12.07.2019

Потребители теплоснабжения. Потери электрической и тепловой энергии при транспортировке. Может ли оказывать услуги по обеспечению теплового комфорта и горячего водоснабжения теплоснабжающая организация


- 130.00 Кб

1. Значение теплоэнергетики для современного общества. Актуальность для России.

Е.Г.Гашо, В.С.Пузаков. Современные реалии в сфере теплоснабжения.

Более чем за 100 лет своего развития российская система теплофикации (когенерации) и централизованного теплоснабж ения (ЦТ) стала самой большой в мире. Под теплофикацией понимается процесс централизованного обеспечения потребителей тепловой энергией, полученной на ТЭЦ по комбинированному способу выработки тепловой и электрической энергии. Под ЦТ понимается теплоснабжение потребителей от источников тепла через общую тепловую сеть. Теплофикация занимает весомое место в энергетическом комплексе страны. Более половины электрической мощности всех тепловых электростанций приходится на ТЭЦ общего пользования, которые производят свыше 30% всей электроэнергии в стране и покрывают треть спроса на тепловую энергию. На сегодняшний день система теплоснабжения страны состоит из почти 50 тыс. локальных систем теплоснабжения, которая обслуживается 17 тыс. предприятиями теплоснабжения. Сложившаяся система отопления многоэтажных жилых домов организована как система ЦТ.

Основными источниками тепла в системе ЦТ являются теплофикационные энергоблоки на теплоэлектростанциях (ТЭЦ, как правило, в составе генерирующих компаний) и котельные (различных форм собственности). Производство тепловой энергии в России характеризуется следующими данными:

централизованные источники производят около 74%;

децентрализованные источники производят 26% тепла России.

Основные виды используемых природных топливно-энергетических ресурсов (ТЭР): природный газ, нефть и нефтепродукты, уголь. Говорить сейчас о доли возобновляемых источников энергии (ВИЭ) в топливно-энергетическом балансе страны пока нельзя, т.к. по ним сегодня практически нет достоверных статистических данных.

Материалы восьмого заседания Открытого семинара «Экономические проблемы энергетического комплекса» от 25 января 2000 года. А.С.Некрасов, С.А.Воронина. Экономические проблемы теплоснабжения в России.

Теплоснабжение в России, несмотря на признание его самым топливно-емким и находящимся в критическом состоянии сегментом топливно-энергетического комплекса страны, было и остается совершенно нескоординированным в силу своей разобщенности.

В официальном статистическом издании, «Российском статистическом ежегоднике», раздел теплоснабжения отсутствует.

Крупнейшей нерешенной проблемой современного централизованного теплоснабжения является сокращение потерь тепла. Величины этих потерь должным образом не учитываются и экономически не оцениваются. Называемые объемы потерь тепла различаются кратно в зависимости от источников информации.

А.С.Некрасов (в дискуссии)

«Есть экономические пределы эффективности централизованного теплоснабжения от определенного источника. Моя точка зрения, что очень важно сегодня просчитать по всем основным городам (и это делалось в ИСЭ им. Л.А.Мелентьева в Иркутске), как реально должно выглядеть централизованное теплоснабжение.

Централизация – это одно из направлений. При той плотности застройки городов, которая у нас есть, она, конечно, должна быть. Вопрос в другом. Я как то был в Гусиноозерске, где 20 тыс. человек населения. Там теплоснабжение от Гусиноозерской ГРЭС. Если принять по 200 чел., проживающих в каждом доме, это 5 улиц по 20 домов. При плотности застройки, как это делалось в старых городах, можно получить эффективные результаты от централизованного теплоснабжения. Однако в этом городе каждый дом стоит на удалении не менее 50‑100 м друг от друга. Как при такой системе можно обеспечить централизованное теплоснабжение без экономических потерь? Невозможно. Поэтому вопрос о том, какая система теплоснабжения должна быть, это вопрос о том, какая принята стратегия в планировке городов. Хотя это выходит за рамки нашей задачи, но является базисным условием для обоснования развития централизованного теплоснабжения, особенно на базе ТЭЦ. Нельзя сегодня однозначно говорить, хорошо централизованное теплоснабжение или плохо».

2. Способы получения тепловой и электрической энергии

2.1. Тепловые электростанции

2.2. Гидроэлектростанции

2.3. Атомные электростанции

Данный раздел является кратким обзором современного состояния энергоресурсов, в котором рассмотрены традиционные источники электрической энергии. К традиционным источникам в первую очередь относятся: тепловая, атомная и энергия потока воды.

2.1 Тепловые электростанции

Тепловая электростанция (ТЭС), электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Первые ТЭС появились в кон. 19 в и получили преимущественное распространение. В сер. 70-х гг. 20 в. ТЭС - основной вид электрической станций. Доля вырабатываемой ими электроэнергии составляла: в России и США св. 80% (1975), в мире около 76% (1973).

Около 75% всей электроэнергии России производится на тепловых электростанциях. Большинство городов России снабжаются именно ТЭС. Часто в городах используются ТЭЦ - теплоэлектроцентрали, производящие не только электроэнергию, но и тепло в виде горячей воды. Такая система является довольно-таки непрактичной т.к. в отличие от электрокабеля надежность теплотрасс чрезвычайно низка на больших расстояниях, эффективность централизованного теплоснабжения сильно снижается, вследствие уменьшения температуры теплоносителя. Подсчитано, что при протяженности теплотрасс более 20 км (типичная ситуация для большинства городов) установка электрического бойлера в отдельно стоящем доме становится экономически выгодна.

На тепловых электростанциях преобразуется химическая энергия топлива сначала в механическую, а затем в электрическую.

Топливом для такой электростанции могут служить уголь, торф, газ, горючие сланцы, мазут. Тепловые электрические станции подразделяют на конденсационные (КЭС), предназначенные для выработки только электрической энергии, и теплоэлектроцентрали (ТЭЦ), производящие кроме электрической тепловую энергию в виде горячей воды и пара. Крупные КЭС районного значения получили название государственных районных электростанций (ГРЭС).

Простейшая принципиальная схема КЭС, работающей на угле, представлена на рис. Уголь подается в топливный бункер 1, а из него - в дробильную установку 2, где превращается в пыль. Угольная пыль поступает в топку парогенератора (парового котла) 3, имеющего систему трубок, в которых циркулирует химически очищенная вода, называемая питательной. В котле вода нагревается, испаряется, а образовавшийся насыщенный пар доводится до температуры 400-650°С и под давлением 3-24 МПа поступает по паропроводу в паровую турбину 4. Параметры пара зависят от мощности агрегатов.

Тепловые конденсационные электростанции имеют невысокий кпд (30- 40%), так как большая часть энергии теряется с отходящими топочными газами и охлаждающей водой конденсатора.

Сооружать КЭС выгодно в непосредственной близости от мест добычи топлива. При этом потребители электроэнергии могут находиться на значительном расстоянии от станции.

Теплоэлектроцентраль отличается от конденсационной станции установленной на ней специальной теплофикационной турбиной с отбором пара. На ТЭЦ одна часть пара полностью используется в турбине для выработки электроэнергии в генераторе 5 и затем поступает в конденсатор 6, а другая, имеющая большую температуру и давление (на рис. штриховая линия), отбирается от промежуточной ступени турбины и используется для теплоснабжения. Конденсат насосом 7 через деаэратор 8 и далее питательным насосом 9 подается в парогенератор. Количество отбираемого пара зависит от потребности предприятий в тепловой энергии.

Коэффициент полезного действия ТЭЦ достигает 60-70%.

Такие станции строят обычно вблизи потребителей - промышленных предприятий или жилых массивов. Чаще всего они работают на привозном топливе.

Рассмотренные тепловые электростанции по виду основного теплового агрегата - паровой турбины - относятся к паротурбинным станциям. Значительно меньшее распространение получили тепловые станции с газотурбинными (ГТУ), парогазовыми (ПГУ) и дизельными установками.

Наиболее экономичными являются крупные тепловые паротурбинные электростанции (сокращенно ТЭС). Большинство ТЭС нашей страны используют в качестве топлива угольную пыль. Для выработки 1 кВт-ч электроэнергии затрачивается несколько сот граммов угля. В паровом котле свыше 90% выделяемой топливом энергии передается пару. В турбине кинетическая энергия струй пара передается ротору. Вал турбины жестко соединен с валом генератора.

Современные паровые турбины для ТЭС - весьма совершенные, быстроходные, высокоэкономичные машины с большим ресурсом работы. Их мощность в одновальном исполнении достигает 1 млн. 200 тыс. кВт, и это не является пределом. Такие машины всегда бывают многоступенчатыми, т. е. имеют обычно несколько десятков дисков с рабочими лопатками и такое же

количество, перед каждым диском, групп сопел, через которые протекает струя пара. Давление и температура пара постепенно снижаются.

Из курса физики известно, что КПД тепловых двигателей увеличивается с ростом начальной температуры рабочего тела. Поэтому поступающий в турбину пар доводят до высоких параметров: температуру - почти до 550 °С и давление - до 25 МПа. Коэффициент полезного действия ТЭС достигает 40%. Большая часть энергии теряется вместе с горячим отработанным паром.

По мнению ученых в основе энергетики ближайшего будущего по-прежнему останется теплоэнергетика на не возобновляемых ресурсах. Но структура ее изменится. Должно сократиться использование нефти. Существенно возрастет производство электроэнергии на атомных электростанциях. Начнется использование пока еще не тронутых гигантских запасов дешевых углей, например, в Кузнецком, Канско-Ачинском, Экибаcтузском бассейнах. Широко будет применяться природный газ, запасы которого в стране намного превосходят запасы в других странах.

К сожалению, запасы нефти, газа, угля отнюдь не бесконечны. Природе, чтобы создать эти запасы, потребовались миллионы лет, израсходованы они будут за сотни лет. Сегодня в мире стали всерьез задумываться над тем, как не допустить хищнического разграбления земных богатств. Ведь лишь при этом условии запасов топлива может хватить на века.

2.2 Гидроэлектростанции

Гидроэлектрическая станция, гидроэлектростанция (ГЭС),комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание напора, и энергетического. оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения которая, в свою очередь, преобразуется в электрическую энергию. Напор ГЭС создается концентрацией падения реки на используемом участке плотиной (рис. 1), либо деривацией (рис. 2), либо плотиной и деривацией совместно (рис. 3). Основное энергетическое оборудование ГЭС размещается в здании ГЭС: в машинном зале электростанции - гидроагрегаты, вспомогательное оборудование, устройства автоматического управления и контроля; в центральном посту управления - пульт оператора-диспетчера или автооператор гидроэлектростанции. Повышающая трансформаторная подстанция размещается как внутри здания ГЭС, так и в отдельных зданиях или на открытых площадках. Распределительные устройства зачастую располагаются на открытой площадке. Здание ГЭС может быть разделено на секции с одним или несколькими агрегатами и вспомогательным оборудованием, отделённые от смежных частей здания. При здании ГЭС или внутри него создаётся монтажная площадка для сборки и ремонта различного оборудования и для вспомогательных операций по обслуживанию ГЭС.

По установленной мощности (в Мвт) различают ГЭС мощные (св. 250), средние (до 25) и малые (до 5). Мощность ГЭС зависит от напора На (разности уровней верхнего и нижнего бьефа), расхода воды, используемого в гидротурбинах, и кпд гидроагрегата. По ряду причин (вследствие, например сезонных изменений уровня воды в водоёмах, непостоянства нагрузки энергосистемы, ремонта гидроагрегатов или гидротехнических сооружений и т. п.) напор и расход воды непрерывно меняются, а кроме того, меняется расход при регулировании мощности ГЭС. Различают годичный, недельный и суточный циклы режима работы ГЭС.

По максимально используемому напору ГЭС делятся на высоконапорные (более 60 м), средненапорные (от 25 до 60 м) и низконапорные (от 3 до 25 м). На равнинных реках напоры редко превышают 100 м, в горных условиях посредством плотины можно создавать напоры до 300 м и более, а с помощью деривации - до 1500 м. Классификация по напору приблизительно соответствует типам применяемого энергетического оборудования: на высоконапорных ГЭС применяют ковшовые и радиально-осевые турбины с металлическими спиральными камерами; на средненапорных - поворотнолопастные и радиально-осевые турбины с железобетонными и металлическими спиральными камерами, на низконапорных - поворотнолопастные турбины в железобетонных спиральных камерах, иногда горизонтальные турбины в капсулах или в открытых камерах. Подразделение ГЭС по используемому напору имеет приблизительный, условный характер.

По схеме использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют на русловые, приплотинные, деривационные с напорной и безнапорной деривацией, смешанные, гидроаккумулирующие и приливные. В русловых и приплотинных ГЭС напор воды создаётся плотиной, перегораживающей реку и поднимающей уровень воды в верхнем бьефе. При этом неизбежно некоторое затопление долины реки. В случае сооружения двух плотин на том же участке реки площадь затопления уменьшается. На равнинных реках наибольшая экономически допустимая площадь затопления ограничивает высоту плотины. Русловые и приплотинныс ГЭС строят и на равнинных многоводных реках и на горных реках, в узких сжатых долинах.

В состав сооружений русловой ГЭС, кроме плотины, входят здание ГЭС и водосбросные сооружения (рис. 4). Состав гидротехнических сооружений зависит от высоты напора и установленной мощности. У русловой ГЭС здание с размещенными в нём гидроагрегатами служит продолжением плотины и вместе с ней создаёт напорный фронт. При этом с одной стороны к зданию ГЭС примыкает верхний бьеф, а с другой - нижний бьеф. Подводящие спиральные камеры гидротурбин своими входными сечениями закладываются под уровнем верхнего бьефа, выходные же сечения отсасывающих труб погружены под уровнем нижнего бьефа.

Краткое описание

Более чем за 100 лет своего развития российская система теплофикации (когенерации) и централизованного теплоснабжения (ЦТ) стала самой большой в мире. Под теплофикацией понимается процесс централизованного обеспечения потребителей тепловой энергией, полученной на ТЭЦ по комбинированному способу выработки тепловой и электрической энергии. Под ЦТ понимается теплоснабжение потребителей от источников тепла через общую тепловую сеть. Теплофикация занимает весомое место в энергетическом комплексе страны. Более половины электрической мощности всех тепловых электростанций

Баланс производства тепловой энергии в 2002 г. в Российской Федерации показан на диаграмме рис.1.

Рисунок 1.

Годовое теплопотребление жилищного фонда, объектов социального и коммунального назначения в 2003 г. составило порядка 2933 млн. ГДж (700 млн. Гкал).

Главным потребителем тепловой энергии в этом секторе ЖКХ является жилищный фонд - порядка 2095 млн. ГДж (500 млн. Гкал) в год или 71 % общего потребления.

Тепловая нагрузка системы теплоснабжения (тепловая нагрузка) - это суммарное количество теплоты, получаемой от источников теплоты, равное сумме теплопотреблений приемников теплоты и потерь в тепловых сетях в единицу времени.

Основными производителями и поставщиками тепловой энергии в ЖКХ являются специализированные предприятия коммунальной энергетики, находящиеся в ведении муниципалитетов и исполнительных органов власти субъектов регионов Российской Федерации. Предприятия коммунальной энергетики в 2003 г. обеспечивали отпуск порядка 2220 млн. ГДж (530 млн. Гкал) в год, что составило 64 % общей потребности жилищно-коммунальной и социальной сфер. Остальная часть тепловой энергии поставляется региональными акционерными обществами энергетики и электрификации, а также другими предприятиями и организациями министерств, ведомств, концернов, объединений.

Порядка 1477 млн. ГДж (352,4 млн. Гкал) в год предприятия коммунальной энергетики вырабатывают на собственных теплоисточниках (котельных) и около 964 млн. ГДж (230 млн. Гкал) покупают у других производителей с последующей передачей ее абонентам - потребителям по коммунальным распределительным

тепловым сетям.

Абонент (потребитель) - юридическое лицо, а также предприниматель без образования юридического лица, имеющие в собственности или на ином законном основании объекты и системы теплопотребления, которые непосредственно присоединены к системам коммунального теплоснабжения, заключившие с теплоснабжающей организацией в установленном порядке договор на отпуск (получение) тепловой энергии и (или) теплоносителей.

Объемы и структура производства тепловой энергии на источниках теплоты для теплоснабжения ЖКХ и объектов социальной сферы представлены в табл. 1. Основную технологическую структуру коммунального теплоснабжения формируют собственные домовые и групповые котельные (ГрКУ), квартальные (КТС) и районные (городские) тепловые станции (РТС) с тепловыми сетями от них, распределительные сети, а также многочисленные теплопотребляющие (абонентские) установки.

Таблица 1. Структура производства тепловой энергии

Источник теплоснабжения мощностью, МВт (Гкал/ч)

Производство тепловой энергии

Количество произведенной тепловой энергии, млн. ГДж (млн. Гкал)

Доля в общем объеме производства, %

Домовые котельные - до 3,5 (3)

Групповые котельные (ГрКУ) - от 3,5 до 23,3 (3-20)

Квартальные котельные (КТС) - от 23,3 до 116 (20-100)

Районные котельные (РТС) - более 116 (более 100)

Общий годовой расход топлива на производство тепловой энергии для ЖКК и объектов социальной сферы составляет порядка 150 млн. т условного топлива, в том числе в коммунальных котельных - 66 млн. т условного топлива. Структура производства тепловой энергии в коммунальных котельных по видам используемого топлива представлена в таблице 2.

Таблица 2. Структура производства тепловой энергии в коммунальных котельных по видам используемого топлива

Вид топлива

Число котельных, тыс. ед.

Произведено теплоты, млн. ГДж, (млн. Гкал)

Доля в общем производстве, %

Газообразное

Как следует из таблиц 1, 2, половина от общего числа котельных ЖКХ - 22,4 тыс. единиц, работают на твердом топливе и вырабатывают почти 35 % всей тепловой энергии, потребляемой жилищным фондом, оказывая значительную нагрузку (давление) на природную среду обитания людей. Здесь кроется существенный резерв для экологического оздоровления жилых микрорайонов путем замены многих мелких котельных централизованными источниками теплоснабжения или перевода их на экологически более «чистые» виды топлива - газовое, жидкое котельно-печное, а также нетрадиционные возобновляемые энергоресурсы (например, энергия солнца, волны, ветра, геотермальных источников и т.д.).

Решением Правительства РФ сельские системы теплоснабжения должны быть переданы на баланс и в эксплуатацию муниципальным образованиям местных администраций. Эта работа продолжается, и количество установок ЖКХ возрастает.

Представленные на сайте комментарии юристов носят ознакомительный характер. В них могут отсутствовать конкретные ответы на интересующие вас вопросы. С момента публикации могло измениться законодательство и поэтому комментарии могли перестать быть актуальными.

Свяжитесь с нами - для получения консультаций по действующему законодательству, проведения экспертизы вашей ситуации, разработки проектов необходимых юридических документов, защиты ваших интересов в арбитражном суде или иной юридической помощи.

Контакты размещены в правом верхнем углу сайта и на странице «Контакты ».

Мы оказываем юридические услуги только компаниям.

Что такое теплоснабжение и каковы субъекты теплоснабжения?

Теплоснабжение – это обеспечение потребителей тепловой энергии тепловой энергией, теплоносителем, в том числе поддержание мощности.

Тепловая энергия – это энергетический ресурс, при потреблении которого изменяются термодинамические параметры теплоносителей (температура, давление).

Субъектами теплоснабжения являются потребитель тепловой энергии, теплоснабжающая организация, теплосетевая организация, единая теплоснабжающая организация.

Единая теплоснабжающая организация в системе теплоснабжения (далее - единая теплоснабжающая организация) - теплоснабжающая организация, которая определяется в схеме теплоснабжения федеральным органом исполнительной власти, уполномоченным Правительством Российской Федерации на реализацию государственной политики в сфере теплоснабжения, или органом местного самоуправления на основании критериев и в порядке, которые установлены правилами организации теплоснабжения, утвержденными Правительством Российской Федерации.

Теплоснабжающая организация - организация, осуществляющая продажу потребителям и (или) теплоснабжающим организациям произведенных или приобретенных тепловой энергии (мощности), теплоносителя и владеющая на праве собственности или ином законном основании источниками тепловой энергии и (или) тепловыми сетями в системе теплоснабжения, посредством которой осуществляется теплоснабжение потребителей тепловой энергии.

Потребитель тепловой энергии - лицо, приобретающее тепловую энергию (мощность), теплоноситель для использования на принадлежащих ему на праве собственности или ином законном основании теплопотребляющих установках либо для оказания коммунальных услуг в части горячего водоснабжения и отопления.

Теплосетевая организация - организация, оказывающая услуги по передаче тепловой энергии.

Что такое Единая теплоснабжающая организация?

Единая теплоснабжающая организация в системе теплоснабжения (далее - единая теплоснабжающая организация) – это теплоснабжающая организация, которая определяется в схеме теплоснабжения федеральным органом исполнительной власти, уполномоченным Правительством Российской Федерации на реализацию государственной политики в сфере теплоснабжения, или органом местного самоуправления на основании критериев и в порядке, которые установлены правилами организации теплоснабжения.

К полномочиям федерального органа исполнительной власти, уполномоченного на реализацию государственной политики в сфере теплоснабжения, относятся утверждение схем теплоснабжения поселений, городских округов с численностью населения пятьсот тысяч человек и более, а также городов федерального значения, в том числе определение единой теплоснабжающей организации.

К полномочиям органов местного самоуправления поселений, городских округов по организации теплоснабжения на соответствующих территориях относится утверждение схем теплоснабжения поселений, городских округов с численностью населения менее пятисот тысяч человек, в том числе определение единой теплоснабжающей организации.

В системе теплоснабжения определенная схемой теплоснабжения единая теплоснабжающая организация обязана заключить договор теплоснабжения с любым обратившимся потребителем тепловой энергии, теплопотребляющие установки которого находятся в данной системе теплоснабжения.

Единая теплоснабжающая организация обязана заключить договоры поставки тепловой энергии (мощности) и (или) теплоносителя в отношении объема тепловой нагрузки, распределенной в соответствии со схемой теплоснабжения.

Единая теплоснабжающая организация обязана заключить договоры оказания услуг по передаче тепловой энергии и (или) теплоносителя в объеме, необходимом для обеспечения теплоснабжения потребителей тепловой энергии с учетом потерь тепловой энергии, теплоносителя при их передаче.

Договор теплоснабжения является публичным для единой теплоснабжающей организации.

Единая теплоснабжающая организация не вправе отказать потребителю тепловой энергии в заключении договора теплоснабжения при условии соблюдения указанным потребителем выданных ему технических условий подключения (технологического присоединения) к тепловым сетям принадлежащих ему объектов капитального строительства.

Отношения теплоснабжающих организаций и потребителей тепловой энергии

Потребители тепловой энергии приобретают тепловую энергию (мощность) и (или) теплоноситель у теплоснабжающей организации по договору теплоснабжения.

Потребители, подключенные (технологически присоединенные) к системе теплоснабжения, заключают с теплоснабжающими организациями договоры теплоснабжения и приобретают тепловую энергию (мощность) и (или) теплоноситель по регулируемым ценам (тарифам) или по ценам, определяемым соглашением сторон договора теплоснабжения.

Определенная схемой теплоснабжения единая теплоснабжающая организация обязана заключить договор теплоснабжения с любым обратившимся потребителем тепловой энергии, теплопотребляющие установки которого находятся в данной системе теплоснабжения.

Лицо, владеющее на праве собственности источниками тепловой энергии, имеет право заключать долгосрочные договоры теплоснабжения с потребителями.

Лицо, владеющее на праве собственности или ином законном основании источниками тепловой энергии, имеет право заключать договоры теплоснабжения с потребителями в случаях, установленных правилами организации теплоснабжения, утвержденными Правительством Российской Федерации.

Единая теплоснабжающая организация и теплоснабжающие организации, владеющие на праве собственности или ином законном основании источниками тепловой энергии и (или) тепловыми сетями в системе теплоснабжения, обязаны заключить договоры поставки тепловой энергии (мощности) и (или) теплоносителя в отношении объема тепловой нагрузки, распределенной в соответствии со схемой теплоснабжения.

Каковы существенные условия договора теплоснабжения?

Договор теплоснабжения является публичным для единой теплоснабжающей организации. Единая теплоснабжающая организация не вправе отказать потребителю тепловой энергии в заключении договора теплоснабжения при условии соблюдения указанным потребителем выданных ему в соответствии с законодательством о градостроительной деятельности технических условий подключения (технологического присоединения) к тепловым сетям принадлежащих ему объектов капитального строительства (далее - технические условия).

Условия договора теплоснабжения должны соответствовать техническим условиям. Договор теплоснабжения должен содержать следующие существенные условия:

    договорный объем тепловой энергии и (или) теплоносителя, поставляемый теплоснабжающей организацией и приобретаемый потребителем;

    величина тепловой нагрузки теплопотребляющих установок потребителя тепловой энергии с указанием тепловой нагрузки по каждому объекту и видам теплопотребления (на отопление, вентиляцию, кондиционирование, осуществление технологических процессов, горячее водоснабжение), а также параметры качества теплоснабжения, режим потребления тепловой энергии (мощности) и (или) теплоносителя;

    сведения об уполномоченных должностных лицах сторон, ответственных за выполнение условий договора;

    ответственность сторон за несоблюдение требований к параметрам качества теплоснабжения, нарушение режима потребления тепловой энергии и (или) теплоносителя, в том числе ответственность за нарушение условий о количестве, качестве и значениях термодинамических параметров возвращаемого теплоносителя, конденсата;

    ответственность потребителей за неисполнение или ненадлежащее исполнение обязательств по оплате тепловой энергии (мощности) и (или) теплоносителя, в том числе обязательств по их предварительной оплате, если такое условие предусмотрено договором;

    обязательства теплоснабжающей организации по обеспечению надежности теплоснабжения в соответствии с требованиями технических регламентов, иными обязательными требованиями по обеспечению надежности теплоснабжения и требованиями настоящих Правил, а также соответствующие обязательства потребителя тепловой энергии;

    порядок расчетов по договору;

    порядок осуществления учета потребляемой тепловой энергии и (или) теплоносителя;

    объем тепловых потерь тепловой энергии (теплоносителя) в тепловых сетях заявителя от границы балансовой принадлежности до точки учета;

    объем (величина) допустимого ограничения теплоснабжения по каждому виду на-грузок (на отопление, вентиляцию, кондиционирование, осуществление технологических процессов, горячее водоснабжение).

К договору теплоснабжения прилагаются акт разграничения балансовой принадлежности тепловых сетей и акт разграничения эксплуатационной ответственности сторон.

Условия договора теплоснабжения не должны противоречить документам на подключение теплопотребляющих установок потребителя.

Какие документы необходимы для заключения договора теплоснабжения?

Для заключения договора теплоснабжения с единой теплоснабжающей организацией заявитель направляет единой теплоснабжающей организации заявку на заключение договора теплоснабжения, содержащую следующие сведения:

    полное наименование организации (фамилия, имя, отчество) заявителя;

    место нахождения организации (место жительства физического лица);

    место нахождения теплопотребляющих установок и место их подключения к системе теплоснабжения (тепловой ввод);

    тепловая нагрузка теплопотребляющих установок по каждой теплопотребляющей установке и видам тепловой нагрузки (отопление, кондиционирование, вентиляция, осуществление технологических процессов, горячее водоснабжение), подтвержденная технической или проектной документацией;

    договорный объем потребления тепловой энергии и (или) теплоносителя в течение срока действия договора или в течение 1-го года действия договора, если договор заключается на срок более 1 года;

    срок действия договора;

    сведения о предполагаемом режиме потребления тепловой энергии;

    сведения об уполномоченных должностных лицах заявителя, ответственных за выполнение условий договора (за исключением граждан-потребителей);

    расчет объема тепловых потерь тепловой энергии (теплоносителя) в тепловых сетях заявителя от границы балансовой принадлежности до точки учета, подтвержденный технической или проектной документацией;

    банковские реквизиты;

    сведения об имеющихся приборах учета тепловой энергии, теплоносителя и их технические характеристики.

К заявке на заключение договора теплоснабжения прилагаются следующие документы:

    удостоверенные в установленном порядке копии правоустанавливающих документов (в том числе свидетельство о государственной регистрации прав на недвижимое имущество и сделок с ним), подтверждающих право собственности и (или) иное законное право потребителя в отношении объектов недвижимости (здания, строения, сооружения), в которых расположены теплопотребляющие установки (при наличии);

    договор управления многоквартирным домом (для управляющих организаций);

    устав товарищества собственников жилья, жилищного кооператива или иного специализированного потребительского кооператива;

    документы, подтверждающие подключение теплопотребляющих установок заявителя к системе теплоснабжения;

    разрешение на ввод в эксплуатацию (в отношении объектов капитального строительства, для которых законодательством о градостроительной деятельности предусмотрено получение разрешения на ввод в эксплуатацию), разрешение на допуск в эксплуатацию энергоустановки (для теплопотребляющих установок с тепловой нагрузкой 0,05 Гкал/час и более, не являющихся объектами капитального строительства, для которых законодательством о градостроительной деятельности предусмотрено получение разрешения на ввод в эксплуатацию), выданное органом государственного энергетического надзора;

    акты готовности таких теплопотребляющих установок к отопительному периоду, составленные в установленном законодательством Российской Федерации порядке.

Отметим, что в качестве документов, подтверждающих подключение теплопотребляющих установок заявителя в установленном порядке к системе теплоснабжения, используются выданные акты о подключении, присоединении, технические условия с отметкой об их исполнении, наряды-допуски теплоснабжающих организаций.

Какова процедура заключения договора теплоснабжения?

Для заключения договора теплоснабжения с единой теплоснабжающей организацией заявитель направляет единой теплоснабжающей организации заявку на заключение договора теплоснабжения.

В случае отсутствия в заявке сведений или документов, необходимых для заключения договора теплоснабжения, единая теплоснабжающая организация обязана в течение 3 рабочих дней со дня получения таких документов направить заявителю предложение о представлении недостающих сведений и (или) документов. Необходимые сведения и документы должны быть представлены в течение 10 рабочих дней. Датой поступления заявки считается дата представления сведений и документов в полном объеме.

Единая теплоснабжающая организация обязана в течение 10 рабочих дней с момента получения надлежаще оформленной заявки и необходимых документов направить заявителю 2 экземпляра подписанного проекта договора.

Заявитель в течение 10 рабочих дней со дня поступления проекта договора обязан подписать договор и 1 экземпляр договора направить единой теплоснабжающей организации.

В случае непредставления заявителем сведений или документов, необходимых для заключения договора теплоснабжения, или несоответствия заявки условиям подключения к тепловым сетям единая теплоснабжающая организация обязана по истечении 30 дней со дня направления заявителю предложения о представлении необходимых сведений и документов в письменной форме уведомить заявителя об отказе в заключении договора теплоснабжения с указанием причин такого отказа.

Договор теплоснабжения, заключенный на определенный срок, считается продленным на тот же срок и на тех же условиях, если за месяц до окончания срока его действия ни одна из сторон не заявит о его прекращении либо о заключении договора на иных условиях.

Как определяется стоимость тепловой энергии (мощности) и (или) теплоносителя для юридических лиц?

Следует отметить, что оплата тепловой энергии (мощности) и (или) теплоносителя осуществляется в соответствии с тарифами, установленными органом регулирования, или ценами, определяемыми соглашением сторон, в случаях, предусмотренных законодательством.

Тарифы на тепловую энергию (мощность), поставляемую потребителям, могут устанавливаться органом регулирования в виде одноставочного или двухставочного тарифа.

Тарифы на теплоноситель устанавливаются органом регулирования в виде одноставочного тарифа.

Тарифы на тепловую энергию (мощность), тариф на теплоноситель могут быть диф-ференцированы в зависимости от вида или параметров теплоносителя, зон дальности пере-дачи тепловой энергии, иных критериев, которые определены основами ценообразования в сфере теплоснабжения.

Установление тарифов в сфере теплоснабжения осуществляется в целях необходимости обеспечения единых тарифов для потребителей тепловой энергии (мощности), тепло-носителя, находящихся в одной зоне деятельности единой теплоснабжающей организации и относящихся к одной категории потребителей, для которых законодательством Российской Федерации предусмотрена дифференциация тарифов на тепловую энергию (мощность), теплоноситель, за исключением потребителей, которые заключили:

    договоры теплоснабжения и (или) договоры поставки тепловой энергии (мощности), теплоносителя по ценам, определенным соглашением сторон в отношении объема та-ких поставок;

    долгосрочные договоры теплоснабжения и (или) договоры поставки тепловой энергии (мощности), теплоносителя с применением долгосрочных тарифов в отношении объема таких поставок.

Потребители оплачивают тепловую энергию (мощность) и (или) теплоноситель теплоснабжающей организации по тарифу, установленному органом исполнительной власти субъекта Российской Федерации в области государственного регулирования тарифов для данной категории потребителей, и (или) по ценам, определяемым по соглашению сторон в случаях, установленных Федеральным законом "О теплоснабжении", за потребленный объем тепловой энергии (мощности) и (или) теплоносителя в следующем порядке, если иное не установлено договором теплоснабжения:

    35 процентов плановой общей стоимости тепловой энергии (мощности) и (или) теплоносителя, потребляемой в месяце, за который осуществляется оплата, вносится до 18-го числа текущего месяца, и 50 процентов плановой общей стоимости тепловой энергии (мощности) и (или) теплоносителя, потребляемой в месяце, за который осуществляется оплата, вносится до истечения последнего числа текущего месяца;

    оплата за фактически потребленную в истекшем месяце тепловую энергию (мощность) и (или) теплоноситель с учетом средств, ранее внесенных потребителем в качестве оплаты за тепловую энергию в расчетном периоде, осуществляется до 10-го числа месяца, следующего за месяцем, за который осуществляется оплата. В случае если объем фактического потребления тепловой энергии и (или) теплоносителя за истекший месяц меньше договорного объема, определенного договором теплоснабжения, излишне уплаченная сумма засчитывается в счет предстоящего платежа за следующий месяц.

Правительство Российской Федерации устанавливает критерии, при соответствии которым у потребителей тепловой энергии, теплоснабжающих организаций возникает обязанность предоставления обеспечения исполнения обязательств по оплате тепловой энергии (мощности) и (или) теплоносителя, поставляемых по договорам теплоснабжения, договорам теплоснабжения и поставки горячей воды, договорам поставки тепловой энергии (мощности) и (или) теплоносителя, заключенным с едиными теплоснабжающими организациями. При установлении данных критериев Правительство Российской Федерации исходит из случаев неисполнения или ненадлежащего исполнения данными потребителями тепловой энергии, теплоснабжающими организациями обязательств по оплате тепловой энергии (мощности) и (или) теплоносителя. При этом не возникает обязанность предоставления обеспечения исполнения обязательств по оплате тепловой энергии (мощности) и (или) теплоносителя у потребителей тепловой энергии, теплоснабжающих организаций, не имеющих неисполненных обязательств по оплате тепловой энергии (мощности) и (или) теплоносителя.

В каких случаях происходит ограничение потребления электроэнергии?

Ограничение и прекращение подачи тепловой энергии потребителям может вводиться в следующих случаях:

    неисполнение или ненадлежащее исполнение потребителем обязательств по оплате тепловой энергии (мощности) и (или) теплоносителя, в том числе обязательств по их предварительной оплате, если такое условие предусмотрено договором, а также нарушение условий договора о количестве, качестве и значениях термодинамических параметров возвращаемого теплоносителя и (или) нарушения режима потребления тепловой энергии, существенно влияющих на теплоснабжение других потребителей в данной системе теплоснабжения, а также в случае несоблюдения установленных техническими регламентами обязательных требований безопасной эксплуатации теплопотребляющих установок;

    прекращение обязательств сторон по договору теплоснабжения;

    выявление фактов бездоговорного потребления тепловой энергии (мощности) и (или) теплоносителя;

    возникновение (угроза возникновения) аварийных ситуаций в системе теплоснабжения;

    наличие обращения потребителя о введении ограничения;

    иные случаи, предусмотренные нормативными правовыми актами Российской Федерации или договором теплоснабжения.

Бездоговорное потребление тепловой энергии – это потребление тепловой энергии, теплоносителя без заключения в установленном порядке договора теплоснабжения, либо потребление тепловой энергии, теплоносителя с использованием теплопотребляющих установок, подключенных (технологически присоединенных) к системе теплоснабжения с нарушением установленного порядка подключения (технологического присоединения), либо потребление тепловой энергии, теплоносителя после введения ограничения подачи тепловой энергии в объеме, превышающем допустимый объем потребления, либо потребление тепловой энергии, теплоносителя после предъявления требования теплоснабжающей организации или теплосетевой организации о введении ограничения подачи тепловой энергии или прекращении потребления тепловой энергии, если введение такого ограничения или такое прекращение должно быть осуществлено потребителем.

Порядок ограничения и прекращения подачи тепловой энергии определяется договором теплоснабжения с учетом положений законодательства.

Структурообразующая роль транспортной системы города

Организация систем водоснабжения и водоотведения

Организация энерго- и теплоснабжения

МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ

ИНФРАСТРУКТУРЫ

ИНЖЕНЕРАЯ и ТРАНСПОРТНАЯ

Важнейшей отраслью городского хозяйства является система энергоснабжения города, к которой относятся теплоснабжающие и электроснабжающие хозяйства.

Система энергоснабжения включает комплекс энергетических установок и сетей, обеспечивающих потребителей в городе тепловой и электрической энергией. Особую сложность для муниципальных властей представляет организация систем теплоснабжения, поскольку требуют значительных капиталовложений в теплотехническое оборудование и тепловые сети, непосредственно влияют на экологическое и санитарное состояние окружающей среды при этом требуют различных вариантов их размещения.

Теплоснабжение - самый энергоемкий и самый энергорасточительный сегмент национальной экономики. Поскольку главным потребителем тепловой энергии является население, теплоснабжение является социально-значимым сектором энергетического комплекса РФ. Цель теплоснабжения – удовлетворение потребностей населения в услугах отопления, горячего водоснабжения и вентиляции.

При организации системы теплоснабжения города необходимо учитывать классификацию этих систем по признакам:

1. источнику приготовления тепла (высокоорганизованное централизованное теплоснабжение на базе комбинированной выработки тепла и электроэнергии на ТЭЦ – теплофикация);

2. степени централизации ;

3. роду теплоносителя различают водяные (для снабжения тепловой энергией сезонных потребителей и для горячего водоснабжения) и паровые системы теплоснабжения (для технологических процессов);

4.способу подачи воды на горячее водоснабжение и отопление делятся на закрытые и открытые. Первые используют воду из тепловых сетей как греющую среду для нагревания в подогревателях поверхностного типа водопроводной воды, поступающей затем в местную систему горячего водоснабжения. Вторые горячую воду к водоразборным приборам местной системы горячего водоснабжения берут из тепловых сетей.

5. количеству трубопроводов тепловых сетей различают системы теплоснабжения однотрубные, двухтрубные и многотрубные.;

Современная централизованная система теплоснабжения состоит из следующих элементов:

Для организации централизованного теплоснабжения используется два типа источников тепла: теплоэлектроцентрали (ТЭЦ), районные котельные (РК) различной мощности.

Районные котельные большей мощности сооружают для обеспечения теплом крупного комплекса зданий, нескольких микрорайонов или района города. Тепловая мощность современных районных котельных составляет 150-200Гкал/час.



Этот вид систем теплоснабжения имеет ряд преимуществ перед теплоснабжением от котельных малой и средней мощности.

1.более высокий коэффициент полезного действия котельной установки;

2. меньшее загрязнение атмосферного воздуха;

3. меньший расход топлива на единицу тепловой мощности;

4. большие возможности механизации и автоматизации;

5. меньший штат обслуживающего персонала и т.д.

Следует учитывать, что ТЭЦ экономически целесообразно сооружать лишь при больших тепловых нагрузках (более 400 Гкал/ч).

На ТЭЦ тепло высокого потенциала используется для выработки электроэнергии, а тепло низкого потенциала – для теплоснабжения. Тепловые сети разделяются на магистральные , прокладываемые на главных направлениях населенного пункта, распределительные – внутри квартала, микрорайона – и ответвления к отдельным зданиям и абонентам.

Схемы тепловых сетей применяют, как правило, лучевые. Во избежание перерывов в снабжении теплом потребителя предусматривают соединение отдельных магистральных сетей между собой, а также устройство перемычек между ответвлениями. В больших городах при наличии нескольких крупных источников тепла сооружают более сложные тепловые сети по кольцевой схеме.

Эксплуатацией систем теплоснабжения и управлением технологическими процессами и теплотехническим оборудованием занимаются в основном специализированные организации – муниципальные унитарные предприятия и акционерные общества.

Основные системные и проблемы функционирования теплоснабжения современных городов:

Значительный физических и моральный износ оборудования систем теплоснабжения;

Высокий уровень потерь в тепловых сетях;

Массовое отсутствие приборов учета тепловой энергии и регуляторов отпуска тепла у жителей;

Несовершенство нормативно-правовой и законодательной базы.

Одной из первостепенных проблем является энергорасточительность и неэкономичность систем централизованного теплоснабжения, вызванного массовым отсутствием приборов учета и регуляторов расхода тепловой энергии потребителей. Так, в жилищной сфере в качестве критерия качества оказания услуги теплоснабжения принимается температура в помещении. Если температура соответствует критерию» не ниже 18 С», то услуга считается оказанной и должна быть оплачена по действующему нормативу. Но температура внутри помещения не может быть использована для оценки количества поставляемого тепла. В разных зданиях для отопления одной и той же площади может расходоваться различное количество тепловой энергии – различия могут составлять до 40-60% только за счет различных тепловых характеристик зданий. Население, как правило, оплачивает отопление и горячую воду не прямо за фактически потребленное тепло, а по нормам расхода, которые устанавливаются органами власти в каждом субъекте Федерации. Тепловая энергия не воспринимается жителями как товар, который нужно покупать. По оценкам экспертов Минэнерго из-за невозможности контролировать реальные объемы поступающего из систем центрального отопления тепла потребители ежегодно переплачивают за недопоставленное им тепло около 114 млрд. руб., в том числе население – около 51 млрд. руб.

Плата населения за тепловую энергию ни как не связана с объемом и качеством услуг теплоснабжения. В результате несоответствия объема и режима поставляемого тепла его необходимому количеству возникает целый ряд негативных последствий, в числе которых:

Население переплачивает за ненужное либо не доставленное ему тепло и в этом случае расходует дополнительные средства на электроэнергию для обогрева квартир;

Завоз лишнего топлива в город перегружает транспортные коммуникации;

Ухудшается экология городов из-за дополнительных выбросов и отходов теплоснабжающих установок.

Теплоснабжение г. Казани

Теплоснабжение города Казани осуществляется: от источников ОАО «ТатЭнерго» и от 126 котельных МУП «Производственное объединение «Казэнерго».

Износ распределительных внутриквартальных сетей отопления и горячего водоснабжения составляет 46%.

Электроснабжение – это процесс обеспечения потребителей электрической энергией.

Муниципальное хозяйство городов является крупным потребителем электроэнергии, и на его долю приходится почти четверть вырабатываемой в стране электрической энергии. В ближайшей перспективе суммарная мощность электробытовых приборов для средней трех-, четырехкомнатной квартиры составит 5 кВт, а с учетом электроплиты, электроводонагревателя и кондиционера – 20 к Вт. В этих условиях особую актуальность приобретают проблемы рациональной организации системы электроснабжения потребителей и повышения эффективности работы электроснабжающих предприятий.

Система электроснабжения – совокупность электроустановок электрических станций (генерирующих мощностей), электрических сетей (включая подстанции и линии электропередач различных типов и напряжений) и приемников электроэнергии, предназначенная для обеспечения потребителей электроэнергией.

В настоящее время на большей части территории ЕЭС России продавцами электроэнергии являются региональные энергосистемы, а также муниципальные (городские и районные) предприятия электрических сетей и подразделения энергосбыта, которые в свою очередь перепродают электроэнергию конечным потребителям.

Основными видами деятельности муниципальных предприятий электроснабжения городов являются :

Покупка, производство, передача, распределение и перепродажа электрической энергии;

Эксплуатация внешних и внутренних систем электроснабжения жилых помещений, объектов соцкультбыта и коммунального хозяйства.

Проектирование, строительство, монтаж, наладка, ремонт оборудования, зданий и сооружений электрических сетей, объектов коммунальной электроэнергетики, электроэнергетического оборудования;

Соблюдение режимов энергосбережения и энергопотребления.

Финансирование производственно-хозяйственной деятельности муниципальных предприятий электроснабжения происходит за счет оплаты потребленной электроэнергии абонентами, а также за счет средств городского бюджета, выделяемых по следующим статьям:

На возмещение разницы между утвержденным тарифом за 1 кВт час электроэнергии и льготным тарифом для населения;

Оплату работ и услуг, финансирования которых осуществляется из бюджета муниципального образования, включая:

Внутридомовое обслуживание жилого фонда;

Уличное освещение города;

Праздничную иллюминацию города;

Проведение капитального и др. видов ремонта внутригородских линий электропередач, трансформаторных подстанций и пр.

Структура электроснабжения г. Казани:

Электроснабжение Казани осуществляется по электрическим сетям

ОАО «Сетевая компания» от: трех казанских ТЭЦ ОАО «Татэнерго», электростанции Закамья: Заинская ГРЭС и Нижнекамской гидроэлектростанцией.

Муниципальных электрических сетей, за исключением сетей наружного освещения и ГорЭлектоТранспорта в городе Казани нет.

Потери электроэнергии

Потребители электроэнергии имеются повсюду. Производиться же она в сравнительно немногих местах, близких к источникам топливо- и гидроресурсов. Электроэнергию не удаётся консервировать в больших масштабах. Она должна быть потреблена сразу же после получения. Поэтому возникает необходимость в передаче электроэнергии на большие расстояния.

Передача энергии связана с заметными потерями. Дело в том, что электрический ток нагревает провода линий электропередачи. В соответствии с законом Джоуля- Ленца энергия, расходуемая на нагрев проводов линии, определяется формулой:,где R-сопротивление линии. При очень большой длине линии передача энергии может стать экономически невыгодной. Значительно снизить сопротивление линии практически весьма трудно. Поэтому приходиться уменьшать силу тока.

Так как мощность тока пропорциональна произведению силы тока на напряжение, то для сохранения передаваемой мощности нужно повысить напряжение в линии передачи. Чем длиннее линия передачи, тем выгоднее использовать более высокое напряжение. Между тем генераторы переменного тока строят на напряжение, не превышающие 16-20кВ.Более высокое напряжение потребовало бы принятия сложных специальных мер для изоляции обмоток и других частей генератора.

Поэтому на крупных электростанциях ставят повышающие трансформаторы. Трансформатор увеличивает напряжение в линии во столько же раз, во сколько уменьшает силу тока.

Для непосредственного использования электроэнергии в двигателях электропривода станков, в осветительной сети и для других целей напряжение на концах линии нужно понизить. Это достигается с помощью понижающих трансформаторов.

Обычно понижение напряжения и соответственно увеличения силы тока происходят в несколько этапов. На каждом этапе напряжение становится всё меньше, а территория, Охватываемая электрической сетью- всё шире.

При очень высоком напряжении между проводами начинается коронный разряд, приводящий к потерям энергии. Допустимая амплитуда переменного напряжения должна быть такой, чтобы при заданной площади поперечного провода потери энергии вследствие коронного разряда были незначительными.

Электрические станции ряда районов страны объединены высоковольтными линиями передач, образуя общую электрическую сеть, к которой присоединены потребители. Такое объединение, называемое энергосистемой, даёт возможность сгладить “пиковые”нагрузки потребления энергии в утренние и вечерние часы. Энергосистема обеспечивает бесперебойность подачи энергии потребителям вне зависимости от места их расположения.

ЭЛЕКТРОЭНЕРГЕТИЧЕСКИЕ СИСТЕМЫ И ЭЛЕКТРИЧЕСКИЕ СЕТИ.

Электрическая часть электростанции включает в себя разнообразное основное и вспомогательное оборудование. К основному оборудованию, предназначенному для производства и распределения электроэнергии, относятся:

  • Синхронные генераторы, вырабатывающие электроэнергию(на ТЭС-турбогенераторы);
  • Сборные шины, предназначенные для приёма электроэнергии от генераторов и распределения её к потребителям;
  • Коммуникационные аппараты- выключатели, предназначенные для включения и отключения цепей в нормальных и аварийных условиях, и разъединители, предназначенные для снятия напряжения с обесточенных частей электроустановок и для создания видимого разрыва цепи;
  • Электроприемники собственных нужд(насосы, вентиляторы, аварийное электрическое освещение и т.д.)

Вспомогательное оборудование предназначено для выполнения функций измерения, сигнализации, защиты и автоматики и т.д.

Энергетическая система(энергосистема) состоит из электрических станций, электрических сетей и потребителей электроэнергии, соединённых между собой и связанных общностью режима в непрерывном процессе производства, распределения и потребления электрической и тепловой энергии при общем управлении этим режимом.

Электроэнергетическая (электрическая) система-это совокупность электрических частей электростанций, электрических сетей и потребителей электроэнергии, связанных общностью режима и непрерывностью процесса производства, распределения и потребления электроэнергии. Электрическая система-часть энергосистемы, за исключением тепловых сетей и тепловых потребителей. Электрическая сеть-совокупность электроустановок для распределения электрической энергии, состоящая из подстанций, распределительных устройств, воздушных и кабельных линий электропередачи. По электрической сети осуществляется распределение электроэнергии от электростанций к потребителям. Линия электропередачи(воздушная или кабельная)-электроустановка, предназначенная для передачи электроэнергии.

В нашей стране применяются стандартные номинальные (междуфазные)напряжения трёхфазного тока частотой 50Гц в диапазоне 6-750кВ,а также напряжения 0,66;0,38кВ.Для генераторов применяют номинальные напряжения 3-21кВ.

Передача электроэнергии от электростанций по линиям электропередачи осуществляется при напряжениях 110-750кВ,т.е.значительно превышающих напряжения генераторов. Электрические подстанции применяются для преобразования

электроэнергии одного напряжения в электроэнергию другого напряжения. Электрическая подстанция-это электроустановка, предназначенная для преобразования и распределения электрической энергии. Подстанции состоят из трансформаторов, сборных шин и коммутационных аппаратов, а также вспомогательного оборудования: устройств релейной защиты и автоматики, измерительных приборов. Подстанции предназначены для связи генераторов и потребителей с линиями электропередачи.

Классификация электрических сетей может осуществляться по роду тока, номинальному напряжению, выполняемым функциям, характеру потребителя, конфигурации схемы сети и т.д.

По роду тока различаются сети переменного и постоянного тока; по напряжению: сверхвысокого напряжения(,высокого напряжения ,низкого напряжения (<1кВ).

По конфигурации схемы сети делятся на замкнутые и разомкнутые.

По выполняемым функциям различаются системообразующие, питающие и распределительные сети. Системообразующие сети напряжением 330-1150кВ осуществляют функции формирования объединённых энергосистем, включающих мощные электростанции, обеспечивают их функционирование как единого объекта управления и одновременно передачу электроэнергии от мощных электростанций. Они же осуществляют системные связи, т.е. связи между энергосистемами очень большой длины. Режимом системообразующих сетей управляет диспетчер объединённого диспетчерского управления(ОДУ).В ОДУ входит несколько районных энергосистем- районных энергетических управлений (РЭУ).

Питающие сети предназначены для передачи электроэнергии от подстанций системообразующей сети и частично от шин 110-220кВ электростанций к центрам питания(ЦП) распределительных сетей- районным подстанциям. Питающие сети обычно замкнутые. Как правило, напряжение этих сетей 110-220кВ,по мере роста плотности нагрузок, мощности станций и протяжённости электрических сетей напряжение иногда достигает 330-550Кв.

Районная подстанция обычно имеет высшее напряжение 110-220кВ и низшее напряжение 6-35кВ.На этой подстанции устанавливают трансформаторы, позволяющие регулировать под нагрузкой напряжение на шинах низшего напряжения.

Распределительная сеть предназначена для передачи электроэнергии на небольшие расстояния от шин низшего напряжения районных подстанций к промышленным, городским, сельским потребителям. Такие распределительные сети обычно разомкнутые. Различают распределительные сети высокого () и низкого(напряжения. В свою очередь по характеру потребителя распределительные сети подразделяются на сети промышленного, городского и сельскохозяйственного назначения. Преимущественное распространение в распределительных сетях имеет напряжение 10кВ,сети 6кВ применяются при наличии на предприятиях значительной нагрузки электродвигателей с номинальным напряжением 6кВ.Напряжение 35кВ широко используется для создания центров питания 6 и 10кВ в основном в сельской местности.

Для электроснабжения больших промышленных предприятий и крупных городов осуществляется глубокий ввод высокого напряжения, т.е. сооружение подстанций с первичным напряжением 110-500кВ вблизи центров нагрузок. Сети внутреннего электроснабжения крупных городов- это сети 110кВ,в отдельных случаях к ним относятся глубокие вводы 220/10кВ.Сети сельскохозяйственного назначения в настоящее время выполняют на напряжение 0,4-110кВ.

Воздушные линии электропередач (ВЛ) предназначены для передачи электроэнергии на расстояние по проводам. Основными конструктивными элементами ВЛ являются провода(служат для передачи электроэнергии),тросы (служат для защиты ВЛ от грозовых перенапряжений),опоры(поддерживают провода и тросы на определённой высоте),изоляторы(изолируют провода опоры),линейная арматура(с её помощью провода закрепляются на изоляторах, а изоляторы на опорах).

Длина линий электропередач в Беларуси (1996г.):750кВ-418км,330кВ-3951км,220кВ-2279км,110кВ-16034км.

Наиболее распространенные провода- алюминиевые, сталеалюминиевые, а также из сплавов алюминия. Силовые кабели состоят из одной или нескольких токопроводящих жил, отделенных друг от друга и от земли изоляцией. Токопроводящие жилы- из алюминия однопроволочные(сечением до 16)или многопроволочные. Кабель с медными жилами применяется во взрывоопасных помещениях.

Изоляция выполняется из специальной пропитанной минеральным маслом кабельной бумаги, накладываемой в виде лент на токопроводящие жилы, а также может быть резиновой или полиэтиленовой. Защитные оболочки, накладываемые поверх изоляции для предохранения ее от влаги и воздуха, бывают свинцовыми, алюминиевыми или поливинилхлоридными. Для защиты от механических повреждений предусмотрена броня из стальных лент или проволок. Между оболочкой и броней- внутренние и внешние защитные покровы.

Внутренний защитный покров(подушка под броней)-джутовая прослойка из хлопчато- бумажной пропитанной пряжи или из кабельной сульфатной бумаги.Наружный защитный покров- из джута, покрытого антикоррозионным составом.

Существенную часть в потреблении электроэнергии составляют потери в сетях(7-9%).

ЭНЕРГЕТИЧЕСКОЕ ХОЗЯЙСТВО ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ И ПОТЕНЦИАЛ ЭНЕРГОСБЕРЕЖЕНИЯ.

В промышленности более 2/3 потенциала энергосбережения находится в сфере потребления наиболее энергоемкими отраслями- химической и нефтехимической, топливной, строительных материалов, лесной, деревообрабатывающей и целлюлозно- бумажной, пищевой и легкой промышленностью.

Значительные резервы экономии ТЭР в этих отраслях обусловлены несовершенством технологических процессов и оборудования, схем энергоснабжения, недостаточным внедрением новых энергосберегающих и безотходных технологий, уровнем утилизации вторичных энергоресурсов, малой единичной мощностью технологических линий и агрегатов, применением неэкономичной осветительной аппаратуры, нерегулируемого электропривода, неэффективной загрузкой энергооборудования, низкой оснащённостью приборами учета, контроля и регулирования технологических и энергетических процессов, недостатками, заложенными при проектировании и строительстве предприятий и отдельных производств, низким уровнем эксплуатации оборудования, зданий и сооружений.

Машиностроение и металлургия. Примерно треть всего используемого в машиностроении котельно-печного топлива идет на нужды литейного, кузнечно-прессового и термического производства. На технологические нужды используется около половины всей потребляемой теплоты и около трети всей электроэнергии. Свыше трети всей электроэнергии идет на механическую обработку. Основными потребителями энергоресурсов в машиностроении являются мартеновские печи, вагранки, плавильные печи, тягодутьевые машины(вентиляторы и дымососы), нагревательные печи, сушилки, прокатные станы, гальваническое оборудование, сварочные агрегаты, прессовое хозяйство.

Причинами малой эффективности использования топлива и энергии в отраслях машиностроения являются низкий технический уровень печного хозяйства, высокая металлоемкость изделий, большие отходы металла при его обработке, незначительный уровень рекуперации сбросной теплоты, нерациональная структура используемых энергоносителей, значительные потери в тепловых и электрических сетях.

Более половины резервов экономии энергоресурсов может быть реализовано в процессе плавки металлов и литейного производства. Остальная экономия связана с совершенствованием процессов металлообработки, в том числе за счет повышения уровня ее автоматизации, расширение использования менее энергоемких по сравнению с металлом пластмасс и других конструкционных материалов.

Наиболее крупными потребителями топлива в отрасли являются доменное и прокатное производство, самыми энергоемкими –ферросплавное, горнорудное, прокатное, электросталеплавильными и кислородное производство, самым теплоемким- коксохимическое производство.

    • Использование эффективных футеровочных и теплоизоляционных материалов а печах, сушилках и теплопроводах;
    • Применение тиристорных преобразователей частоты в процессах индукционного нагрева металла в кузнечном и термическом производстве;
    • Внедрение энергосберегающих лакокрасочных материалов(с пониженной температурой сушки, водоразбавляемых, с повышенным сухим остатком);
    • Снижение энергозатрат при металлообработке(замена процессов горячей штамповки выдавливанием и холодной штамповкой);
    • Применение накатки шестерен вместо изготовления на зубофрезерных станках;
    • Расширение использования методов порошковой металлургии;
    • Применение станков с ЧПУ(числовым програмным управлением),развитие робототехники и гибких производственных структур;
    • Снижение энергоемкости литья за счет уменьшения брака.

Химическая и нефтехимическая промышленность. В этих отраслях промышленности существует разнообразие технологических процессов, при которых потребляется или выделяется большое количество теплоты. Уголь, нефть и газ используются как в качестве топлива, так и в качестве сырья.

Основными направлениями энергосбережения в этих отраслях являются:

    • Применение высокоэффективных процессов горения в технологических печах и аппаратах(установка рекуператоров для подогрева воды);
    • Использование погруженных газовых горелок для замены парового разогрева негорючих жидкостей;
    • Внедрение новой технологии безотходного экологически чистого производства капролактама с получением тепловой энергии в виде пара и горючих газов(ПО "Азот");
    • Повышение эффективности процессов ректификации(оптимизация технологического процесса с использованием тепловых насосов, повышение активности и селективности катализаторов);
    • Совершенствование и укрупнение единичной мощности агрегатов в производстве химических волокон;
    • Снижение потерь топлива и сырья в низкотемпературных процессах;
    • Перепрофилирование производства аммиака на менее энергоемкое производство метанола(ПО "Азот").

Крупным резервом экономии энергоресурсов в нефтехимической промышленности является утилизация вторичных энергетических ресурсов, в том числе внедрение котлов-утилизаторов для производства пара и горячей воды с целью утилизации тепла высокопотенциальных газовых выбросов.

Среди промышленных производств выпуск минеральных удобрений является одним из более энергоемких. Энергетические затраты в себестоимости отдельных видов продукции этой отрасли составляют примерно третью часть. Повышение энергетической эффективности связано с необходимостью разработки принципиально новых видов оборудования для производства минеральных удобрений, основанных на применении современных физических, физико-химических и физико-механических воздействий(акустических, вибрационных, электромагнитных) на технологические процессы, в том числе тепломассообменных аппаратов, фильтров перемешивающих устройств, грануляторов и др.

Производство строительных материалов.

Производство строительных материалов основано на огневых процессах, связанных с расходом значительных количеств мазута, природного газа и кокса, т.е. наиболее ценных топлив. При этом коэффициент полезного использования этих топлив в отрасли не превышает 40%.

Наибольшее количество энергоресурсов внутри отрасли строительных материалов потребляется при производстве цемента. Наиболее энергоемким процессом в производстве цемента является отжиг клинкера(клинкер- обожженная до спекания смесь известняка и глины-сырья для производства цемента).При так называемом мокром способе производства удельный расход энергоресурсов на отжиг клинкера примерно в 1,5 раза выше, чем при сухом способе. Поэтому важным направлением энергосбережения является применение сухого способа производства цемента из переувлажненного сырья.

В производстве бетона энергосберегающими являются производство и внедрение добавок-ускорителей отвердения бетона для перехода на малоэнергоемкую технологию производства сборного железабетона,а также использование теплогенераторов для тепловлажностной обработки железобетона в ямных камерах; в производстве кирпича- внедрение метода вакуумированных автоклавов на кирпичных заводах, внедрение обжиговых печей панельных конструкций в цельнометаллическом корпусе для производства глиняного кирпича.

Необходимы организация выпуска строительных и изоляционных материалов и конструкций, снижающих теплопотери через ограждающие конструкции, и разработка и внедрение системы мероприятий по использованию потенциала местных видов топлив для обжига стеновой керамики.

В стекольной промышленности тепловой КПД пламенных стекловаренных печей(основных потребителей топлива) не превышает 20-25%.Наибольшие энергетические потери происходят через ограждающие конструкции печей(30-40%) и с отходящими газами (30-40%).Главные задачи в области энергосбережения в стекольной промышленности состоят в повышении КПД стекловаренных печей, замещении дефицитных видов органического топлива и в утилизации вторичных тепловых ресурсов.

В лесной и деревообрабатывающей промышленности основными направлениями энергосбережения являются:

    • Внедрение экономичных агрегатов для сушки щепы в производстве древесно-стружечных плит;
    • Разработка и внедрение новых экономичных способов производства бумажных изделий, включая производство нетканных материалов и бумаги с синтетическим волокном;
    • Увеличение производства мебели менее энергоемкими способами с применением новых видов облицовочных материалов вместо ламинирования;
    • Изготовление деталей из древесно- стружечных плит;
    • Утилизация теплоты вентиляционных выбросов и низкопотенциальной теплоты паровоздушных смесей;
    • Разработка и внедрение оборудования по производству и использованию генераторного газа из древесных отходов для получения тепловой и электроэнергии;
    • Переоборудование сушильных камер ПАП-32 с электроэнергии на производство древесных отходов.

Основные направления энергосбережения в легкой промышленности:

    • Совершенствование технологических процессов обжига фарфора;
    • Внедрение теплообменников- утилизаторов, использующих теплоту сушильного агента теплоиспользующего оборудования на предприятиях легкой промышленности.

В сельском хозяйстве около половины экономии энергии может обеспечено в результате внедрения энергосберегающих машин, технологических процессов и оборудования.

Преобладающая доля потенциала энергосбережения приходится на устранение прямого расточительства и повышения экономичности работы сельскохозяйственной техники,сокращение потребления ТЭР животноводческими фермами и тепличными хозяйствами за счет улучшения теплофизических характеристик ограждающих конструкций, утилизации низкопотенциальных ВЭР, оптимизации энергобалансов в сочетании с использованием нетрадиционных источников(биогаза и др.),снижение расходов топлива на сушку зерна, использование экономичных котлов с кипящим слоем вместо электрокотлов, использование отходов (соломы и др.)вместо традиционных видов топлива.

Основные направления энегосбережения в сельском хозяйстве наряду с созданием новой техники следующие:

    • Совершенствование технологии сушки зерна и кормов, методов применения минеральных и органических удобрений;
    • Разработка и внедрение систем использования отходов растениеводства и животноводства в энергетических целях, а также для производства удобрений и кормовых добавок;
    • Использование теплоты вентиляционных выбросов животноводческих помещений для подогрева воды и обогрева помещений дл молодняка(с применением пластинчатых рекуператоров);
    • Обеспечение оптимальных температурных режимов и секционирование системы отопления животноводческих помещений;
    • Применение тепловых насосов в системах теплохладоснабжения и устройств для плавного регулирования работы систем вентиляции, внедрение современных контрольно-измерительных приборов и средств автоматизации, установка приборов учета и контроля энергоресурсов, а также строительство биогазовых установок.

В пищевой промышленности к числу наиболее энергоемких относится производство сахара. Основная экономия энергоресурсов в сахарном производстве может быть достигнута в результате совершенствования технологических схем и целенаправленного внедрения энергосберегающего оборудования, использование низкопотенциальной теплоты вторичных паров выпарных и вакуум- кристаллизационных установок и конденсатов в тепловых схемах.

Энергоемким является также производство спирта. Для снижения расхода теплоты здесь необходимо внедрение ферментативного гидролиза при подготовке крахмала, содержащего сырье к сбраживанию.

Сущность энергосберегающей политики в рассматриваемый период состоит в максимально возможном обеспечении потребности в ТЭР за счет их экономии в промышленности, сельском хозяйстве, коммунально-бытовом секторе и более эффективном использовании в электроэнергетике.

Главные причины неэффективного использования ТЭР в Беларуси обусловлены отсутствием комплексной технической, экономической, нормативно- правовой политики энергосбережения, недостатками проектирования, строительства и эксплуатации, отсутствием технической базы по производству необходимого оборудования, приборов, аппаратуры, средств автоматизации и систем управления.

Потенциал энергосбережения в электроэнергетике формируется за счет широкого развития теплофикации на базе ГТУ и ПГУ, модернизации и реконструкции действующих энергетических объектов, совершенствования технологических схем и оптимизации режимов работы оборудования, повышения эффективности процессов сжигания топлива и их автоматизации, внедрения автоматизированных систем управления.

В коммунально- бытовом секторе формируется за счет улучшения теплофизических характеристик ограждающих конструкций зданий и сооружений, модернизации и повышения уровня эксплуатации мелких котельных, использования более экономичных осветительных приборов, регулируемого электропривода, широкого внедрения приборов учета контроля, регулирования, улучшения содержания зданий и сооружений, повышения экономичности электротранспорта, КПД газовых плит, качества теплоизоляции и др.

ОСНОВНЫЕ ПОТРЕБИТЕЛИ ТЕПЛОВОЙ ЭНЕРГИИ

Основными потребителями тепловой энергии являются промышленные предприятия и жилищно- коммунальное хозяйство.Для большинства производственных потребителей требуется тепловая энергия в виде пара (насыщенного или перегретого) либо горячей воды. Например, для силовых агрегатов, которые имеют в качестве привода паровые машины или турбины(паровые молоты и прессы, ковочные машины, турбонасосы, турбокомпрессоры и т.д.),необходим пар давлением 0,8-3,5МПа и перегретый до 250-450.

Для технологических аппаратов и устройств(разного рода подогреватели, сушилки, выпарные аппараты, химические реакторы) преимущественно требуются насыщенный или слабо перегретый пар давлением 0,3-0,8МПа и вода с температурой 150.

В жилищно-коммунальном хозяйстве основными потребителями теплоты являются системы отопления и вентиляции жилых и общественных зданий, системы горячего водоснабжения и кондиционирования воздуха. В жилых и общественных зданиях температура поверхности отопительных приборов в соответствии с требованиями санитарно- гигиенических норм не должна превышать 95,а температура воды в кранах горячего водоснабжения должна быть не ниже 50-60 в соответствии с требованиями комфортности и не выше 70 по нормам техники безопасности. В связи с этим в системах отопления, вентиляции и горячего водоснабжения в качестве теплоносителя применяется горячая вода.

Системы теплоснабжения.

Системой теплоснабжения называется комплекс устройств по выработке, транспорту и использованию теплоты.

Снабжение теплотой потребителей(систем отопления, вентиляции, горячего водоснабжения и технологических процессов) состоит из трех взаимосвязанных процессов: сообщения теплоты теплоносителю, транспорта теплоносителя и использования теплового потенциала теплоносителя. Системы теплоснабжения классифицируются по следующим основным признакам: мощности, виду источника теплоты и виду теплоносителя. По мощности системы теплоснабжения характеризуются дальностью передачи теплоты и числом потребителей. Они могут быть местными и централизованными. Местные системы теплоснабжения- это системы, в которых три основных звена объединены и находятся в одном или смежных помещениях. При этом получение теплоты и передача ее воздуху помещений объединены в одном устройстве и расположены в отапливаемых помещениях(печи).Централизованные системы, в которых от одного источника теплоты подается теплота для многих помещений.

По виду источника теплоты системы централизованного теплоснабжения разделяют на районное теплоснабжение и теплофикацию. При системе районного теплоснабжения источником теплоты служит районная котельная, теплофикации-ТЭЦ.

Теплоноситель получает теплоту в районной котельной (или ТЭЦ) и по наружным трубопроводам, которые носят название тепловых сетей, поступает в системы отопления, вентиляции промышленных, общественных и жилых зданий. В нагревательных приборах, расположенных внутри зданий, теплоноситель отдает часть аккумулированной в нем теплоты и отводится по специальным трубопроводам обратно к источнику теплоты.

Теплоноситель – среда, которая передает теплоту от источника теплоты к нагревательным приборам систем отопления, вентиляции и горячего водоснабжения.

По виду теплоносителя системы теплоснабжения делятся на 2 группы- водяные и паровые. В водяных системах теплоснабжения теплоносителем служит вода, в паровых- пар. В Беларуси для городов и жилых районов используются водяные системы теплоснабжения. Пар применяется на промышленных площадках для технологических целей.

Системы водяных теплопроводов могут быть однотрубными и двухтрубными(в отдельных случаях многотрубными).Наиболее распространенной является двухтрубная система теплоснабжения(по одной трубе подается горячая вода потребителю, по другой, обратной, охлажденная вода возвращается на ТЭЦ или в котельную).Различают открытую и закрытую системы теплоснабжения. В открытой системе осуществляется "непосредственный водоразбор", т.е. горячая вода из подающей сети разбирается потребителями для хозяйственных, санитарно- гигиенических нужд. При полном использовании горячей воды может быть применена однотрубная система. Для закрытой системы характерно почти полное возвращение сетевой воды на ТЭЦ(или районную котельную).Место присоединения потребителей тепла к теплопроводной сети называется абонентским вводом.

К теплоносителям систем централизованного теплоснабжения предъявляют санитарно- гигиенические (теплоноситель не должен ухудшать санитарные условия в закрытых помещениях- средняя температура поверхности нагревательных приборов не может превышать 70-80), технико-экономические(чтобы стоимость транспортных трубопроводов была наименьшей, масса нагревательных приборов- малой и обеспечивался минимальный расход топлива для нагрева помещений)и эксплуатационные требования (возможность центральной регулировки теплоотдачи систем потребления в связи с переменными температурами наружного воздуха).

Параметры теплоносителей- температура и давление. Вместо давления в практике эксплуатации используется напор Н. Напор и давление связаны зависимостью

где Н- напор, м; Р- давление, Па;- плотность теплоносителя, кг/;g- ускорение свободного падения, м/ в системах централизованного теплоснабжения от котельной или ТЭЦ, а также в системах отопления промышленных зданий.

Тепловые сети

В Беларуси длина тепловых сетей (1996 г.) составляет: основных 794 км, распределительных 1341км.

Основными элементами тепловых сетей являются трубопровод, состоящий из стальных труб, соединенных между собой с помощью сварки, изоляционная конструкция, предназначенная для защиты трубопровода от наружной коррозии и тепловых потерь, и несущая конструкция, воспринимающая вес трубопровода и усилия, возникающие при его эксплуатации.

Наиболее ответственными элементами являются трубы, которые должны быть достаточно прочными и герметичными при максимальных давлениях и температурах теплоносителя, обладать низким коэффициентом температурных деформаций, малой шероховатостью внутренней поверхности, высоким термическим сопротивлением стенок, способствующим сохранению теплоты, неизменностью свойств материала при длительном воздействии высоких температур и давлений.

Тепловая изоляция накладывается на трубопроводы для снижения потерь теплоты при транспортировке теплоносителя. Потери теплоты снижаются при надземной при надземной прокладке в 10-15 раз, а при подземной в 3-5 раз по сравнению с неизолированными трубопроводами. Тепловая изоляция должна обладать достаточной механической прочностью, долговечностью, стойкостью против увлажнения(гидрофобностью), не создавать условий для возникновения коррозии и при этом быть дешевой. Она представлена следующими конструкциями: сегментной, оберточной, набивочной, литой и мастичной. Выбор изоляционной конструкции зависит от способа прокладки теплопровода.

Сегментная изоляция выполняется из ранее изготовленных формованных сегментов различной формы, которые накладываются на трубопровод, обвязываются проволокой, а снаружи покрываются асбоцементной штукатуркой. Сегменты изготавливаются из пенобетона, минеральной ваты, газостекла и др. Оберточная изоляция выполняется из минерального войлока, асбестового термоизоляционного шнура, алюминиевой фольги и асбестовых листовых материалов. Указанными материалами покрывают трубы в один или несколько слоев и крепят бандажами из полосового металла. Оберточные изоляционные материалы используют в основном для изоляции арматуры, компенсаторов, фланцевых соединений. Набивная изоляция применяется в виде чехлов, оболочек, сеток с заполнением порошкообразными, сыпучими и волокнистыми материалами. Для набивки применяется минеральная вата, пенобетонная крошка и др. Литая изоляция используется при прокладках трубопроводов в непроходных каналах и бесканальных прокладках.

В канальных трубопроводах сооружаются из сборных железобетонных элементов. Основное достоинство проходных каналов заключается в возможности доступа к трубопроводу, его ревизии и ремонта без вскрытия грунта. Проходные каналы(коллекторы)сооружаются при наличии большого числа трубопроводов. Оборудуются другими подземными коммуникациями- электрокабелями, водопроводом, газопроводом, телефонными кабелями, вентиляцией, электроосвещением низкого напряжения.

Полу проходные каналы применяются при прокладке небольшого числа труб(2-4) в тех местах, где по условиям эксплуатации недопустимо вскрытие грунта, и при прокладке трубопроводов больших диаметров(800-1400мм.)

Непроходные каналы изготавливают из унифицированных железобетонных элементов. Они представляют собой корытообразный лоток с перекрытием из сборных железобетонных плит. Наружная поверхность стен покрывается рубероидом на битумной мастике. Изоляция- антикоррозийный защитный слой, теплоизоляционный слой(минеральная вата или пеностекло), защитное механическое покрытие в виде металлической сетки или проволоки. Сверху- слой асбоцементной штукатурки.

Литература:

    1. Исаченко В.П., Осипова В.А., Сукомел А.С. Теплопередача.М.:энергоиздат,1981.
    2. Теплотехническое оборудование и теплоснабжение промышленных предприятий/Под ред. Б.Н. Голубкова. М.:Энергия,1979.
    3. Тепловое оборудование и тепловые сети. Г.А. Арсеньев и др. М.: Энергоатомиздат, 1988.
    4. Андрюшенко А.И., Аминов Р.З., Хлебалин Ю.М. Теплофикационные установки и их использование. М. : Высш. школа, 1983.