воздух в количестве 170% от проектного рабочего потребления. Годовые убытки, обусловленные утечками в данной упаковочной линии, достигают 260 тысяч рублей, а на крупном предприятии могут работать десятки подобных линий. Идеальным решением проблемы является полное устранение утечек, к чему, конечно, следует стремиться. Однако достичь этой цели не всегда удается, поэтому можно частично сократить объем утечек, отсекая подачу воздуха во временно неработающие ветви пневмосети. Так, при установке отсечных клапанов на входах машин упаковочной линии срок их окупаемости составил всего 2,5 месяца.

4 . Энергосбережение сжатого воздуха на промышленном производстве

Стремление к энергетической независимости на металлургии обуславливает необходимость сокращения покупной электроэнергии на выработку вторичных энергоносителей, в том числе и на сжатый воздух. В состав металлургического производства входят агломерационный (6 агломашин), доменный (4 доменных печей), мартеновский (9 печей) цеха и цех подготовки сталеразливочных составов. Прокатное производство имеет в своем составе 4 прокатных цеха, предназначенных для производства горячекатаной и холоднокатаной листовой стали, стальной ленты, белой жести и холодногнутых профилей. Максимальная производственная мощность по горячекатаному прокату -- до 3,7 млн.тон, по холоднокатаному прокату -- 1,1 млн. тонн, по холодногнутым профилям -- до 500 тыс.тонн.

Снижение производительности сжатого воздуха за счет строительства нового компрессорного оборудования.

Проект предусматривает сокращение потребления электроэнергии за счет использования современного энергоэффективного оборудования на базе компрессорных агрегатов для установок-воздухоразделителей «Air Liquide» по производству кислорода. Внедрение компрессорных агрегатов приведет к сокращению потребления электроэнергии в 1,33 раза по сравнению с существующим потреблением, а именно: с 99,8 кВт-ч/1000 нм 3 до 74,8 кВт-г/1000 нм 3 .

Техническое задание проекта

Проект предусматривает строительство двух новых компрессорных агрегатов с электроприводом производительностью 160 тыс. 3 /час каждый

В состав проекта строительства компрессорной станции для установок-воздухоразделителей «Air Liquide» входит строительство компрессорных агрегатов, их электродвигателей, устройств регулирования частоты оборотов компрессоров, системы шумоглушителей, оборудования для всасывания воздуха (клапаны, фильтры и т.д.), а также устройств для плавного пуска. Общегодовое (перспективное) производство сжатого воздуха будет составлять около 6000 млн. м 3 /год.Для обеспечения полного объема производства сжатого воздуха, а также в качестве резервного компрессорного оборудования планируется использовать существующие компрессорные агрегаты.Обеспечение электроэнергией электрических приводов компрессорных агрегатов планируется осуществлять от собственной парогазовой электростанции.Общая установленная мощность электродвигателей двух компрессоров будет составлять 23,95 МВт.

Эффективность проекта

Основная цель проекта заключается в улучшении эффективности производства сжатого воздуха для установок-воздухоразделителей «Air Liquide» по производству кислорода на ОАО «Запорожсталь» и, таким образом, достижении сокращения объемов потребления энергоресурсов, в частности электроэнергии на 25 кВт-ч/1000 нм 3 , или на 70,1 млн. кВт-ч/год (при производстве 2,8 млрд. нм 3 /год сжатого воздуха на двух компрессорах).

Компрессорные агрегаты с приводом от электрического двигателя для производства и поставки сжатого воздуха в доменные печи

Проект предусматривает сокращение энергопотребления за счет использования современного энергоэффективного оборудования на базе компрессорных агрегатов для доменных печей с приводом от электродвигателя. Внедрение компрессорных агрегатов приведет к сокращению потребления энергоресурсов почти в 2 раза по сравнению с существующим потреблением, а именно: с 45,3 кг у. т./1000 м 3 до 23,5 кг у. п. /1000 м 3 .

ДП - доменная печь; ШГ - шумоглушитель; Ко - компрессор; М -электромотор; УПП - установка плавного пуска; УРЧО - установка регулирования частоты оборотов; Ф - фильтр

Техническое задание проекта

· Проект предусматривает строительство четырех компрессорных агрегатов:

· одного производительностью 6500 м 3 /мин для доменной печи № 1;

· трех производительностью 4200 м 3 /мин каждый для доменных печей № 3, 4, 5.

В состав проекта строительства воздуходувной станции входит также строительство компрессорных агрегатов, их электродвигателей, устройств регулирования частоты оборотов компрессоров, системы шумоглушителей, оборудование для всасывания воздуха (клапаны, фильтры и т.д.), а также устройств для плавного пуска.

Общегодовое (перспективное) производство сжатого воздуха для доменных печей будет составлять 10 000 млн. м 3 /год.

В качестве резервного воздуходувного оборудования планируется использовать существующие турбовоздуходувки с приводом от паровых турбин, установленных на ТЭЦ.Обеспечение электроэнергией электрических приводов компрессорных агрегатов планируется осуществлять от собственной парогазовой электростанции, которая строится Общая установленная мощность электродвигателей четырех компрессоров будет составлять 26,39 МВт.

Основные технико-экономические показатели компрессорных агрегатов

Эффективность проекта

Основная цель проекта заключается в улучшении эффективности производства сжатого воздуха для доменных печей и, таким образом, достижении сокращения объемов потребления энергоресурсов на 21,8 кг у. т./1000 м3, или на 218 тыс. т у. т./год (при производстве 10 000 млн. м 3 /год сжатого воздуха

Снижение производства сжатого воздуха за счет безкомперессорной станции.

Проект предусматривает сокращение потребления электроэнергии, поставляемой из сети и производимой на основе ископаемого топлива, за счет внедрения современного энергоэффективного оборудования на базе газовой утилизационной бескомпрессорной турбины (ГУБТ).

Техническое задание проекта

Проект включает строительство одной ГУБТ установленной мощностью 20 МВт.В состав проекта строительства ГУБТ для доменной печи № 2 входит газовая турбина, генератор, редуктор, входные и выходные запорные и аварийные клапаны, а также система очистки доменного газа. Произведенная на ГУБТ электроэнергия планируется использоваться для собственных нужд металлургического комбината.

Эффективность проекта

Внедрение на металлургическом комбинате газовой утилизационной бескомпрессорной турбины позволит вернуть часть энергии затраченной на производство сжатого воздуха для доменных печей, путем использования избыточного давления доменного газа для производства электроэнергии. Это повысит эффективность использования первичной энергии, а также сэкономит средства, затраченные на производство доменного дутья.

Основная цель проекта заключается в уменьшении затрат на производство сжатого воздуха, или закупку электроэнергии.

Внедрение ГУБТ на доменной печи № 2 приведет к бестопливному производству электроэнергии в объеме 123,2 млн. кВт-ч/год.

Средний КПД для установки по производству электроэнергии составляет около 80 %.

Основные технико-экономические показатели ГУБТ

Установленная мощность ГУБТ, кВт

Выходная мощность турбины, кВт

Выходная мощность генератора, кВт

Расход доменного, м 3 /час

Параметры доменного газа

ККД, %

3,5 атм 55 o С

Есть три важных причины, по которым стоит тратить время и силы на снижение затрат в системах сжатого воздуха:

Ш обнаружение и устранение утечек и нерационального использования экономит энергию и деньги;

Ш повышаются надежность и эксплуатационные параметры систем сжатого воздуха;

Ш снижение электропотребления и, соответственно, снижение выбросов углекислого газа уменьшает вредное воздействие на окружающую среду.

Хорошо спроектированная и надлежащим образом эксплуатируемая энергоэффективная система сжатого воздуха может приносить потребителю десятки и даже миллионн гривней ежегодной экономии. Кроме того, она может минимизировать риск сокращения производства, обеспечивая надежность подачи воздуха, и решить проблемы охраны труда и здоровья при работе с системами, находящимися под давлением. Каждая гривна экономии на энергетических затратах приносит постоянную дальнейшую экономию расходов, эффективно увеличивая прибыль. Из всех энергоносителей именно модернизация системы сжатого воздуха позволяет достичь немедленной экономии на любом предприятии. Кроме того, большинство мероприятий по экономии энергии не требует значительных капиталовложений.

Рассматриваются следующие вопросы:

Ш методы эффективного управления системами сжатого воздуха;

Ш примеры нерационального использования и непроизводительного расхода сжатого воздуха;

Ш распределение сжатого воздуха от компрессора до мест потребления;

Ш способы повышения эффективности работы компрессорного оборудования;

Ш эффективное аккумулирование сжатого воздуха;

Ш фильтрация и осушение сжатого воздуха;

Ш сбор и удаление конденсата.

Приложения содержат глоссарий, алгоритм снижения затрат в системе сжатого воздуха, а также список вопросов, необходимых для выбора компрессорного оборудования и некоторую другую справочную информацию.

В табл. 1 показаны основные области применения сжатого воздуха,где можно достичь экономии при минимальных затратах и незначительных капиталовложениях. Самой большой экономии, обычно до 30%, можно добиться путем снижения утечек, без затрат на внедрение новых технологий. Разработка и внедрение политики экономного использования сжатого воздуха на всем предприятии является самым экономически эффективным способом снижения затрат на эксплуатацию систем воздухоснабжения. Элементы такой политики подробно описаны в Разделе 2. Политика эффективного использования систем сжатого воздуха может включать многие (или все) управленческие решения, перечисленные в табл. 1.

Таблица 1. Возможности экономии энергии при работе типовой промышленной системы сжатого воздуха

Применение системного подхода

Энергоэффективная система сжатого воздуха -- эта такая система, которая:

ь постоянно поддерживается в исправном состоянии при регулярном техобслуживании всего оборудования и отслеживании эксплуатационных параметров;

ь хорошо спроектирована (правильно выбраны фитинги, фильтры, осушители, трубы и трубные соединения) для достижения минимальных потерь давления;

ь работает при постоянном или регулярном мониторинге с определением удельного энергопотребления на основе получаемых данных;

ь эксплуатируется персоналом, хорошо осведомленным о затратах на производство сжатого воздуха и прошедшим обучение по эффективному использованию оборудования, потребляющего сжатый воздух;

ь является частью постоянно действующей программы по обнаружению и устранению утечек.

Каждый элемент системы должен способствовать доставке сжатого воздуха до места его потребления с требуемыми характеристиками и без колебаний давления. Неэффективная работа какого-либо элемента приводит к снижению эксплуатационных параметров системы и повышению эксплуатационных расходов. Каждый элемент системы взаимосвязан с другими элементами и не должен рассматриваться изолированно.

Например, установка нового, энергоэффективного компрессора будет иметь очень ограниченный эффект, если сохраняется высокий уровень утечек или если производительность компрессора ограничена неправильно подобранным размером подающего воздухопровода. Отсутствие надлежащего обслуживания любого оборудования будет снижать эффективность его работы.

Покупка энергоэффективного оборудования

Как правило, более эффективное оборудование стоит дороже, чем менее эффективные аналоги. Поставщики оборудования зачастую не могут предоставить информацию об эксплуатационных издержках за ожидаемый срок службы оборудования, поэтому решения о покупке слишком часто принимаются только на основе продажной цены. Политика закупок, основанная на выборе наиболее дешевого оборудования, часто мешает повышению энергоэффективности и получению положительных эффектов от внедрения новых технологий. В промышленно развитых странах давно пришли к пониманию необходимости учета не только первоначальной стоимости оборудования, но и учета совокупных затрат на его эксплуатацию, что особенно актуально для энергоемкого оборудования.

Наряду с сокращением потребления важным путем энергосбережения является повышение эффективности использования энергии сжатого воздуха. Обычно требуемое давление воздуха на выходе компрессора определяется как максимальное из давлений, необходимых потребителям, плюс потери давления в пневмолиниях. Вспомним, что стоимость сжатого воздуха зависит от давления Так, снижение давления с 7 до 6 бар сокращает расход электроэнергии на 10%. С точки зрения энергосбережения, давление, создаваемое компрессором, должно быть минимально необходимым. Нередки случаи, когда общему снижению давления в пневмосети препятствует небольшое число потребителей, работающих на более высоком давлении. Если доля потребляемого ими воздуха невелика, давление в пневмосети можно снизить, снабдив этих потребителей локальными усилителями давления.В примере, показанном на рисунке, давление в сети снижено с 6 до 3 бар, что сократило затраты электроэнергии на сжатие воздуха на 30%. Единственный потребитель, которому необходимо давление 6 бар, получает его от усилителя. Этот путь энергосбережения требует расчетного обоснования. Дело в том, что снижение давления, с одной стороны, уменьшает удельные энергозатраты на сжатие воздуха, с другой - увеличивает потребление сжатого воздуха, т. к. часть расхода используется на собственные нужды усилителя. Для поиска оптимального решения, обеспечивающего максимальную эффективность, можно применить, например, компьютерную программу SMC Energy Saving.Минимизация давления в пневмосети подразумевает также сведение к минимуму потерь давления в пневмолиниях. Размеру трубопровода соответствует определенная максимально допустимая расходная нагрузка, и ее превышение приводит к неоправданным потерям. Так, одна из машин вышеупомянутой упаковочной линии соединялась с общей пневмомагистралью трубой Ѕ”. При рабочем расходе, составляющем 1,9 м3/мин, потери давления в этой трубе достигали 1,1 бар.Такие значительные потери давления не позволяют снизить давление в магистрали и ограничивают возможности энергосбережения. Переход на трубу ѕ” сократил потери давления в 8 раз. Следует отметить, что диаметр трубопровода d является наиболее мощным фактором, влияющим на потери давления Дp: Дp ~ 1/d5 Существенным фактором энергосбережения является подготовка сжатого воздуха. Загрязнения, содержащиеся в сжатом воздухе, негативно воздействуют на оборудование: ускоряется износ уплотнений, отложения твердых частиц препятствуют полному закрытию клапанов, в том числе в устройствах отвода конденсата, скопившийся в трубах конденсат вынуждает персонал открывать дренажные клапаны для его сброса либо держать их постоянно приоткрытыми - все это сопровождается утечками сжатого воздуха. Быстрое загрязнение фильтров приводит к повышенным потерям давления, что снижает эффективность использования энергии. Неисправность осушителей способствует не только появлению конденсата в пневмосети, но и неоправданному расходу энергии на их кажущуюся работу. Так, по данным, накопленным в ходе выполненных на разных предприятиях пневмоаудитов, 7 (семь!) из 10 работающих рефрижераторных осушителей в действительности не снижают точку росы, в то время как персонал считает их исправными. Качественная и рациональная подготовка сжатого воздуха является обязательным и важнейшим пунктом в списке мер по энергосбережению.Экономия энергии с целью снижения затрат на производство сжатого воздуха на предприятии зависит не только от работы компрессора. Необходимо обращать внимание на эффективность и показатели работы всех элементов системы.Элементы системы (компрессоры, распределительные сети,ресиверы, фильтры, системы сбора и удаления конденсата) . А также управлению системой сжатого воздуха, описаны случаи неправильного использования и потерь сжатого воздуха.

...

Подобные документы

    Производительность компрессора – объем воздуха, выходящий из него, пересчитанный на физические условия всасывания. Универсальный гаражный источник сжатого воздуха. Цикл одноступенчатого одноцилиндрового горизонтального компрессора простого действия.

    реферат , добавлен 04.02.2012

    Описание очистных сооружений. Расчет воздуховодов для несжатого воздуха. Определение потерь напора на трение и местные сопротивления по наиболее протяженной ветви. Давление на выходе из воздуходувной станции. Плотность сжатого воздуха на участке.

    курсовая работа , добавлен 14.03.2015

    Термодинамические основы процесса сжатия, теорема Бернулли. Принципы работы центробежного компрессора. Дросселирование как фиксированный физический предел компрессора. Впускные направляющие лопатки. Типовая принципиальная схема контуров сжатого воздуха.

    презентация , добавлен 28.10.2013

    Кондиционирование воздуха как создание и автоматическое поддержание в обслуживаемом помещении требуемых параметров и качества воздуха независимо от внутренних возмущений и внешних воздействий. Анализ основных требований к кондиционированию воздуха.

    презентация , добавлен 07.04.2016

    Основные параметры воздуха, характеризующие его состояние: температура, давление, влажность, плотность, теплоёмкость и энтальпия. Графическое и аналитическое определение параметров влажного воздуха. Определение расхода и параметров приточного воздуха.

    дипломная работа , добавлен 26.12.2011

    История создания и дальнейшей разработки компрессорной техники. Мировые тенденции развития технологии сжатого воздуха. Классификационные и оценочные показатели, применяемые при контроле качества компрессорного оборудования. Термины и определения.

    курсовая работа , добавлен 26.04.2011

    Изучение технических характеристик и принципа работы приточной системы вентиляции с рециркуляцией воздуха, которая используется в вагонах с кондиционированием воздуха и предназначена для обеспечения требуемого воздухообмена, охлаждения, подогрева воздуха.

    реферат , добавлен 24.11.2010

    Анализ основных требований к системам кондиционирования воздуха. Основное оборудование для приготовления и перемещения воздуха. Сведения о центральных кондиционерах и их классификация. Конструкция и принцип работы их основных секций и отдельных агрегатов.

    дипломная работа , добавлен 01.09.2010

    Определение объема газа, удельных значений внутренней энергии, энтальпии и энтропии. Расчет теоретической скорости адиабатического истечения и массового расхода воздуха, температуры воздуха адиабатного и политропного сжатия. Задачи по теме теплопередачи.

    контрольная работа , добавлен 06.03.2010

    Методы стабилизации температуры воздуха в остеклённых блочных теплицах с водяной системой обогрева, где температура воздуха регулируется за счёт изменения температуры теплоносителя с помощью смесительного клапана. Принцип автоматического управления.

Сжатый воздух - воздушная масса, которая содержится в какой-либо емкости, при этом ее давление превышает атмосферное. Его используют в промышленности в разнообразных производственных операциях. Типичная система сжатого воздуха - это установка, работающая при давлении до десяти бар. В таких случаях воздушную массу сжимают в десять раз от ее первоначального объема.

Общая информация

При давлении в семь бар сжатый воздух практически безопасен при эксплуатации. Он способен обеспечить достаточную движущую силу инструмента не хуже, чем электрическая подача. При этом требуется меньшее количество затрат. Кроме того, такая система характеризуется более быстрым срабатыванием, что в конечном результате может сделать ее гораздо удобнее. Однако для этого потребуется учитывать параметры, приведенные ниже.


Применение сжатого воздуха

Довольно часто производственники используют этот вид энергии для быстрой и эффективной очистки оборудования от загрязнений и пыли. Кроме того, сжатый воздух широко применяют для продувки труб в котельных. В его используют для очистки помещений, оборудования и даже одежды от древесной пыли. В большинстве стран уже появились стандарты по применению этого вида энергии, например, в Европе это CUVA, а в США - OSHA. Кроме использования его в производственных операциях, широко распространены инструменты, которые работают непосредственно на воздушном ходу, - это шуруповерты, пневматические дрели, гайковерты, (при монтаже оборудования и строительстве), пульверизаторы (при проведении капитальных ремонтов). Помимо этого, сейчас широко используется сжатый воздух в баллончиках в пневматическом оружии.

Безопасность

Используя сжатый воздух, необходимо соблюдать меры безопасности, приведенные ниже.

  1. Запрещается направлять струю в рот, глаза, нос, уши и другие места.
  2. Нельзя обрабатывать сжатым воздухом открытые раны, т. к. под кожей могут образоваться пузырьки, если они дойдут до сердца, то приведут к сердечному приступу, а если до мозга, то могут спровоцировать Кроме того, попадая в рану, воздух может занести в нее инфекцию, которая находится в компрессорной системе или в трубах.
  3. Запрещено баловаться и направлять струю сжатого воздуха на других людей.
  4. Не следует накачивать давление в компрессорную систему сверх нормы.
  5. Все элементы пневматической установки должны тщательно закрепляться во избежание отрывов и, как следствие, травм.
  6. Запрещено проводить очистку оборудования от пыли и грязи в присутствии источника открытого огня и сварочных работ. Это может спровоцировать взрыв из-за наличия пыли во взвешенном состоянии.
  7. Работая с системами сжатого воздуха, необходимо пользоваться средствами индивидуальной защиты, например, очками или маской.
  8. Запрещено осуществлять затяжку муфт, в узлах или на трубах под давлением.
  9. При монтаже пневматической системы шланги следует крепить в местах с наименьшим риском повреждения (на потолках, стенах).

Преимущества сжатого воздуха

Теперь рассмотрим, в чем заключаются преимущества применения этого вида энергии на производственных линиях.


Сети сжатого воздуха

Для оптимальной работы и высокой экономичности установки необходимо выполнение следующих требований. В пневматической системе следует минимизировать потери, кроме того, воздух должен приходить к потребителям осушенным и чистым, это достигается путем установки специального осушителя, позволяющего конденсировать влагу. Также особое внимание необходимо уделять магистральным трубопроводам. Грамотная установка воздухопроводов - это залог долговечности функционирования, а также снижения расходов на обслуживание. За счет увеличения уровня давления в компрессоре можно компенсировать падение в трубопроводе.

Расчет потребления сжатого воздуха

Всегда включают в себя так называемые ресиверы (воздухосборники). В зависимости от производительности и мощности оборудования система может содержать несколько ресиверов. Их основное назначение - это сглаживание пульсаций давления, кроме того, внутри воздухосборника происходит охлаждение газовой массы, и это приводит к выпадению конденсата. Расчет сжатого воздуха заключается в определении потребления ресивера. Производится это по следующей формуле:

  • V = (0.25 х Q c х p 1 х T 0)/(f max х (p u -p l) х T l), где:
    - V - объем воздушного ресивера;
    - Q c - производительность компрессора;
    - p 1 - давление на выходе установки;
    - T l - максимальная температура;
    - T 0 - температура сжатого воздуха в ресивере;
    - (p u -p l) - заданная разность давления нагрузки и разгрузки;
    - f max - максимальная частота.

Мало кто из пользователей догадывается, насколько важно иметь сжатый воздух в баллончиках для компьютера.

А ведь на самом деле он может спасти от непредвиденной поломки, дискомфорта в использовании устройства, а также от ряда других неприятных ситуаций.

Содержание:

Где взять качественный сжатый воздух

Увы, это так. Правы были пророки и теперь даже воздух продается.

Продается сжатый воздух в баллончиках разных типов и выбирая его в торговой сети, важно понимать, что вы покупаете именно сжатый воздух в баллончиках для компьютера, а не для какого-либо другого устройства.

Поэтому его стоит искать в салонах компьютерной техники в отделах расходных материалов и средств по уходу за компьютерной техникой.

Также подобные товары можно найти на аналогичных интернет-сайтах.

Если же попытаться найти что-то подобное в других местах, наверняка с этим будут связаны определенные проблемы.

Все потому, что если сжатый воздух используется для других целей, в его составе могут присутствовать сторонние компоненты, наличие которых может быть весьма опасным для содержимого корпуса вашего , или подобного устройства, требующего очистки.

К примеру, производители сжатого воздуха для ремонта автомобилей могут добавлять в него средства, препятствующие дальнейшему разрушению деталей автомобиля.

А вот сжатый воздух, применяемый ювелирами, может содержать компоненты, которые в процессе работы позволят связать микрочастицы драгоценных металлов, поскольку их можно будет вторично использовать при создании иных изделий.

Совет: обращайте внимание на то, где вы приобретаете сжатый воздух, и на содержимое флакона. Почерпнуть его можно из надписи на этикетке. К примеру, недобросовестный продавец может «впарить» неподходящий для обработки компьютерных деталей воздух.

Как использовать сжатый воздух

Обычно сжатый воздух продается в металлической таре – флаконах, где воздух консервируется под давлением.

Емкость этой тары может варьироваться в зависимости от предпочтений производителя, но обычно баллоны большого объема в продажу не поступают, учитывая требования по безопасности, касающиеся продаваемого продукта.

Обратите внимание, что для того, чтобы использовать сжатый воздух из флакона, необходимо использовать весь комплект.

Да, именно так.

Продается сжатый воздух не просто в баллончиках, а в форме комплекта, в который входит также специальная насадка в виде тонкой полимерной трубки.

Она одним концом в форме адаптера надевается непосредственно на подвижное сопло баллона, а вторым направляется непосредственно на очищаемую поверхность или размещенный на ней элемент.

Вопреки распространенному мнению бездумно нажимать на клапан распылителя не стоит. Необходимо придерживаться нескольких строгих правил, которые избавят от проблем в будущем.

Вот несколько из них:

  • струю воздуха необходимо направлять непосредственно на очищаемый объект;
  • не стоит выпускать весь сжатый газ за одно распыление;
  • нажатия должны быть серийными и кратковременными.

Все эти правила строго обоснованы.

К примеру, кратковременные направленные нажатия способствуют экономному использованию воздуха, ведь его давления вполне достаточно и для удаления пыли, и для удаления ряда липких загрязнений.

Рис. 2 – Правильный способ держать баллон

Чем заменить сжатый воздух

Как уже отмечалось выше, замена одного баллончика с газом другим может повлечь за собой непоправимые последствия.

К примеру, огнеопасные газовые смеси, применяемые для очистки, могут стать причиной возгорания, короткого замыкания либо некачественно проведенной очистки.

Подобные ситуации могут возникнуть, если во флаконе окажется увлажненный воздух или газ, поддающийся воспламенению.

При этом последствия чистки таким газом могут проявиться даже не во время ее выполнения, а после, когда компьютер или другое очищаемое электронное устройство будет подключено к сети.

Выбирая замену баллончикам с хладагентом (именно его чаще всего используют производители), стоит четко понимать особенности использования сжатого газа и цель его применения. Соответственно, газ, направляемый в корпус, должен быть сухим, без дополнительных примесей и желательно инертным. К сожалению, в домашних условиях подобные требования соблюдать удается не всегда и приходится использовать не сжатый газ, а кое-что другое.

Альтернативы в домашних условиях

Два наиболее распространенных пути решения этой проблемы предполагают использование бытовой техники.

В первом случае это фен для укладки волос, который бывает далеко не у каждого владельца компьютера, а во втором – пылесос. Но и в этом случае не все так гладко.

Что касается фена, то при его использовании важно, чтобы он работал в режиме без нагрева воздуха.

В противном случае можно поплатиться работоспособностью компьютера, поскольку во многих из них, например, в ноутбуках и может использоваться клей, который под воздействием высокой температуры плавится.

Что касается пылесоса, то при его использовании важно использовать обратный режим, когда воздух не всасывается, а, наоборот, выдувается.

Необходимо это для того, чтобы ненароком не вырвать из корпуса припаянный провод или же при высокой мощности пылесоса еще какой-либо компонент.

Такая особенность предусматривается далеко не в каждой модели, поэтому будьте осторожными.

Рис. 3 – Правильный способ использования сжатого воздуха

Как сделать баллончик собственными руками

Как для расходного материала одноразового использования, стоимость баллончика с воздухом кажется просто заоблачной.

И хоть она и связана со сложным технологическим процессом производства, многие считают ее необоснованной.

Именно поэтому часть пользователей пытаются сделать подобный инструмент для в домашних условиях.

Задача эта вполне выполнимая, однако будет далеко не всем под силу. Все потому, что для ее реализации необходимо предусмотреть сразу несколько деталей.

Во-первых, будет необходим пустой контейнер.

Использовать можно, к примеру, уже использованный контейнер из-под сжатого воздуха, но ни в коем случае не из-под лака или дезодоранта, поскольку в них могут находиться остатки спирта или химических средств.

Второй обязательный компонент – автомобильный компрессор. Именно он позволит закачать воздух в пустой флакон.

И, конечно, соединительные элементы – ниппель автомобильной камеры и фрагмент газовой горелки, которые позволят связать баллон с компрессором и сократить потери воздуха при заправке.

Важно: при таком способе заправки важно соблюдать особую осторожность. Во-первых, применять на всех поверхностях такую смесь нельзя, поскольку в ней содержится огнеопасный кислород, а во-вторых, при заправке нельзя превышать допустимое давление во флаконе. В противном случае он разорвется и станет причиной травм и прочих повреждений.

Как сделать самодельный многоразовый баллон сжатого воздуха для чистки компьютера

Данный метод исключает нарушение конструктивной целостности баллона, путем вкручивания, вклейки или впаивания вело, мото или авто ниппелей, что позволяет доводить в баллоне давление, предусмотренное изготовителем и исключает выстреливание вышеперечисленных предметов в пользователя. Роль предохранителя при превышении допустимого давления играет резиновая трубочка с хомутом (не затягивайте хомут очень сильно) Видео о испытание давлением, которое может выдержать данная конструкция сниму в ближайшее время

Атмосферный воздух – смесь газов, не вступающих в реакцию при обычных условиях. В основном это азот и кислород. Поэтому все свойства, характерные для кислорода и азота, присущи и воздуху.

Азот – это газ, близкий по своему воздействию к нейтральным газам, и не требует применения каких-то защитных мер или специальных материалов для объектов, контактирующих с ним. Однако он оказывает неблагоприятное воздействие на человека, длительно пребывающего в среде с повышенным содержанием азота.

Кислород, наоборот, активный окислитель. Поэтому конструкция машин и аппаратов для этого газа должна учитывать корозийность, особенно влажного воздуха, возможность возгорания горючих материалов в среде воздуха, возможность самовоспламенения и взрыва в газовых коммуникациях при наличии отложений нагара, паров или капель масла (свыше 100 атм.).

Воздух растворяется в смазочных маслах, способствует их преждевременному окислению, коксованию, понижению температуры вспышки.

Воздействие на человека

При понижении давления до 140 мм Нg появляются признаки кислородного голодания, а при 110 мм Нg – гипоксия, до 50 – 60мм – уже опасно для жизни.

Увеличение парциального давления N2 в воздухе вызывает наркотические действия.

Высокая концентрация СО2 вызывает асфиксию , а при
14 – 15% его наступает смерть. В жилых помещениях содержание углекислого газа не должно быть выше 0,1%.

4.2 Значение воздуха в развитии человечества

4.2.1 Развитие технологий применения сжатого воздуха

Ещё 3000 лет назад дутьё воздуха мехами применялось для выплавки металлов и вентиляции шахт (есть др. египетские рисунки).

Герон Александрийский ввел понятие «пневматика» - использование сжатого воздуха.

В средние века начали применять привод мехов от водяного колеса.

В средине XVIII века изобретена паровая машина и сходный с ней поршневой компрессор, создавший давление до 0,2 МПа (2 атм).

В 1741г. Гелье построил примитивный вентилятор с вращающимися на оси лопатками – воздуходувку.

Затем появились пневмопочта, водолазный костюм, кессоны.

В начале XIX в. уже могли сжимать воздух до давления 0,5 – 0,6 МПа, и начали передавать его на расстоянии. Началось широкое применение сжатого воздуха в различных технических устройствах.

В 1845г. изобретена пневмомашина, а в 1872 г. – пневмотормоз.

В 1857г. появился пневмоинструмент – бурильный молоток – для прокладки тоннеля в Альпах.

Вскоре появились первые КС – в Париже N =1470 кВт,
p = 0,6 МПа, протяженностью сети до 48 км – обеспечения для фабрик и заводов. Позже довели мощность до 18500 кВт – с паровым приводом.

4.2.2 Назначение сжатого воздуха

Сегодня ни одно промышленное предприятие не может обойтись без применения сжатого воздуха, который является доступным и дешевым источником как сырьевым, так и энергетическим. Особенно широко сжатый воздух используется в промышленности и строительстве. Источниками сжатого воздуха служат как небольшие мобильные установки, так и крупные стационарные компрессорные станции, связанные с потребителями через сеть воздухопроводов, что в совокупности образует систему воздухоснабжения промышленного предприятия.

Системы воздухоснабжения предназначены для выработки сжатого воздуха требуемых параметров и бесперебойного обеспечения им технологических нужд предприятия.

В зависимости от профиля предприятия, производства сжатый воздух сегодня используется для:

Осуществления основных технологических процессов (как компонент химической технологии, например, для получения кислорода и азота, для дутья в металлургии и т. п.);

Энергетического применения, связанного с использованием воздуха как окислителя при сжигании различных топлив или как теплоносителя для нагрева или охлаждения газов и жидкостей;

Как рабочее тело в двигателях ДВС, ГТУ;

Обеспечения работы пневмоинструмента и пневмоприводов, питания машин литейных и кузнечных производств, строительных машин и механизмов, выполнения обдувных, пескоструйных, покрасочных и других работ на производственных предприятиях различного профиля деятельности;

Обеспечение работы технологических комплексов и устройств (конвейеров, систем пневмотранспорта, буровых станков и т. п.);

Обеспечения работы пневматических систем, систем КИП и А и многое другое в технике.

Заметим, что на некоторых производствах, например на химических комбинатах, сжатый воздух для основных технологических процессов имеет параметры, отличные от параметров системы воздухоснабжения, и вырабатывается специальными компрессорами, входящими в состав оборудования технологических линий.

В курсе «Компрессорные станции» рассматривается применение сжатого воздуха в качестве энергоносителя в различных производствах. Это его применение трудно переоценить. Но есть и другие применения. Наиболее значительные из них – использование воздуха в качестве реагентов в металлургии и химии, а также пневмотранспорте.

4.3 Применение сжатого воздуха в металлургии

Здесь воздух применяется в качестве реагента, содержащего О2. Главная функция – дутьё, т. е. подача сжатого воздуха в различные агрегаты – домны, мартены, конверторы. Это крайне необходимо для горения во всех металлургических процессах.

Обогащение руды – (1-й процесс) – повышение содержания железа или другого металла в руде и понижение вредных примесей. Один из способов обогащения – флотация.

Сжатый воздух продувают через пульпу. При пенной флотации частицы полезного минерала не смачиваются водой и поднимаются вместе с пузырьками воздуха, а другие смачиваются и оседают на дно – это пустая порода (рис. 4.4).

Широко используется для обогащения руд цветных металлов (% низкий), но и для железа тоже.

Агломерация" href="/text/category/aglomeratciya/" rel="bookmark">агломерационной машине (рис. 4.5).

Кокс начинает гореть, руда разогревается и превращается в прочную пористую массу – «слипается» – это и есть агломерат, что позволяет потом в домне осуществить более эффективный процесс выплавки чугуна.


Рисунок 4.5 – Схема агломерации

Доменный процесс (рис. 4.6). Железо в руде находится в виде окислов. Поэтому нужно освободить железо от связанного с ним О2 – восстановление.

Рисунок 4.6 – Доменный процесс

Кислород, содержащийся во вдуваемом в печь горячем воздухе, взаимодействует с углеродом кокса, образуя СО2. Он поднимается выше, взаимодействует с коксом, образуя СО, она отбирает у окислов железа руды кислород и связывает его. А освободившееся железо взаимодействует с углеродом, образуя чугун. На 1т чугуна необходимо 2500 – 3500 м3 воздуха, т. е. V =8000 м3/мин. Чтобы воздух не охлаждал печь, его предварительно подогревают до 1100 – 1300ºC в кауперах.

Насадку греют, сжигая топливо. Затем подачу топлива прекращают и прокачивают воздух. Чтобы процесс подачи был непрерывный, устанавливают несколько кауперов. Заметим, что в воздухе 4/5 азота, т. е. 80% энергии затрачивается впустую, т. к. для горения используется только 20% кислорода.

Очевидно, что выгоднее воздух обогащать кислородом. Но это стало возможным лишь в 30 – 40-х годах XX века с появлением мощных разделительных установок.

Конверторный способ варки стали (бессемеровский). Расплавленный жидкий чугун продувают сжатым воздухом, и содержащийся в нем О2 соединяется с углеродом, кремнием и марганцем (рис. 4.7 а). Этот процесс обратный доменному процессу – окислительный. Таким образом, связывают ненужные компоненты в окислы и удаляют.

При продувке воздухом углерод быстро выгорает и из чугуна образуется сталь. А Si и Mn при соединении с О2 выделяют тепло для поддержки реакции, т. е. конвертор – «печь без топлива» (Менделеев). Недостатки – насыщение стали азотом – хрупкость стали, склонность к старению. Оставались и вредные примеси S и P . Чугун для этого годился не всякий, а только с Si и Mn. Металлолом в конверторе нельзя переплавлять.

Поэтому лучше – мартеновский способ – для переработки чугуна и лома (рис. 4.8).

Здесь тепло для процесса плавления необходимо подводить за счет сжигания мазута, коксового газа, калашникового газа. Смесь газа и воздуха подогревается в регенераторах за счёт тепла, уходящих из печи продуктов сгорания. Нагреваются насадки. Аппараты периодического действия. Поэтому их ставят парами и переключают через 15 – 20 мин. Производительность мартена – 100 т стали в час. Этот способ более прогрессивный.

Хороший вопрос.
У Гулиа хорошая книга "В поисках энергетической капсулы" - в основном про маховики, но и про другие способы накопления тоже.
Цитата оттуда:
Чтобы узнать, сколько энергии накоплено в газе, нужно умножить его давление на объем. Кубометр воздуха весит чуть больше килограмма. Допустим, мы сожмем воздух в 500 раз, его давление будет - 500 атмосфер, или около 50 мегапаскалей (МПа). Тогда весь кубометр уместится в сосуде емкостью два литра. Если предположить, что баллон весит примерно столько же, сколько воздух (а это должен быть очень хороший, крепкий баллон!), значит, на каждый килограмм баллона придется только около литра сжатого воздуха. Но этот литр, одна тысячная кубометра, умноженная на 50 мегапаскалей давления, даст в результате 50 килоджоулей энергии!
Совсем неплохой показатель - 50 килоджоулей на килограмм массы аккумулятора! Плотность энергии почти вдвое выше, чем у лучшей резины. И долговечность такого аккумулятора очень высока - воздух не резина, он не изнашивается. Масса воздушного аккумулятора для автомобиля будет всего 500 килограммов. Его уже вполне можно установить на автомобиле в качестве двигателя.
...
Еще в прошлом веке во французском городе Нанте ходил трамвай, работавший от баллонов со сжатым воздухом. Десяти баллонов воздуха, сжатого всего до 3 мегапаскалей, при общем объеме 2800 литров, трамваю хватало, чтобы пройти на накопленной в воздухе энергии путь в 10...12 километров. Все равно я решил построить модель такого воздуховоза, чтобы самому убедиться в преимуществах и недостатках воздушного аккумулятора. Как мне представлялось, модель автомобиля-воздуховоза сделать несложно. По моим расчетам, для этого нужен был углекислотный огнетушитель, например автомобильный, который выбрасывает струю газа, а не пены, и тяговый пневмодвигатель, скажем от воздушной дрели или гайковерта. Но, увы, первое же испытание воздуховоза разочаровало меня. Я направил сжатый углекислый газ из огнетушителя в пневмодвигатель, а тот, чуть-чуть поработав... замерз. Да, да, покрылся инеем и остановился!

В принципе любой сжатый газ при резком расширении сильно охлаждается. Когда я, ничего не подозревая, крутанул вентиль баллона сразу до отказа и газ под большим давлением вырвался из отверстия, расширение оказалось столь интенсивным, что газ стал превращаться в снег. Не обычный, а утлекислотный, с очень низкой температурой. Такой снег, только спрессованный, часто называют "сухой лед", потому что он переходит в газ, минуя жидкую фазу. Мне не раз приходилось видеть "сухой лед", когда я покупал мороженое. Но главное - охлаждение значительно снизило запас энергии в сжатом газе. Ведь давление газа при охлаждении стремительно падает, а значит, уменьшается и количество выделяемой энергии. Это и было основной причиной остановки пневмодвигателя.

Можно, конечно, нагревать охлажденный газ, чтобы вернуть ему прежнюю температуру. Но ведь нагрев - затрата энергии. Газ когда-то сжимали, закачивая в баллон. Тут-то он и нагревался: газы, как известно, при сжатии нагреваются. Вот если бы горячий газ сразу же пустить в работу, то он охладился бы всего до исходной температуры. А при хранении баллон с горячим газом в конце концов остывает, принимает температуру окружающего воздуха. Отсюда и столь сильное охлаждение газа при выходе его из баллона, при расширении, отсюда и "сухой лед".