10.07.2019

Г тагути принципы и методы управления качеством. Методы Тагути: эволюция, концепция и межотраслевое применение. Функция потерь Тагути


График функции потерь Тагути, показанный на рис. 34, - это парабола, имеющая вертикальную ось и минимальное значение, равное нулю, в точке номинального значения показателя качества. Уравнение такой параболы имеет вид:

где х - измеряемое значение показателя качества, Х0 - ее номинальное значение, L(x) - значение функции потерь Тагути в точке х; с - коэффициент масштаба (подбираемый в соответствии с используемой денежной единицей при измерении потерь).

Это наиболее естественная и простая математическая функция, пригодная для представления основных особенностей функции потерь Тагути, рассмотренных в главе 11 (Некоторые статистики смогут обнаружить очевидную аналогию такого выбора для функции потерь Тагути с методом наименьших квадратов.). Конечно, это не означает, что такой ее вид - "наилучший" выбор в каждом конкретном случае ее применения. Отметим, например, тот факт, что вышеприведенная формула предполагает одинаковый уровень потерь при отклонениях от номинала в обе стороны (в конце предшествующей главы мы как раз рассмотрели конкретный случай, когда данное предположение не выполняется). С другой стороны, хотя данная модель часто служит разумным приближением для показателя качества в пределах его допусков и на не слишком большом удалении от границ допуска, она, очевидно, не подходит для больших отклонений от номинального значения. Однако наши процессы не столь уж плохи, чтобы нам требовалось рассматривать такие большие отклонения.

Рис. 36. Представления с помощью функции потерь Тагути подхода к управлению качества на основе границ допусков

Но даже если наша параболическая модель и не вполне "корректна", она, без сомнения, значительно ближе к действительности, чем функция потерь, соответствующая подходу к качеству на основе установления границ допусков, представленная на рис. 36. Последняя модель предполагает, что потери отсутствуют при всех отклонениях от номинала в пределах допусков, но они возникают скачками на границах поля допуска. С учетом обсуждения, проведенного в предшествующей главе, нет необходимости детализировать здесь далее рассмотрение этого вопроса, за исключением следующего аспекта. Припомните наблюдение, сделанное нами в главе 11, об осознании важности допусков, и само собой приходит толкование. В любой системе, будь то механической или бюрократической, которая "спохватывается" только тогда, когда что-либо выходит за границы допусков, - сами такие скоропалительные действия впопыхах оказываются весьма дорогостоящими. Значит, в подобных случаях действительно имеет место резкое увеличение потерь после выхода показателя качества за границы допусков, но эти потери обусловлены самой системой управления, а не возникают в результате отклонений уровня качества самой продукции или услуги.

Ниже мы воспользуемся параболической моделью для более детального изучения понятий и примеров, рассмотренных в главе 11. Поскольку это всего лишь модель, сами конкретные числа, получаемые в ходе расчетов, не так уж важны. Незначительные отличия в числах не будут поэтому рассматриваться как что-то значимое; стратегия, которая дает несколько большие потери, чем какая-то другая стратегия в предположении применимости этой модели, для функции потерь вполне может оказаться более предпочтительной при замене этой модели на другую. Но когда мы обнаруживаем различия на целые порядки, когда, например, потери от одной стратегии в 10, 50 или даже 100 раз больше, чем от другой, то тогда мы можем с полной уверенностью сказать, что различия в стратегиях действительно весьма значительны, даже с учетом того, что параболическая модель всего лишь идеализация.

В качестве дальнейшей идеализации, которая нужна для проведения численных сравнений в данной главе, мы вынуждены предположить, что рассматриваемые здесь процессы будут абсолютно стабильными. Припомните, в главе 4 термин "абсолютно стабильный" предполагает, что статистическое распределение процесса неизменно, не "колеблется", в частности, это означает, что мы можем говорить тогда в терминах истинных значений для среднего и стандартного отклонения, которые мы обозначим (только в данной главе) символами и и о соответственно. (Это, конечно, противоречит важному замечанию Деминга касательно реальных процессов, сделанному им на 334 стр. в "Выходе из кризиса".)

Если процесс абсолютно стабилен и имеет плотность распределения вероятности, тогда средние потери Тагути можно вычислить из:

что соответствует площади под кривой, задаваемой произведением функции потерь L(x) на плотность вероятности f(x). Некоторые очевидные математические преобразования позволяют привести это выражение к виду:

где члены внутри фигурных скобок {...} представляют соответственно квадратичное (стандартное) отклонение (обычно связанное с дисперсией) и квадрат смещения. Следует заметить, что таким образом средние потери Тагути не зависят каким-то сложным образом от f(x); их можно весьма просто вычислить, если известны простые параметры, входящие в последнее выражение. (Важным следствием этого является то, что не надо делать какие-либо предположения относительно вида функции, например, о ее соответствии, близости нормальному (Гауссовому) распределению. Мы, однако, исследовали нормальное распределение для иллюстрации на рис. 37-40, а также в деталях процесса, вычисленных в последних двух примерах данной главы.)

Чтобы облегчить сравнения, давайте также введем обозначение для воспроизводимости процесса. Она определяется в разных компаниях различным образом, но мы будем ее полагать равной: разность между Верхней и Нижней Границами допуска / разность между Верхней и Нижней естественными Границами процесса, где для "Естественных Границ Процесса" мы используем "истинные" границы 3 о для индивидуальных наблюдений, так что знаменатель можно представить просто как 6 о.

Эффективность, равная 1 (единичная воспроизводимость), соответствует процессу, который в большинстве случаев едва-едва укладывается в границы допусков (Например, если процесс точно центрирован, а распределение нормальное, то в среднем одно измерение из почти 400 будет выходить за границы допуска и при этом на весьма незначительную величину.). Процесс иногда называют воспроизводимым и невоспроизводимым в зависимости от того, превосходит ли показатель воспроизводимости единицу или нет. Обычный образ мыслей на Западе - признание значения 1 1/3 как соответствующего исключительно эффективному процессу, а значение 1 1/3 уже, возможно, слишком экстравагантным, т. к. вероятность получения в этом случае измерения за пределами допусков оказывается пренебрежимо малой. Однако заметим, что данные о процессах из японской практики, упоминаемые в главе 11, позволяют оценить их уровень воспроизводимости равными от 3 до 5. И для того, чтобы мера воспроизводимости отражала то, что процесс может давать на самом деле (а не то, на что он потенциально способен), необходимо предположить, что процесс точно настроен (центрирован), т. е. среднее процесса совпадает с номинальным значением х. Мы рассмотрим ниже, что случается, если это предположение не выполняется.

Мы должны выбрать значение масштабного коэффициента с в уравнении для параболы таким образом, чтобы процесс, имеющий воспроизводимость 1 и точно центрированный, имел бы средние потери Тагути равные 100 единицам. Вначале давайте рассмотрим значения средних потерь Тагути для абсолютно стабильного процесса, точно настроенного на номинальное значение ху, но в предположении различной воспроизводимости процесса.

Таблица 1. Абсолютно Стабильный Процесс, Точно Настроенный

Воспроизводимость

Средние потери Тагути

Мы видим, что повышение воспроизводимости от 1/3 до 1 1/3 в самом деле уменьшает средние потери Тагути от половины до трети их значения по сравнению с потерями, соответствующими единичной воспроизводимости. Однако повышение воспроизводимости до 3-5 дает огромные снижения, описываемые в терминах "порядков величин", как мы говорили об этом ранее. Графики средних потерь Тагути, в зависимости от воспроизводимости процессов, для всех примеров, рассматриваемых в данной главе, показаны на рис. 41.

Важность точной настройки (центрирования) процесса можно быстро оценить, сравнивая данные табл. 1 и табл. 2, приводимой ниже. Данные в табл. 2 рассчитаны в предположении, что процесс неточно настроен и центрирован в середине диапазона между номиналом и одним из пределов допуска.

Таблица 2. Абсолютно Стабильный Процесс, центрироваанный посередине между номиналом и одной из границ допуска

Воспроизводимость

Средние потери Тагути

Плохая настройка процесса полностью разрушает все потенциальные преимущества улучшения воспроизводимости. Однако даже при такой плохой настройке процесс, имеющий воспроизводимость 2 и выше, практически не будет давать изделий, выходящих за границы допусков. Поэтому, хотя такой процесс рассматривался бы как безусловно выдающийся с точки зрения удовлетворения заданных допусков, то рассмотренный с позиций функции потерь Тагути он, безусловно, намного хуже по сравнению с точно настроенным процессом, например, для эффективности равной 2, потери в табл. 2 в десять раз превышают потери, приводимые в табл. 1.

Сейчас мы приступаем к рассмотрению двух примеров, описанных в конце предшествующей главы. Сначала обратимся к проблеме износа инструмента. Давайте припомним детали. Процесс первоначально настроен так, чтобы результаты измерений были близки к Верхней Границе допуска (ВГД). Затем износ инструмента будет приводить к постепенному уменьшению значений; когда результаты начинают приближаться к Нижней Границе допуска (НГД), процесс останавливается и инструмент меняется. Отметим здесь, что воспроизводимость рассматриваемого процесса (без учета его дрейфа) должна быть больше 1, чтобы такую схему вообще можно было бы реализовать, иначе возможность для маневрирования вообще бы отсутствовала. Для полноты картины ниже мы рассмотрели также случай, соответствующий единичной воспроизводимости.

Рис. 37. Процесс с дрейфом. Воспроизводимость = 3

На рис. 37 показан случай, когда воспроизводимость процесса равна 3. Для примера мы принимаем значения НГД и ВГД равными 10 и 16 соответственно, а стандартное отклонение о равным 1/3 (если бы о была равна 1, то воспроизводимость процесса тоже была бы равна единице). Первоначально мы настраиваем центр распределения на 15, так что распределение попадает как раз ниже ВГД. Предположим, что среднее процесса с постоянной скоростью смещается вниз, к значению 1, и в этот самый момент мы останавливаем процесс, меняем инструмент и настраиваем его вновь на 15. (Если бы эффективность процесса была 2 вместо 3, т. е. о = 0,5, тогда мы были бы должны первоначально установить центр процесса на 14,5 и позволить ему затем смещаться вниз до 11,5, когда пора заменять инструмент. Этот случай представлен на рис. 38.) Средние потери Тагути для процессов с различной воспроизводимостью, которыми "управляют" таким образом, представлены в табл. 3А. (При этом стоимость замены инструмента в явном виде при расчетах не учитывалась.)

Рис. 38. Процесс с дрейфом. Воспроизводимость = 2

Таблица 3A. Процесс с постоянной скоростью дрейфа. Начинается и останавливается таким образом, чтобы только избежать выхода за границы допуска.

Воспроизводимость

Средние потери Тагути

Однако что за сюрприз! Для малых значений воспроизводимости потери Тагути вначале уменьшаются, но вскоре начинают увеличиваться, так что потери для процесса с воспроизводимостью 5 оказываются более чем в 2 раза большими, чем для процесса с воспроизводимостью, равной 1! По здравому размышлению причина для такого увеличения становится ясной. Когда воспроизводимость процесса велика, его первоначальная настройка дает значения, очень близкие к ВГД, и таким образом он принужден давать изделия с параметрами, сильно отличающимися от номинальных, что соответственно приводит к высоким потерям Тагути. То же самое справедливо, когда процесс уже сместился к НГД в моменты, непосредственно предшествующие смене инструмента. Вследствие квадратичного характера функции потерь ущерб, вызванный этими экстремальными ситуациями, превышает выгоды от получения хороших изделий в моменты, когда процесс находился вблизи номинального значения, на полпути от ВГД к НГД.

Отметим, что полученный вывод находится в прямом противоречии с миром, основанным на использовании модели удовлетворения требованиям допусков. Сама схема организована таким образом, чтобы вне зависимости от того, какова воспроизводимость процесса (коль скоро она превышает 1), не производилось бы продукции, выходящей за границы технических требований. Увеличение показателя эффективности процесса с этой точки зрения имеет то положительное следствие, что процесс может длиться дольше до момента, когда возникает необходимость замены инструмента; однако, как мы теперь видим, эта выгода является ложной с точки зрения потерь Тагути. Средние потери Тагути существенно снизятся, если мы сможем, например, менять инструмент в два раза чаше. Так, для процесса с воспроизводимостью 3 это позволит настроить его первоначально на 14 (а не на 15) и заменить его, когда среднее значение снизится до 12 (а не до 11). Средние потери Тагути будут в этом случае равны 44, вместо 144 - хотя это все еще и близко не подходит к результату, который дает процесс с воспроизводимостью 3 без смещения (в этом случае в соответствии с табл. 1 средние потери Тагути равны 11). В то же время это существенное улучшение по сравнению с тем, что получается, если мы ждем до предела возможного, прежде чем сменить инструмент. Таблица 3В показывает результат в два раза более частой смены инструмента для тех же значений воспроизводимости, что в табл. 3А.

Таблица 3B. Процесс с постоянной скоростью дрейфа. Замена инструмента происходит в два раза чаще, чем в табл. 3A, при этом процесс настраивается как можно ближе к номиналу.

Воспроизводимость

Средние потери Тагути

Стоит ли существенное уменьшение средних потерь Тагути по сравнению с потерями, соответствующими табл. 3A, тех дополнительных затрат, которые возникают из-за в два раза более частой замены инструмента? На этот вопрос должен дать ответ тот, кто руководит системой.

И, наконец, мы подошли к рассмотрению операции обрубки. Вспомним, что среднее процесса было настроено на значение, превышающее номинал в силу той очевидной логики, что легче сделать длинный пруток короче, чем удлинить короткий! Давайте промоделируем этот случай, предположив, что среднее значение процесса обрубки установлено на ВГД, и, если длина прутка оказывается больше, чем верхний допуск, тогда от него отрубается дополнительный отрезочек, равный интервалу допуска (т. е. разности между ВГД и НГД). Конечно же, это опять весьма упрощенная модель, но результат очень интересный и очень хорошо согласуется с той реальной ситуацией, которая послужила поводом для настоящего рассмотрения.

Рис. 39. Операция обрубки. Распределение длин в начальный момент

Рис. 40. Операция обрубки. Распределение после переделки

Проблема, связанная с данной схемой, легко обнаруживается при рассмотрении двух рисунков. Распределение, соответствующее первой обрубке, представлено на рис. 39. После того как сделана повторная обрубка для половины прутков, оказавшихся чересчур длинными, длины оставшихся прутков имеют распределение, показанное на рис. 40.

Таблица 4. Операция обрубки, центрирована на ВГД. Пруток с длиной, большей чем ВГД, дополнительно обрубается на величину, равную ВГД-НГД.

Воспроизводимость

Средние потери Тагути

Отсюда немедленно становится очевидным, почему средние потери Тагути оказываются такими высокими (см. табл. 4). Для большинства прутков их длины оказываются близкими к границам допусков, и лишь для очень малого их числа вообще имеют место случаи, когда их длина оказывается близкой к номиналу. Другими словами, большинство прутков имеют длины, дающие максимальные значения функции потерь из всех возможных значений внутри диапазона допусков. В то же время практически отсутствуют прутки с длинами, дающими малый вклад в среднюю функцию потерь. Так же как и в предшествующем случае, для читателя должно быть очевидно, что это еще один случай, когда увеличение воспроизводимости процесса на самом деле лишь ухудшает положение дел.

Как мы видим, система, которая вполне имеет смысл с точки зрения удовлетворения требованиям допусков, дает абсолютно плачевный результат в терминах функции потерь Тагути.

Как отмечалось ранее, рисунок 41 показывает нам графики зависимостей средних потерь Тагути для всех примеров, которые мы исследовали в данной главе. Бросаются в глаза огромные различия - различия, которые, однако, скрыты от нас, если мы удовлетворяемся только требованиями допусков (спецификаций).

Рис. 41. Графики зависимостей для средних потерь Тагути

Словарь используемых терминов

ГЛОССАРИЙ

Синергия

Синергия - комбинированное воздействие факторов, характеризующееся тем, что их объединённое действие существенно превосходит эффект каждого отдельно взятого компонента и их простой суммы. Положение вещей, обычно передаваемое фразой «целое больше суммы его частей»: 1+1=2х, где х>1.

Эмерджентность

Эмерджентность (англ. emergence - возникновение, появление нового) в теории систем - наличие у какой-либо системы особых свойств, не присущих её подсистемам и блокам, а также сумме элементов, не связанных особыми системообразующими связями; несводимость свойств системы к сумме свойств её компонентов; синоним - «системный эффект».

Аддитивность

Аддитивность - свойство величин по отношению к сложению, состоящее в том, что значение величины, соответствующее целому объекту, равно сумме значений величин, соответствующих его частям, 1+1=2.

Неаддитивность

Неаддитивность - противоположность понятия аддитивности, отношение, при котором целое не определяется его частями, так что оно не может быть познано и объяснено на основе одного лишь знания о его частях (целое больше или меньше суммы его частей) 1+1=2х, где х > или < 1.

"Неспособность руководства понять взаимозависимость между компонентами системы в сочетании с управлением целями приносит большие потери. Усилия различных подразделений компании, выполняющих свою работу, не суммируются - они взаимозависимы. Одно подразделение в стремлении достичь своих целей может «убить» другое подразделение".

Эдвардс Деминг

Вариабельность

Вариабельность – изменчивость, разнообразие, разброс или мера отклонения от "оптимума". Само изменение называют вариацией или вариантом.

Статистическое мышление

Статистическое мышление – это основанный на теории вариабельности способ принятия решений о том, надо или не надо вмешиваться в процесс, и если надо, то на каком уровне.

"Во-первых, если выход процесса определяется влиянием особых причин, то его поведение меняется непредсказуемо и, таким образом, невозможно оценить результат изменений в конструкции, обучении, политике закупок комплектующих и т. д., которые могли бы быть введены менеджментом в этот процесс (или в систему, которая содержит этот процесс) с целью улучшения. Пока процесс находится в неуправляемом состоянии, никто не может предсказать его возможности.

Во-вторых, когда особые причины устранены, так что остаются только общие причины вариаций, тогда улучшения могут зависеть от управляющих воздействий. Поскольку в этом случае наблюдаемые вариации системы определяются тем, как и каким образом, процессы и система были спроектированы и построены, то только управляющий персонал, топ-менеджеры имеют полномочия для изменений системы и процессов.

Ну, и какая разница? И что нам это дает? Да все то, что отделяет успех от неудачи!

В-третьих, мы приходим к проблеме, если мы (на практике) не отличаем один тип изменчивости от другого и действуем без понимания, мы не только не улучшим дело - мы, несомненно, сделаем положение еще худшим. Ясно, что это так и будет, и останется загадкой для тех, кто не понимает природы изменчивости (вариаций)".

Генри Р. Нив

Разумная степень статистической управляемости

"Поскольку контрольные карты предназначены для обнаружения отсутствия статистической управляемости (предсказуемости - Григорьев С.), то постоянное присутствие процесса в пределах установленных границ можно считать показателем статистической управляемости. Если мы, подобно Шухарту, будем рассматривать состояние статистической управляемости как некий идеал, к которому на практике можно лишь приблизиться, то перед нами неминуемо возникнет вопрос о критерии, позволяющем оценить, насколько наш процесс близок к этому идеалу.

Применительно к картам средних значений и размахов процесса, который описывается с помощью подгрупп, состоящих из четырех элементов, Шухарт предложил такой критерий минимальной управляемости: если по меньшей мере 25 последовательных подгрупп не показывают признаков отсутствия статистической управляемости, то такой процесс считается обладающим разумной степенью управляемости.

В своем следующем предложении Шухарт интерпретирует этот минимальный критерий в терминах полного числа присутствующих наблюдений, таким образом, его можно адаптировать так: когда по крайней мере 100 последовательных наблюдений не выявляют потери управляемости, о процессе можно сказать, что он обнаруживает разумную степень статистической управляемости.

Предлагая критерий минимальной управляемости, Шухарт подчеркивал, что существует принципиальная разница между отсутствием признаков неуправляемости и выводом, что процесс находится в состоянии статистической управляемости. Отсутствие признаков неуправляемости может объясняться особенностями описываемого картой временного интервала.

Особые причины могут приходить и уходить, и сравнительно небольшие промежутки времени наблюдений могут не выявить точек, выходящих за пределы контрольных границ. Однако чем больше накапливается наблюдений, не выявляющих присутствия каких бы то ни было особых причин, тем больше уверенности, что процесс находится в состоянии статистической управляемости. Шухарт также замечал, что практически уверенным в управляемости процесса можно быть, когда не 100, а 1000 последовательных измерений не обнаруживают отсутствия управляемости".

Дональд Уилер

"Явление следует называть управляемым тогда, когда, используя прошлый опыт, мы можем предсказать, по крайней мере в некоторых пределах, каких его вариаций можно ожидать в будущем".

«Экономический контроль качества производимой продукции»
(Economic Control of Quality of Manufactured Product)

Вирусная теория менеджмента

Майрон Трайбус в статье "Вирусная теория менеджмента" проводит аналогию с медициной XIX (19) века и управлением XX (20) века для того, чтобы проиллюстрировать, почему общество придерживается доминирующих парадигм и сопротивляется их изменению, целью которого является улучшение нашей жизни.

14 пунктов программы доктора Э. Деминга для менеджмента. Политика в области качества

“Не пытайтесь оспорить выводы Деминга. Изучите теорию, потому что если теория не вызывает возражений, а логика, ведущая от теории к выводам, верна, то как могут быть неверны выводы?”

Доктор Генри Р. Нив, английский статистик, ученик и помощник
Э. Деминга

Научный подход

Научный подход – научный подход призывает нас к принятию решений и формированию политики на основе доброкачественной информации, как количественной, так и качественной, а не только на основе самоощущений или сиюминутных соображений. Он часто включает в себя анализ информации с помощью статистических методов (Статистическое управление процессами, Statistical Process Control, SPC), однако предполагает также знание и понимание ограничений этих методов, в особенности осознание критической важности явлений, которые нельзя описать численно. Деминг часто цитирует Ллойда Нельсона, руководителя отдела статистических методов в Nashua Corporation:

"Наиболее важные факторы, нужные для управления любой организацией, как правило, неизвестны и количественно неопределимы".

Доктор Ллойд Нельсон,
директор по статистическим методам в Nashua Corporation

Ненаучность

Важным признаком ненаучности, является отсутствие предсказательной силы.

"Теория познания учит нас, что любое утверждение несет в себе знания тогда, когда оно способно предсказать будущие результаты и соответствует прошлому опыту без каких-либо исключений".

Эдвардс Деминг

Ошибка первого рода (зарегулированность)

Ошибка первого рода (зарегулированность) – интерпретация общих причин вариаций как особых, и как следствие реакция на любое событие, выходящее за рамки границ допусков или при не достижении поставленной цели, в виде внешнего воздействия (вмешательства в работу системы), вносящего еще большую вариабельность.


Ошибка второго рода (недостаточное управление процессом)

Ошибка второго рода (недостаточное управление процессом) – суждения о потенциальных возможностях процесса, находящегося в статистически неуправляемом (неподконтрольном) состоянии, ибо такие суждения можно применить лишь к процессам с доминированием общих причин вариаций, т.е. находящихся в статистически управляемом состоянии. Не принятие мер к устранению особых причин, если вызванные ими вариации умещаются в границы допусков.


"Обе ошибки обходятся весьма дорого! Всякий может установить для себя безупречное правило никогда не совершать ошибку 1-го рода.

Это просто: всего-навсего нужно во всех случаях связывать вариацию с общими причинами. Однако при этом максимизируются потери от совершения ошибки 2-го рода. И наоборот, зарекаясь от совершения ошибки 2-го рода путем объяснения любой вариации особыми причинами, мы увеличиваем потери от ошибки 1-го рода.

Было бы здорово никогда не совершать ошибок ни первого, ни второго рода, но, к сожалению, это невозможно. Шухарт установил совершенно другую цель: не бояться совершать ошибки обоих видов, но регулировать частоту этих ошибок таким образом, чтобы минимизировать экономические потери от обеих. В итоге он создал инструмент - контрольную карту с границами на уровне З-х сигма. С тех пор его контрольная карта позволяет получать поразительные результаты в самых разных прикладных областях. Она действительно работает!

Статистической управляемости можно достичь, охотясь на каждую особую причину и идентифицируя ее всякий раз, когда некоторая точка выходит за контрольные пределы, и принимая соответствующие меры".

Эдвардс Деминг

Функция потерь качества Тагути

Японский ученый Генити Тагути предложил новый подход к оценке качества изготовления продукции. Традиционное представление о качестве продукции заключается в том, что все изготовленные изделия являются в равной степени качественными, если их показатели (или параметры) качества соответствуют требованиям технической документации, в которой определен допуск на эти показатели (параметры). Другими словами - внутри зоны допуска потери качества равны нулю. Если же показатели качества выходят за границы допуска (LSL) и (USL), то потери качества объявляются неприемлемыми. Такую функцию потерь качества (см. рисунок ниже, ломаная прямая) Тагути назвал «разрывной порогообразной функцией».


"Из функции Тагути с очевидностью следует, что удовлетворение требований допусков - отнюдь не достаточный критерий, чтобы судить о качестве. Попытка поступать таким образом, находится в явном противоречии с настоятельным требованием постоянных улучшений, одним из фундаментальных в философии Деминга. И действительно, последний из подходов характерен постоянным поиском в направлении улучшения качества, в то время как первый не дает никакого стимула работать лучше, коль скоро требования допусков уже удовлетворены.

Напротив, основополагающая этика некоторых известных подходов к качеству, включая методики оценки затрат на качество, имеет тенденцию «смазывать» дальнейшие усилия по улучшению на том основании, что, если запросы потребителя были удовлетворены, дальнейшие затраты времени, усилий и средств на этот конкретный процесс неоправданны".

Генри Р. Нив

"Использование допусков (спецификаций, ТЗ, ТУ) - не ошибка. Просто этого недостаточно".

Эдвардс Деминг

"Концепция доктора Тагути, основанная на анализе функции потерь, неизбежно ведет к новому определению понятия качества мирового класса: точно в соответствии с целью при минимальной дисперсии! Первое требование - «точно в соответствии с целью» - означает, что среднее процесса установлено таким образом, что оно настолько близко к цели (номиналу), насколько возможно. Второе требование - «минимальная дисперсия» - означает, что процесс должен обладать разумной степенью статистической управляемости.

Невыполнение принципа «в соответствии с целью при минимальной дисперсии» неминуемо повлечет существенный рост средних потерь на единицу продукции. Эти потери могут быть очень серьезными, но всегда ненужными.

«Соответствие допускам», «нуль дефектов», «качество шести сигм», «затраты на качество» и все другие лекарства, основанные на допусках, просто не могут удовлетворить этому принципу. Концепция «точной настройки на цель с минимальной дисперсией» определяет качество мирового класса на протяжении последних тридцати лет! И чем быстрее вы сделаете этот принцип главным законом своей жизни, тем быстрее станете конкурентоспособным!"

Дональд Уилер

Применение подхода к качеству вытекающего из функции Тагути следует принять в системе управления с использованием любых других показателей качества с границами «от» и «до», например, сроки поставки по договору и др.

Business Intelligence

Термин впервые появился в 1958 году в статье исследователя из IBM Ханса Питера Луна (англ. Hans Peter Luhn). Он определил этот термин как: «Возможность понимания связей между представленными фактами.»

BI в сегодняшнем понимании эволюционировал из систем для принятия решений, которые появились в начале 1960-х и разрабатывались в середине 1980-х.

В 1989 году Говард Дреснер (позже аналитик Gartner ) определил Business Intelligence как общий термин, описывающий «концепции и методы для улучшения принятия бизнес-решений с использованием систем на основе бизнес-данных».

Генити Тагути (Genichi Taguchi)

Генити Тагути (Genichi Taguchi, род. в 1924 г.) – известный во второй половине 20-го века японский специалист в области статистики. Он развивает идеи математической статистики, относящиеся, в частности, к статистическим методам планирования эксперимента и контроля качества. Тагути впервые соединил математической зависимостью экономические затраты и качество, введя понятие функции потерь качества . Он первым показал, что потери качества имеют место и в поле допуска. На наш взгляд, невнимание к методам Тагути – одна из причин серьезного отставания российских предприятий в области совершенствования качества процессов и продукции.

Питер Шолтес (Peter Scholtes)

Питер Шолтес (Peter Scholtes, 1938-2009), один из наиболее известных на Западе консультантов и просветитель в области методов управления на основе качества, развивающий идеи д-ра Деминга.

Читайте главу: Метод "управления по целям" - что не так? из книги Питера Шолтеса "Настольная книга команды".

Дональд Уилер (Donald J. Wheeler)

Дональд Уилер (Donald J. Wheeler) - статистик-консультант, которому посчастливилось работать с Дэвидом Чамберсом в период с 1970 по 1989 г.

Начиная с 1971 г. Уилер преподавал статистическое управление процессами, сначала - студентам университета штата Теннесси, затем - менеджерам промышленных предприятий многих стран мира.

С середины 1970-х годов он активно работал как консультант.

В 1974 г. Уилер впервые прослушал курс лекций доктора Деминга и остался его студентом навсегда.

Начиная с 1981 г. он иногда помогал Демингу проводить его четырехдневные семинары. Его собственная философия улучшения процессов твердо покоится на философии Деминга. Дональд Уилер - автор и соавтор шести книг и более чем 60 статей. Ему довелось поработать с самыми разными промышленными предприятиями мира. Он читает лекции как в США, так и за их пределами.

Дональд Уилер получил степень бакалавра по физике и математике в университете штата Техас, в Остине, а в Южном методистском университете - степени магистра наук и доктора философии.

С 1970 по 1982 г. он преподавал на факультете статистики университета штата Теннесси. В 1982 году Уилер оставил преподавательскую деятельность и сосредоточился на консалтинге в промышленности и других сферах. В настоящее время Дональд Уилер живет в г. Ноксвилле, штат Теннесси.

Дэвид Чамберс (David S. Chambers)

Дэвид Чамберс (David S. Chambers, 1917-1989) - близкий друг и коллега доктора Уильяма Эдвардса Деминга, всемирно известный консультант и преподаватель статистического управления процессами.

Он был членом, президентом и председателем правления Американского общества контроля качества (ASQC), лауреатом премии Юджина Гранта, академиком Международной академии качества. Список его коллег и бывших студентов вполне мог бы служить справочником «Кто есть кто?» в области контроля качества.

Дэвид Чамберс родился в техасском городе Кларксвилле. Степени бакалавра и магистра были им получены в Техасском университете, в котором он преподавал с 1941 по 1947 г., пока не стал доцентом статистики Университета штата Теннесси. Здесь он проработал профессором статистики с 1958 по 1981 г., после чего вышел в отставку, что позволило ему сосредоточиться на преподавательской деятельности. По словам доктора Деминга, потеря такого человека невосполнима.

Уолтер Эндрю Шухарт (Walter A Shewhart)

Уолтер Эндрю Шухарт (Walter A Shewhart, 1891-1967), родился в Нью Кэнтоне, шт. Иллинойс в 1891 году.

Окончил Университет Иллинойса. Позднее получил докторскую степень по физике в Калифорнийском Университете (1917).

В 1931 году Шухарт опубликовал отчёт об использовании контрольных карт и первую книгу «Экономическое управление качеством промышленной продукции». Особой датой в биографии профессора Рютгерского Университета Шухарта стал 1939 год. Тогда издали его вторую книгу «Статистический метод с точки зрения контроля качества». В конце десятилетия Шухарт обобщил результаты работ по статистическому методу контроля качества производственно-технологических процессов и обеспечения на этой основе качества изготавливаемой продукции.

Первый учитель и старший друг Э. Деминга.

Майрон Трайбус (Myron Tribus)

Майрон Трайбус (Myron Tribus), директор Exergy, делит свое время между Exergy Corporation, компанией, которая внедряет новые подходы к выработке электроэнергии, и работой в качестве консультанта по управлению качеством.

Имея тридцатилетний опыт работы учителем, он также служит помощником секретаря по науке и технике в Департаменте торговли США.

Он был первым вице-президентом в Xerox Corporation и директором Центра повышения квалификации инженеров. Майрон Трайбус является последователем доктора Э.Деминга.

Генри Нив (Henry R. Neave)

Генри Нив (Henry R. Neave). Доктор Генри Нив познакомился с Э. Демингом в середине 1980-х гг. и сразу стал его близким другом. С тех пор он постоянно помогал Демингу в проведении его четырехдневных семинаров в Европе, а также в других семинарах, конференциях и мероприятиях, проводимых по обе стороны Атлантики.

Именно Деминг воодушевил Нива как признанного специалиста в философии Деминга взяться за книгу "Пространство доктора Деминга: Принципы построения устойчивого бизнеса".

Сам Э. Деминг написал к этой книге предисловие.

Изучение теории менеджмента Э. Деминга лучше начинать именно с этой книги.

В 1987 г. именно по инициативе доктора Нива была организована Британская ассоциация Деминга, в которой Нив сейчас занимает должность директора по образованию. Многие годы доктор Нив преподавал статистику в Университете Ноттингема в Англии. С 1996 г. он - штатный преподаватель менеджмента на кафедре качества в Университете Трент в Ноттингеме.

Алфи Кон (Alfie Kohn)

Алфи Кон (Alfie Kohn), широко известный во всем мире социальный психолог.

Смотрите на нашем сайте материалы, подготовленные с использованием работ Алфи Кона в разделах:

  • Система мотивации персонала .
  • Ошибочная привлекательность конкуренции .
Читайте также:
  1. AHD технология: качество 720p/1080p по коаксиалу на 500 метров без задержек и потерь
  2. Архитектура, управляемая событиями. Типы данных Win32. Оконная процедура (функция). Оконный класс.
  3. В уголовном судопроизводстве функция обвинения отделена от функции защиты, а обе они отделены от функции рассмотрения дела судом.
  4. Внимание как высшая психическая функция, по Л.С. Выготскому
  5. Внимание как функция умственного контроля, по П.Я. Гальперину
  6. Возмещение потерь сельскохозяйственного и (или) лесохозяйственного производства.
  7. Возмещение потерь сельскохозяйственного и лесохозяйственного производства.

Г. Тагути сформулировал концепцию, в соответствии с которой важным аспектом качества продукции, будь то изделие промышленного производства или услуга, является общая потеря для общества, образующаяся в результате несовершенства данной продукции. По мнению Тагути, потери для общества могут быть двух типов: это потери, связанные с изменчивостью функции (продукции) и связанные с вредными побочными эффектами. В соответствии с этим подходом качество определяется через обратное свойство – недостаток качества.

В 1960 году Тагути высказал мысль, что качество не может рассматриваться просто как мера соответствия требованиям проектной конструкторской документации. Значения показателя внутри допуска (границ, установленных проектом) неравноценно, поэтому просто соблюдение качества в границах допуска недостаточно. Необходимо постоянно стремиться к номиналу, к уменьшению разброса даже внутри границ, установленных проектом.

По мнению Тагути стоимость и качество связаны общей характеристикой, называемой функцией потерь. Функция потерь качества является параболой с вершиной (потери равны нулю) в точке наилучшего значения (номинала), при удалении от номинала потери возрастают и на границе поля достигают своего максимального значения – потери от замены изделия.

Математический вид функции Тагути следующий:

L(x) = c (x –x 0) 2

где х – измеряемое значение показателя качества; х 0 – ее номинальное значение; L(x) - значение функции потерь Тагути в точке х ; с – коэффициент масштаба (подбираемый в соответствии с используемой денежной единицей при измерении потерь).

Мера качества по Тагути базируется главным образом на затратах, ив одной из книг он приводит иллюстрацию на примере несминаемой рубашки. Представьте себе, что отправка рубашки в прачечную стоит 250 йен, и обычная рубашка стирается 80 раз за время срока ее службы. Тогда расходы на прачечную в течение всего срока службы составят 20 000 йен. Если будет изготовлена рубашка другого типа, которая пачкается и сминается в два раза медленнее, покупатель сэкономит 10 000 йен на прачечной. Если стоимость новой рубашки будет обходиться производителю на 1 000 йен дороже, а продаваться она будет по цене на 2 000 йен дороже, чем обыкновенная рубашка, производитель выгадает 1 000 йен, а потребитель – 8 000 йен, что даст в целом экономию для общества в размере 9 000 йен. При этом сокращение стирки будет иметь благоприятные экологические последствия, что не дает большой экономии в денежном исчислении, но обеспечивает сбережение энергии, затрачиваемой на нагрев воды, сокращает расход моющих средств, уменьшает производимый шум. Подход Тагути трудно применим на практике, однако полезен для того, чтобы посмотреть, какую ответственность несет организация перед обществом и в каком состоянии находится ее политика в отношении окружающей среды.

Taguchi Genichi

родился 01.01.1924, умер 02.06.2012.

Генити Тагути - автор концепции робастного проектирования (проектирование качественных систем или инжиниринг качества), почетный член Японского общества контроля качества JUSE, Американского общества качества ASQ, Азиатской сети качества ANQ, Международной Академии качества IAQ, лауреат самых престижных наград в области качества (премия им. Деминга присуждалась ему 4 раза).
Известный японский статистик, он изучал вопросы совершенствования промышленных процессов и продукции, развил идеи математической статистики, относящиеся, в частности, к статистическим методам планирования эксперимента (DOE = Design of Experiment - планирование эксперимента) и контроля качества. Тагути впервые соединил математической зависимостью экономические затраты и качество, введя понятие функции потерь качества . Он первым показал, что потери качества имеют место и в поле допуска - они появляются с момента несовпадения номинального, заданного технической документацией, значения параметра и значения исследуемой случайной величины. Заслуга Тагути также в том, что он сумел найти сравнительно простые аргументы и приемы, которые сделали робастное планирование эксперимента в области обеспечения качества реальностью. Методы Тагути представляют собой один из принципиально новых подходов к решению вопросов качества. Главное в философии Тагути - это повышение качества с одновременным снижением расходов .

До призыва на военную службу в течение года он изучал текстильное машиностроение в техническом колледже. Отслужив в Астрономическом департаменте Навигационного института Японского императорского военно-морского флота, Тагути работал в Министерстве здравоохранения и Институте математической статистики Министерства образования. Глубоко изучить методы планирования эксперимента и использования ортогональных расположений ему помог известный японский статистик, лауреат национальной премии Матосабуро Масуяма, с которым Тагути познакомился в Министерстве здравоохранения. Позднее эти знания дали ему возможность консультировать компанию "Morinaga Pharmaceuticals" и ее дочернюю компанию "Morinaga Seika".
В 1950 г. Тагути начал работать в только что основанной лаборатории электросвязи компании "Nippon Telephone and Telegraph", поставив себе целью способствовать повышению эффективности опытно-конструкторских работ путем обучения инженеров более прогрессивным методам работы. Там он работал более 12 лет и именно в этот период начал разрабатывать собственные методы, активно консультировать промышленные предприятия. В начале 50-х годов японские компании, включая Тойоту и ее филиалы, начали широко применять его методы.
В 1951 г. вышла в свет первая книга Г. Тагути, которая познакомила многих с понятием "ортогональные расположения".
В течение 1954-1955 гг. Г. Тагути по рекомендации индийского ученого П. Махаланолуса работал в качестве приглашенного профессора в Индийском институте статистики. Здесь он познакомился со знаменитыми статистиками Р. Фишером и В. Шухартом. В 1957-1958 гг. появилось первое издание его двухтомной книги "Планирование экспериментов" ("Design of Experiments").
В 1962 г. Тагути впервые побывал в Соединенных Штатах в Принстонском университете и в этот же приезд посетил Bell Laboratories компании "AT&T". В Принстон Тагути был приглашен известным статистиком Джоном Тьюки для работы со статистиками от промышленности. В том же году университет Кьюшу присудил ему докторскую степень.
В 1964 г. Тагути стал профессором университета Аойама Гакуин в Токио и оставался на этой должности до 1982 г.
В 1966 г. Тагути с соавторами написал книгу "Управление конечными результатами" ("Management by Total Results"), которую перевел на китайский язык Юнь By. В ту пору методы Тагути были еще мало известны на Западе, хотя их уже применяли в Индии и на Тайване. В тот период и на протяжении 70-х годов его методы в основном применялись в производственных процессах, а переход к их использованию для разработки и проектирования продукции произошел в 80-е годы.
В начале 70-х Тагути разработал концепцию функции потери качества (Quality Loss Function), в эти же годы опубликовал еще две книги и выпустил третье (последнее) издание книги "Планирование экспериментов".
К концу десятилетия список наград, полученных Тагути, выглядел впечатляюще: премии Деминга за применение методов в 1960 г. и за литературу по качеству в 1951 и 1953 гг.
В 1980 г. Тагути был приглашен для выступления в компании Юнь By, который эмигрировал в Соединенные Штаты. К тому времени Тагути стал директором Японской академии качества. Во время этого визита в США Тагути вновь посетил Bell Laboratories, где его принял Мадхав Фадке. Несмотря на языковые проблемы, успешно были проведены эксперименты, вследствие чего методы Тагути были признаны в Bell Laboratories.
После визита Тагути в Америку его методологию все больше и больше начинают применять в американской промышленности. Однако методы Тагути не всегда встречали положительное отношение американских статистиков. Но, возможно, это была реакция на способы, которыми они продвигались на рынок. Тем не менее, многие американские компании, в частности Ксерокс, Форд и ITT, увлеклись использованием методов японского ученого.
В 1982 г. Тагути оставил преподавательскую работу в университете и, выйдя на пенсию, стал советником Японской ассоциации стандартов.
В 1983 г. он был назначен исполнительным директором Американского института поставщиков, в котором работал и его сын Шин.
В 1984 г. Тагути снова был отмечен премией Деминга за книги по качеству, а в 1986 г. Международный институт технологии наградил его медалью Вилларда Рокуэлла. В Европе, однако, методы Тагути в это время не пользовались большим успехом. Положение изменилось, когда Институт статистиков (Великобритания) в 1987 г. организовал первую конференцию по этим методам. В том же году был образован Клуб Тагути в Соединенном Королевстве.

Методология Тагути ориентирована больше на целенаправленную оптимизацию продукции и процессов до начала производства, чем на достижение качества посредством управления. Задача обеспечения качества и надежности сдвинута на стадию проектирования. Методология Тагути позволяет эффективно планировать эксперименты с проектируемой продукцией до начала фазы производства. Однако предложенные им приемы могут быть использованы и на производстве в качестве методологии устранения трудностей при выявлении насущных проблем.
В отличие от ученых Запада Тагути определяет качество продукта как "потери (минимальные), которые несет общество с момента выпуска продукции". Они включают в себя не только потери, которые несет компания, оплачивая переделки или брак, техобслуживание, простои из-за отказа оборудования и свои гарантийные обязательства, но и потери потребителя, связанные с плохим качеством товара и его ненадежностью, что в свою очередь ведет к последующим потерям производителя вследствие уменьшения его доли на рынке. Принимая за наилучшую возможную величину показателя качества его определенное целевое значение и считая это значение эталонным, Тагути связывает простую квадратичную функцию потерь с отклонением от этой цели. Функция потерь показывает, что уменьшение отклонений приводит к снижению потерь и соответственно к улучшению качества. По данной теории потери возникают даже в случае, когда показатели качества находятся в допустимых пределах. Но они минимальны только тогда, когда эти показатели совпадают с целевыми значениями. Если требуется максимизировать показатель качества (например, прочность) или минимизировать (например, усадку), функция потерь становится полупараболической.
Функция потерь может быть использована для решения вопроса о целесообразности дополнительных вложений средств в продукцию на стадии проектирования, а также того, поможет ли это продвижению товара на рынке.
Теория Тагути может применяться для управления качеством продукции на стадии проектирования или, реже, - для текущего управления качеством в процессе производства. Если предположить, что качество закладывается в продукт при его разработке, то управление качеством на отдельных стадиях производства становится менее важным, и основной упор делается на управление в допроизводственном периоде.
Тагути разбивает допроизводственное управление качеством на три стадии:
1. Проектирование конструкции.
2. Определение параметров (показателей качества).
3. Определение допусков для параметров.
В первую очередь отбираются отдельные детали, материалы и параметры на уровне технического решения. В процессе определения условий производственного процесса выбирается тип оборудования и учитываются отдельные производственные факторы. Наилучшим образом это достигается методом "мозгового штурма" с участием инженеров-производственников и проектировщиков.
Выбор значения параметра - важнейший этап: именно здесь японцы достигли отличных результатов по улучшению качества без увеличения затрат. На этом этапе проверяются выбранные целевые значения показателей качества, определяются их оптимальные комбинации и просчитываются параметры производственного процесса, менее всего подверженные влиянию окружающей среды и других неконтролируемых факторов. В этой области у Тагути есть несколько нововведений: упор делается на соотношение сигнал-шум, на использование ортогональных расположений с целью уменьшения числа экспериментальных попыток и пошаговых приближений к оптимуму.
Наконец, разработка пределов допусков имеет целью сократить вариации, ужесточив допустимые пределы для тех факторов, которые оказывают наибольшее влияние на вариации показателя качества. На этой стадии (ориентируясь на функцию потерь) производятся наибольшие затраты, связанные с закупкой лучших материалов или лучшего оборудования, что является проявлением японской философии, согласно которой нужно "вкладывать деньги в последнюю очередь" (т.е. при полной ясности. - Прим. пер.), а не "сначала вкладывать [а потом думать]".
Эти методы важны как для британской, так и для мировой промышленности в целом. Как правило, проектирование и отладка производственных линий в действительности далеки от совершенства. Много производственных шуток связывается с необходимостью "перешерстить" важные параметры. Теория Тагути - это тот образец, позволяющий инженеру или конструктору определить оптимальные параметры, при выдерживании которых производимая продукция будет высококачественной и не будет снята с производства с течением времени.
Теория Тагути имеет два основных преимущества. Во-первых, она разработана и в основном используется инженерами, а не специалистами в области статистики. Это устраняет проблемы языка и взаимопонимания, которые традиционно ассоциируются со статистической методологией. Это позволяет мыслить в инженерных категориях. В результате проблемы случайных вариаций, которые часто мешают производственному процессу, должны рассматриваться в дополнение к введенным подконтрольным вариациям. Оптимизация продукта состоит не только в приближении его показателей качества к целевым значениям, но и в сведении отклонений от этих целевых значений к минимуму. Это и есть часть статистического управления процессами (SPC) .
Теория Тагути может быть использована для того, чтобы сузить разброс показателей качества и определить вариации, на которых следует строить управление. SPC может быть использовано для дальнейшего сохранения величин показателей качества вблизи целевых значений. Это, по существу, и есть нововведение Тагути: использовать соотношение "сигнал-шум" для выбора управляющих параметров, которые минимизировали бы чувствительность к шуму (случайным помехам). Эти добавления и делают методологию фундаментальной.
Однако самой важной в теории Тагути является формализация построения так называемых ортогональных расположений . Они и ранее применялись в планировании экспериментов, но формализованы были именно Тагути. Это позволяет инженерам автоматически определять минимальное число опытных образцов, необходимых для эксперимента. Это число сознательно поддерживается минимальным путем отказа от всей (или почти всей) информации о взаимодействиях, содержащейся в проектном решении. Такая информация может быть получена позднее на стадии промышленного применения, если провести оценку еще одного опытного образца - именно того, который соответствует предсказанным оптимальным параметрам.
В этом разница между промышленным экспериментом и сельскохозяйственным содержанием эксперимента, на котором основывается большинство западных статистических методов. В сельском хозяйстве реакция на эксперимент замедленная, и если проигнорировать комбинации прототипов, не принимать во внимание взаимодействия, в сельскохозяйственном цикле потребуется дополнительный год для того, чтобы подтвердить, оптимальны ли предсказанные комбинации качеств. В промышленности реакция на эксперимент обычно быстрая, и можно сразу вернуться на шаг назад и опробовать еще один образец.
Взаимодействия, однако, могут быть использованы и в теории Тагути. Он предлагает простую графическую форму, что позволяет анализировать информацию легко и систематически. Однако рассматриваться может лишь ограниченное число взаимодействий, что не ведет к значительному увеличению числа образцов и расширению масштабов эксперимента.

При традиционном подходе к контролю качества предполагается, что контролируемый показатель, лежащий в пределах допуска, обеспечивает необходимое качество изделия. Тагути предложил учитывать потери качества, связанные не только с выходом значения показателя за пределы допуска, но и с отклонением этого показателя от номинального значения, даже если это отклонение оказывается в пределах допуска.

Г. Тагути предложил функцию потерь качества L(Х), по которой качественными считаются только такие показатели, значения которых полностью совпадают по величине с номинальными значениями этих показателей, а всякое отклонение от номинала сопряжено с той или иной потерей качества продукции (рис. 3.8):

L(Х) = k (Х – mо) 2

где mо – номинальное значение показателя (параметра) качества,

k – постоянный коэффициент, характеризующий денежный эквивалент,

Х – текущее значение показателя (параметра) качества.

При этом потери качества растут в квадратичной зависимости по мере отклонения истинных (измеренных) значений параметра от номинального и могут иметь место, как у изготовителя, так и у потребителя (заказчика) продукции.

Если известна величина потерь на границах допуска Т, то легко рассчитать значения постоянного коэффициента k. Если допустить, что допуск на параметр качества симметричен относительно номинала mо, а величина потерь на любой из границ допуска одинакова и равна Lо, то имеем

k = 4 Lо/ Т 2

Формула (3.1) соответствует экономическим потерям качества единичного измерения показателя качества в зависимости от его расположения в поле рассеяния относительно координаты номинального значения параметра mо.

Разрабатываемая продукция и процессы по Тагути должны обладать устойчивостью (робастностью) по отношению к возможным внешним воздействиям: необходимо установить такие сочетания параметров, при которых разброс относительно номинала минимален. Для обеспечения минимума функции потерь и создания робастного продукта могут быть использованы методы планирования эксперимента. Факторы, оказывающие влияние на показатель качества, можно разделить на управляемые и неуправляемые. показатель качества должен одинаково реагировать на управляемый сигнал и по возможности не реагировать на неуправляемый шум (случайные изменения температуры, влажности и т.д.)

Сам Г. Тагути сформулировал современные проблемы качества:

а) Необходимо оценивать тот ущерб, который некачественная продукция может причинить обществу. При этом учитывается ущерб от готовой продукции (отказы, травмы, аварии, невозможность выполнять свои функции и др.) и ущерб в процессе производства некачественной продукции (непроизводительные затраты времени, энергии, сил, т.д.).



б) Чтобы продукция фирмы была конкурентоспособной, необходимо постоянно повышать ее качество и снижать себестоимость. требования заказчика постоянно возрастают.

в) Основной целью программы повышения качества на фирме должно быть постоянное уменьшение расхождений между показателями качества изделия и характеристиками, заданными заказчиком.

г) Ущерб, который терпит заказчик из-за несоблюдения требований, пропорционален квадрату величины отклонения показателей качества, Это надо учитывать, устанавливая требования к качеству производственных процессов.

д) Качество и себестоимость готового изделия в основном определяются качеством проекта и технологии.

е) На этапах разработки изделия и испытаний его опытных образцов необходимо уменьшать отклонения характеристик изделия от заданного качества.

ж) Нужно выявлять зависимость эксплуатационных характеристик от других параметров изделия и технологического процесса и, используя установленную зависимость, проводить планирование эксперимента на основе статистических расчетов.


Стратегия «Шесть сигм»

Смит (инженер компании Моторола) обнаружил следующую закономерность: надо изготавливать продукцию без отклонений от документации, для чего требуется повысить стабильность и точность технологической системы. Вариабельность технологической системы является главным фактором отклонений отдельных значений параметра от требований технической документации. В качестве критерия оценки вариабельности технологической системы обычно применяется индекс воспроизводимости процесса Ср: Cр = Т / 6у, где Т – допуск на параметр, у – среднеквадратическое отклонение распределения. Ср находится в диапазоне от 1 до 1,33.



Стратегия «Шесть сигм» основана на том, что существует прямая корреляция между числом дефектов продукции и уровнем удовлетворенности потребителей. В концепции «Шесть сигм» общим показателем служит число дефектов на единицу продукции, допущенных на всех этапах ЖЦП.

В основе концепции «Шесть сигм» заложен постулат, что в установленном допуске Т на конкретный параметр А среднеквадратическое отклонение распределения у составляет 1/12 допуска. Это означает, что поле рассеяния значений параметра равно половине допуска. Очевидно, что чем больше сигм, тем менее вероятно, что будет допущен дефект, тем реже возникают отказы процесса, выше надежность продукта, ниже потребность в контроле и испытаниях, меньше незавершенного производства, ниже затраты и время производственного цикла и, как результат, – выше удовлетворенность потребителей.

Метод «Шесть сигм», в отличие от первоначальной концепции Ср =2, базируется на том, что удовлетворяющему данному критерию процессы допускают не более 3,4 дефектов на миллион изделий. в рамках метода «Шесть сигм» принимается, что центр распределения значений параметра не совпадает с координатой середины поля допуска, а может смещаться относительно него в ту или иную сторону на 1,5у (рис. 3.23). Т.е. в практических условиях создать технологическую систему с индексом воспроизводимости =2 одновременно с условием нулевого смещения середины поля рассеяния от середины поля допуска невозможно.



Философию применения можно свести к следующим принципам

Эффективное внедрение метода «Шесть сигм» возможно только при заинтересованности первого руководителя компании,

Этот метод нужен тебе, твоей компании и вашему потребителю,

Результат можно достигнуть, только работая в команде,

Необходимо все измерять и анализировать,

Любой процесс стоит денег.

Кому и что дает стратегия «Шесть сигм»:

Потребителям – обеспечивает более высокое качество и низкие цены,

Акционерам – дает возможность повысить доходы,

Поставщикам – дает возможность получить новые средства достижения успеха,

Сотрудникам – открывает более широкие возможности в работе и дает чувство гордости за выполняемую работу.

Достоинства:

1. Практически полное отсутствие дефектов, приводящих к браку продукции или ее доработке до товарного вида; снимает проблему потерь от несоответствующего качества и позволяет снизить себестоимость продукции и повысить ее конкурентоспособность.

2. Нулевая дефектность значительно поднимает рейтинг (имидж) компании в глазах потребителя и увеличивает привлекательность ее продукции.

3. Значительно снижаются потери качества (по Тагути) элементов продукции при условии отсутствия или небольших смещениях координаты центра поля допуска от центра поля рассеяния параметра.

4. Уменьшение почти в два раза поля рассеяния параметра по сравнению с традиционными методами обеспечения точности позволяет изготавливать детали высоких квалитетов точности

Недостатки метода «Шесть сигм»:

1. Внедрение метода «Шесть сигм» требует значительных затрат, как на обучение персонала, так и, главным образом, для приведения технологической системы по большому числу важнейших показателей качества к требуемой точности.

2. Потери качества (по Тагути) при изготовлении отдельной детали могут быть достаточно большими даже при малом поле рассеяния параметра, если середина поля допуска не совпадает с координатой номинального размера

3. Качество изделия зависит не столько от качества изготовления входящих в него деталей, сколько от качества замыкающего звена размерной цепи изделия. Особенно сложно обеспечить качество замыкающих звеньев малозвенных размерных цепей.

В целом при оценке метода «Шесть сигм» можно согласиться с тем, что ведущие мировые фирмы при внедрении этого метода делают акцент не столько на малое число дефектов на миллион возможностей, сколько на стратегию системного снижения вариабельности процессов.


Система Упорядочение и 5S

Система «Упорядочение» представляет собой систему наведения порядка, чистоты, укрепление дисциплины и создание безопасных условий труда с участием всего персонала.

Система «Упорядочение» базируется на принципах, представленных в таблице 2.1. Наибольшая сложность при внедрении системы заключается в том, что от понимания принципов необходимо перейти к их реализации, постоянному выполнению требований, правил и договоренностей, достигнутых в коллективе.

Таблица 2.1 – принципы системы «У»

Принцип Содержание работы
1. Удаление ненужного Все предметы в рамках компании и её подразделений разделяются на три категории: ненужные, не нужные срочно и нужные. а) Ненужные удаляются по определённым правилам б) Не нужные срочно располагаются на определённом удалении от рабочего места или хранятся централизованно в) Нужные сохраняются на рабочем месте За каждым работником закрепляются сферы его ответственности
2. Рациональное размещение предметов По отношению к нужным предметам и предметам, не нужным срочно, вырабатываются и реализуются решения, которые обеспечивают: - быстроту, лёгкость и безопасность доступа к ним; - визуализацию способа хранения и контроля наличия, отсутствия или местонахождения нужного предмета; - свободу перемещения предметов и эстетичность производственной среды
3. Уборка, проверка, устранение неисправностей Генеральная уборка помещений (при необходимости) Тщательная уборка и чистка оборудования, фиксация неисправностей Выявление источников загрязнений, труднодоступных и сложных (проблемных мест) Устранение неисправностей и выработка мер по их предотвращению Выработка и реализация мер по уборке труднодоступных мест, ликвидации источников проблем и загрязнений Выработка правил проведения уборки, чистки оборудования, смазки, проверки
4. Стандартизация правил Фиксация в письменном виде правил удаления ненужного, рационального размещения предметов, уборки, смазки, проверки Максимальная визуализация представления правил (рисунки, схемы, пиктограммы, указатели, цветовое кодирование) Визуализация контроля нормального состояния и отклонений (в работе оборудования, уровне запасов и т.п.) Стандартизация и унификация всех обозначений (размер, цвет, изображение символов и т.п.) Рационализация носителей информации (материал, способ нанесения надписей, защитные покрытия), мест их размещения и крепления
5. Дисциплинированность и ответственность Закрепление сфер ответственности каждого работника (объекты внимания и основные обязанности по их поддержанию в нормальном состоянии) Выработка у персонала правильных привычек, закрепление навыков соблюдения правил Применение эффективных методов контроля

Деятельность по наведению порядка, чистоты и укреплению дисциплины ориентирована в первую очередь на изменение поведения работников. Именно поэтому она не может быть реализована сразу (например, путём проведения генеральной уборки во всей организации).

Для успешного внедрения системы необходимо знать барьеры, препятствующие внедрению. Предлагаем ознакомиться со следующей информацией.

Многочисленная статистика по качеству отмечает, что дефектность продукции примерно на 85-90% вызвана человеческим фактором. Рассмотрим, какие причины, связанные с рабочим, могут оказать влияние на несоблюдение технической документации, вплоть до брака продукции. Среди них можно отметить: низкую квалификацию, малый стаж работы, плохое самочувствие, невнимательность при ознакомлении с чертежами, технологиями или инструкциями, некачественную подготовку рабочего места. Следует подчеркнуть, что причины брака могут быть связаны не только с человеком, но и с инструментом, технологическим оборудованием, оснасткой. Если докапываться до виновника дефекта, то в подавляющем большинстве это будет человек, который работает на предприятии или у поставщика.

Зачастую персонал просто не понимает своё руководство, либо не понимает или не знает инструкций, правил работы. Начальники и мастера зачастую лишены контакта с высшим руководством, а между первыми лицами и рабочими лежит целая пропасть, в результате в цехах царит апатия и безразличие. Люди живут в вакууме, не понимая ни стратегии предприятия, ни ценности своего труда.

Система «Упорядочение» преследует следующие цели:

а) в области качества:

– сокращение потерь от брака

–организация производственного процесса, обеспечивающего требуемый уровень качества

б) в области безопасности

– предотвращение утечек пара, газа, сжатого воздуха, масла, воды и др. веществ, включая вредные и опасные для здоровья

– сокращение аварий и неисправной работы оборудования

– улучшение санитарно-гигиенических условий

– устранение причин аварий, пожаров, несчастных случаев

– повышение дисциплинированности персонала в соблюдении правил и инструкций по охране труда

в) в области производительности

– сокращение ненужных запасов

эффективное использование рабочих мест

– предотвращение потерь и поисков нужных предметов

– сокращение простоев из-за неисправности оборудования

– улучшение организации труда

– повышение ответственности персонала

– мотивирование коллектива на производительный труд

При внедрении системы «Упорядочение» требуются кардинальные изменения в первую очередь в корпоративной культуре, где работник – богатство предприятия, т.е. не работник, а сотрудник.

Система «У» - модернизированная 5 S с учётом принципов НОТ и практики улучшения качества. 5 S: сортировка, очистка, организация, стандартизация, самопроверка. Японские исследователи считают, что если менеджеры не могут реализовать 5S, то не смогут эффективно управлять.

1. Система «Упорядочение» является основой для реализации более сложных приемов и методов организации производства.

2. Наличие или отсутствие системы «Упорядочение» может служить важным источником информации для диагностики состояния производственной или организационной системы, как высшими менеджерами, так и деловыми партнерами.

3. Зачастую менеджеры не придают значения наведению элементарного порядка, уповая на то, что высокий уровень организации и производительности труда может быть достигнут только в условиях производства с современным техническим оснащением. Однако капитальный ремонт, реконструкция или даже полное техническое перевооружение производства или перевод офисного труда на информационные технологии не приносят результата, если при этом не сформированы новые навыки персонала, не изменилось его отношение к средствам труда и организации рабочей среды.

4.Система «Упорядочение» не только предусматривает воспитание высоко ответственного отношения человека к своей деятельности, но и целый комплекс мер, исключающих возможность случайной ошибки, а также достаточно простую и стройную систему профилактики, устраняющую возможность неожиданных и тяжелых сбоев в работе оборудования.

5. Система «Упорядочение» - это не только способ эффективного включения персонала в практику непрерывных усовершенствований, но и метод, способствующий радикальному изменению качества менеджмента на оперативном уровне.

6. Еще одной стороной системы «Упорядочение» является высокий уровень дисциплинированности персонала, который достигается при ее внедрении, а это, в свою очередь, позволяет гарантировать соблюдение всех правил охраны труда и промышленной безопасности.