23.09.2019

Большая энциклопедия нефти и газа. Технические противоречия


6.2. Техническое противоречие

В первоначальной формулировке проблемы формулируются некоторые потребности, функции, которые необходимо выполнить.

В зависимости от вида проблемной ситуации (ПС) ее можно разрешить двумя способами (рис. 6.2):

Рис. 6.2

существенно изменить рассматриваемую систему или ее взаимодействие с надсистемой (НС) таким образом, чтобы отпала необходимость в этой потребности, в выполнении этой функции - ПС 1 ; в этом случае формулируется проблема по изменению НС;

дополнить существующую техническую систему некоторым устройством, которое позволило бы удовлетворить сформулированную потребность - ПС 2 (см. пример на рис 6.2).

Проблемы могут быть разные.

Например, мы не знаем, как технически реализовать выполнение потребной функции.

Или мы в принципе знаем, какое устройство нужно создавать для выполнения потребной функции, но при этом появляются нежелательные эффекты.

Нежелательный эффект, во-первых, связан с тем, что за реализацию функции, которую он должен выполнять, надо «платить». Из стремления же к идеальному решению следует, что полезная функция должна выполняться, но затрат на ее реализацию не должно быть.

Пример 6.2. По трубопроводу перекачивают газ. Необходимо обеспечить постоянный массовый расход газа при заданном перепаде давлений на входе и выходе трубопровода. Однако температура газа на входе в трубопровод меняется. Следовательно, массовый расход газа тоже будет изменяться.

Таким образом, возникает проблема. Массовый расход газа должен быть постоянным для управления некоторым процессом, но он не может быть постоянным, так как изменяется температура газа. При этом в систему нежелательно вводить сложные устройства, которые осуществляли бы функцию регулирования.

Во-вторых, нежелательные эффекты могут проявляться в виде вредных свойств (функций), которые возникают при функционировании технического объекта. Например, мы создаем некоторый технологический процесс, а он оказывает вредное воздействие на человека (электромагнитные излучения, вибрации и т. д.) или загрязняет окружающую среду и др.

То есть проблемная ситуация (ПС 2) заключается в том, что функцию выполнять надо, ибо в этом есть потребность, а нежелательных эффектов при этом быть не должно.

Такие проблемы часто возникают на начальном этапе создания ТО, когда намечается некоторый план решения проблемы, то есть при формировании идеи, принципа действия ТО для реализации ГПФ или попытке улучшить некоторые функциональные характеристики технического объекта.

Г. С. Альтшуллер отмечал, что каждой задаче, входящей в изобретательскую ситуацию, соответствует свое техническое противоречие (ТП) . Суть ТП сводится к тому, что при улучшении известными путями одного свойства (параметра) системы недопустимо ухудшается другой параметр.

Любая продукция, предназначенная для удовлетворения потребностей, характеризуется многими свойствами: экономичностью, надежностью, эргономичностью, эстетичностью, патентоспособностью, транспортабельностью, безопасностью, экологичностью, технологичностью и т. д. Для некоторых видов продукции весьма важными показателями являются масса конструкции, плотность компоновки, энергоемкость, мощность, производительность, время срабатывания механизмов, точность отработки параметров и т. д.

Все эти показатели условно можно разделить на две группы: показатели, характеризующие степень (уровень) выполнения техническим объектом ГПФ , и показатели, характеризующие факторы расплаты за выполнение ГПФ.

Стремление улучшить одни характеристики продукции часто приводит к ухудшению других. По крайней мере, на этапе анализа проблемы и постановки задачи не видно путей, как сделать так, чтобы при улучшении одних свойств не ухудшались бы другие, тоже весьма важные.

В проектно-конструкторских и технологических задачах обнаруживается противоречивость многих свойств, например, точность и производительность в технологии обработки материалов; масса, надежность и стоимость; устойчивость и управляемость технических объектов и др.

Например, один из способов увеличения надежности летательных аппаратов (потребность) - создание резервных систем и агрегатов. А это приводит к увеличению массы аппарата, что недопустимо, так как увеличиваются затраты на выполнение задания (ГПФ).

Нежелательные эффекты могут быть связаны с тем, что улучшение некоторых потребительных свойств приводит к усложнению ТО и, следовательно, к увеличению факторов расплаты.

Ситуация, когда попытки улучшить одну характеристику (или часть) системы приводит к ухудшению другой ее характеристики (или части), называется техническим противоречием (ТП).

Например, в технологии производства мероприятия, направленные на повышение производительности обработки, часто приводят к ухудшению качества продукции. (Если один из двух вариантов технологии при лучшем качестве позволяет обеспечить и бoльшую производительность, то он вытесняет второй вариант; в этом случае проблемной ситуации нет.)

Техническое противоречие появляется часто тогда, когда разработчик пытается каким-либо известным ему способом улучшить один из параметров качества (или функциональное свойство) объекта, но это приводит к недопустимому ухудшению другого, тоже весьма важного параметра качества (или функционального свойства).

Пример 6.2. Увеличение числа инструментов в слесарном наборе улучшает возможности дифференцированного воздействия на изделие, но ухудшает условия работы с набором, который становится более громоздким.

Для улучшения функционального свойства весьма часто рассматривается изменение одного из параметров технической системы, который существенно влияет на это функциональное свойство.

Пример 6.3. Чем больше литейный уклон на модели отливаемого изделия, тем легче извлечь ее из песчаной формы при формовке, но при этом нежелательно увеличиваются припуски металла (дополнительные его объемы), которые приходится в дальнейшем устранять механической обработкой литой заготовки.

Для этой проблемы можно сформулировать технические противоречия в двух вариантах.

ТП-1: Увеличивая литейный уклон, мы облегчаем процесс формования, но при этом увеличиваются затраты на обработку резанием.

ТП-2: Уменьшая литейный уклон, мы снижаем затраты на обработку, но при этом усложняется процесс формования.

Техническое противоречие можно представить в виде схемы, показанной на рис. 6.3.

Рис. 6.3

Формулирование технических противоречий - это конкретная реализация более общего приема поиска решения - переформулирование условий задачи. Это модель задачи, в которой раскрываются положительные и нежелательные эффекты или явления в рассматриваемой предметной области.

При этом возникает проблема, как, сохранив или даже улучшив положительные стороны (эффекты) в создаваемом ТО, не допустить появления нежелательных эффектов.

Формулировка ТП позволяет вычленить положительные и нежелательные эффекты для того, чтобы провести анализ причин появления нежелательных эффектов, и тем самым активизирует мышление на поиск возможных направлений решения проблемы.

Пример 6.4. ТП: Уменьшая время на изучение конкретной темы, мы добиваемся того, что можем более широко информировать обучаемых, но при этом уровень знаний и умений по этой теме понижается.

Пример 6.5. ТП: Декларируя истины, мы даем материал сжато и энергично, но при этом снижается способность обучаемых к самостоятельному поиску знаний.

Пример 6.6. ТП: Необходимо повысить производительность токарной обработки заготовки.

Анализ доступных ресурсов позволяет наметить два мероприятия, которые будут приводить к появлению нежелательных эффектов, связанных, с одной стороны, с увеличением затрат и, с другой стороны, с ухудшением качества получаемой детали (табл.1).

Таблица 6.1

Пример появления нежелательных эффектов при попытке решить поставленную проблему В приведенной таблице можно увидеть следующие противоречия.

ТП-1: Для повышения производительности труда нужно увеличить скорость резания. Но при этом увеличивается температура резца. Период стойкости инструмента уменьшается и, следовательно, увеличиваются затраты на обработку.

ТП-2: Для повышения производительности труда нужно увеличить скорость резания. Но при этом увеличивается температура заготовки. В материале заготовки происходят структурные изменения и, следовательно, снижается качество детали.

ТП-3: Для повышения производительности труда нужно увеличить подачу инструмента (глубину резания на каждом проходе резца). Но при этом увеличивается шероховатость поверхности и, следовательно, снижается качество детали.

Из книги Система технического обслуживания и ремонта общепромышленного оборудования: Справочник автора Ящура Александр Игнатьевич

7.1. Техническое обслуживание 7.1.1. Типовая номенклатура операций ТО металлорежущего, деревообрабатывающего и кузнечно-прессового оборудования представлена в табл. 7.1.Таблица

Из книги Система технического обслуживания и ремонта энергетического оборудования: Справочник автора Ящура Александр Игнатьевич

8.1. Техническое обслуживание Техническое обслуживание электропечей, электропечных агрегатов и оборудования производится в соответствии с требованиями технической документации заводов-изготовителей в процессе нерегламентированного обслуживания.Перечень типовых

Из книги Учебник по ТРИЗ автора Гасанов А И

14.1. Техническое обслуживание Согласно действующим правилам и нормам устанавливаются следующие виды планового ТО устройств РЗА: проверка при новом включении (наладка), первый профилактический контроль, профилактический контроль, профилактическое восстановление

Из книги Инженерная эвристика автора Гаврилов Дмитрий Анатольевич

15.1. Техническое обслуживание При ТО электросварочного оборудования проводятся следующие операции:сварочные трансформаторы: проверка отсутствия чрезмерного шума, нагрева обмоток, нагара на выводах, повреждений изоляции проводов, переключателя напряжений и другой

Из книги автора

16.1. Техническое обслуживание 16.1.1. Техническое обслуживание приборов измерения и контроля проводится в процессе работы оборудования и во время перерывов между сменами.16.1.2. В объем ТО приборов входят: наружный осмотр, очистка приборов; проверка их крепления по месту

Из книги автора

17.1. Техническое обслуживание 17.1.1. Техническое обслуживание котельного оборудования предусматривает выполнение комплекса профилактических операций для обеспечения надежной и бесперебойной работы оборудования до очередного ремонта.17.1.2. Техническое обслуживание

Из книги автора

18.1. Техническое обслуживание 18.1.1. Техническое обслуживание компрессорно-холодильного оборудования и насосов предусматривает производство следующих работ: контроль отсутствия посторонних шумов и стуков, ненормальных вибраций. Контроль температуры подшипников,

Из книги автора

19.1. Техническое обслуживание 19.1.1. При ТО оборудования систем вентиляции и кондиционирования воздуха проводятся следующие виды работ: повседневный надзор за работой оборудования и плановые осмотры оборудования.19.1.2. В порядке повседневного надзора проводятся следующие

Из книги автора

20.1. Техническое обслуживание В объем ТО по видам трубопроводов входят следующие работы: внутренние трубопроводы: наружный осмотр трубопроводов для выявления неплотностей в сварных стыках и фланцевых соединениях и состояния теплоизоляции и антикоррозионного покрытия.

Из книги автора

21.1. Техническое обслуживание При ТО водозаборных и водоочистных сооружений выполняются следующие работы: осмотр, проверка технического состояния, регулировка и подналадка. Подтяжка болтовых креплений. Очистка, смазка, устранение мелких дефектов, подкраска.

Из книги автора

22.1. Техническое обслуживание Кроме общих операций ТО для соответствующего оборудования производятся следующие специфические работы и проверки:электролизеры: проверка отсутствия чрезмерного нагрева и окисления контактных соединений, трещин и сколов изоляторов,

Из книги автора

6.1. Административное противоречие Решение любой технической задачи начинается с анализа проблемы. Результатом этого анализа является постановка и формулировка задачи, которую нужно решать.В проблеме обычно описывается необходимость создания некоторого технического

Из книги автора

6.3. Физическое противоречие Как видно из последнего приведенного примера, предлагаемые мероприятия, направленные на повышение производительности токарной обработки, приводят к появлению ряда НЭ.Проведенный анализ позволяет обнаружить и конкретизировать

Из книги автора

Ограничение и противоречие Техническое ограничение Техническое ограничение - условие (или комплекс условий), которое ограничивает развитие технической системы.В процессе развития технические системы (как и системы вообще) сталкиваются с различными факторами,

Из книги автора

Техническое противоречие В основе любого технического ограничения «нужно, но невозможно» лежит техническое противоречие, которое формулируется как «если улучшить А, то ухудшится Б» и «Если улучшить Б, ухудшится А» (Г. С. Альтшуллер).Например, «инструмент должен быть

Из книги автора

Физическое противоречие Физическое противоречие является причиной технического противоречия и формулируется в терминах свойств, качеств, состояний вещей и процессов.В этой связи приведём разбор красивой задачи из новейшего «Учебника по ТРИЗ», который всячески

Рассмотрим 40 основных приемов устранения технических противоречий.

1. Принцип дробления

а. Разделить объект на независимые части.

б. Выполнить объект разборным.

в. Увеличить степень дробления объекта.

Пример. Грузовое судно разделено на однотипные секции. При необходимости корабль можно делать длиннее или короче.

2. Принцип вынесения

Отделить от объекта "мешающую" часть ("мешающее" свойство) или, наоборот, выделить единственно нужную часть или нужное свойство.

В отличие от предыдущего приема, в котором речь шла о делении объекта на одинаковые части, здесь предлагается делить объект на разные части.

Пример. Обычно на малых прогулочных судах и катерах электроэнергия для освещения и других нужд вырабатывается генератором, работающим от гребного двигателя. Для получения электроэнергии на стоянке приходится устанавливать вспомогательный электрогенератор с приводом от двигателя внутреннего сгорания. Двигатель, естественно, создает ШУМ и вибрацию. Предложено разместить двигатель и генератор в отдельной капсуле, расположенной на некотором расстоянии от катера и соединенной с ним кабелем.

3. Принцип местного качества

а. Перейти от однородной структуры объекта или внешней среды (внешнего воздействия) к неоднородной.

б. Разные части объекта должны выполнять различные функции.

в. Каждая часть объекта должна находиться в условиях, наиболее благоприятных для ее работы.

Пример. Для борьбы с пылью в горных выработках на инструменты (рабочие органы буровых и погрузочных машин) подают воду в виде конуса мелких капель. Чем мельче капли, тем лучше идет борьба с пылью, но мелкие капли легко образуют туман, это затрудняет работу. Решение: вокруг конуса мелких капель создают слой из крупных капель.

4. Принцип асимметрии

а. Перейти от симметричной формы объекта к асимметричной.

б. Если объект уже асимметричен, увеличить степень асимметрии.

Пример. Противоударная автомобильная шина имеет одну боковину повышенной прочности - для лучшего сопротивления ударам о бордюрный камень тротуара.

5. Принцип объединения

а. Соединить однородные или предназначенные для смежных операций объекты.

б. Объединить во времени однородные или смежные операции.

Пример. Сдвоенный микроскоп-тандем. Работу с манипулятором ведет один человек, а наблюдением и записью целиком занят второй.

6. Принцип универсальности

Объект выполняет несколько разных функций, благодаря чему отпадает необходимость в других объектах.

Пример. Ручка для портфеля одновременно служит эспандером (а. с. № 187 964).

7. Принцип "матрешки"

а. Один объект размещен внутри другого, который, в свою очередь, находится внутри третьего и т. д.

б. Один объект проходит сквозь полость в другом объекте.

Пример. "Ультразвуковой концентратор упругих колебаний, состоящий из скрепленных между собой полуволновых отрезков, отличающийся тем, что с целью уменьшения длины концентратора и увеличения его устойчивости полуволновые отрезки выполнены в виде полых конусов, вставленных один в другой" (а. с. № 186 781). В а. с. № 462 315 абсолютно такое же решение использовано для уменьшения габаритов выходной секции трансформаторного пьезоэлемента. В устройстве для волочения металла по а. с. № 304 027 "матрешка" составлена из конусных волок.

8. Принцип антивеса

а. Компенсировать вес объекта соединением с другим объектом, обладающим подъемной силой.

б. Компенсировать вес объекта взаимодействием со средой (преимущественно за счет аэро- и гидродинамических сил). Приме р. "Центробежный тормозного типа регулятор числа оборотов роторного ветродвигателя, установленный на вертикальной оси ротора, отличающийся тем, что с целью поддержания скорости вращения ротора в малом интервале числа оборотов при сильном увеличении мощности грузы регулятора выполнены в виде лопастей, обеспечивающих аэродинамическое торможение" (а. с. № 167 784).

Интересно отметить, что в формуле изобретения четко отражено противоречие, преодолеваемое изобретением. При заданной силе ветра и заданной массе грузов получается определенное число оборотов. Чтобы его уменьшить (при возрастании силы ветра). нужно увеличить массу грузов. Но грузы вращаются, к ним трудно подобраться. И вот противоречие устранено тем, что грузам. придана форма, создающая аэродинамическое торможение, т. е. грузы выполнены в виде крыла с отрицательным углом атаки.

Общая идея очевидна: если нужно менять массу движущегося тела, а массу менять нельзя по определенным соображениям, то телу надо придать форму крыла и, меняя наклон крыла к направлению движения, получать дополнительную силу, направленную в нужную сторону.

9. Принцип предварительного антидействия

Если по условиям задачи необходимо совершить какое-то действие, надо заранее совершить антидействне.

Пример. "Способ резания чашечным резцом, вращающимся вокруг своей геометрической оси в процессе резания, отличающийся тем, что с целью предотвращения возникновения вибрации чашечный резец предварительно нагружают усилиями, близкими по величине и направленными противоположно усилиям, возникающим в процессе резания" (а. с. № 536866).

10. Принцип предварительного действия

а. Заранее выполнить требуемое действие (полностью или хотя бы частично).

б. Заранее расставить объекты так, чтобы они могли вступить в действие без затрат времени на доставку и с наиболее удобного места.

Примером может служить приведенное выше решение задачи 41.

11. Принцип "заранее подложенной подушки"

Компенсировать относительно невысокую надежность объекта заранее подготовленными аварийными средствами.

Пример. "Способ обработки неорганических материалов, например стекловолокон, путем воздействия плазменного луча, отличающийся тем, что с целью повышения механической прочности на неорганические материалы предварительно наносят раствор или расплав солей щелочных или щелочно-земельных металлов" (а. с. № 522 150). Заранее наносят вещества, "залечивающие" микротрещины. Есть а. с. № 456 594, по которому на ветвь дерева (до спиливания) ставят кольцо, сжимающее ветвь. Дерево, чувствуя "боль", направляет к этому месту питательные и лечащие вещества. Таким образом, эти вещества накапливаются до спиливания ветки, что способствует быстрому заживлению после спиливания.

12. Принцип эквипотенциальности

Изменить условия работы так, чтобы не приходилось поднимать или опускать объект.

Пример. Предложено устройство, исключающее необходимость поднимать и опускать тяжелые пресс-формы. Устройство выполнено в виде прикрепленной к столу пресса приставки с рольгангом (а. с. № 264679).

13. Принцип "наоборот"

а. Вместо действия, диктуемого условиями задачи, осуществить обратное действие.

б. Сделать движущуюся часть объекта или внешней среды неподвижной, а неподвижную - движущейся. в. Перевернуть объект "вверх ногами", вывернуть его.

Пример. Рассматривая задачу 9 (о фильтре для улавливания пыли), мы познакомились с а. с. № 156 133: фильтр сделан из магнитов, между которыми расположен ферромагнитный порошок Через семь лет появилось а. с. № 319 325, в котором фильтр вывернут- "Электромагнитный фильтр для механической очистки жидкостей и газов, содержащий источник магнитного поля и фильтрующий элемент из зернистого магнитного материала, oтличающийся тем, что с целью снижения удельного расхода электроэнергии и увеличения производительности фильтрующий элемент размещен вокруг источника магнитного поля и образует внешний замкнутый магнитный контур".

14. Принцип сфероидальносги

а. Перейти от прямолинейных частей к криволинейным, от плоских поверхностей к сферическим, от частей, выполненных в виде куба или параллелепипеда, к шаровым конструкциям.

б. Использовать ролики, шарики, спирали.

в. Перейти от прямолинейного движения к вращательному, использовать центробежную силу.

Пример. Устройство для вварки труб в трубную решетку имеет электроды в виде катящихся шариков.

15. Принцип динамичности

а. Характеристики объекта (или внешней среды) должны меняться так, чтобы быть оптимальными на каждом этапе работы.

б. Разделить объект на части, способные перемещаться относительно друг друга.

в. Если объект, в целом неподвижен, сделать его подвижным, перемещающимся.

Пример. "Способ автоматической дуговой сварки ленточным электродом, отличающийся тем, что с целью широкого регулирования формы и размеров сварочной ванны электрод изгибают вдоль его образующей, придавая ему криволинейную форму, которую изменяют в процессе сварки" (а. с. № 258 490).

16. Принцип частичного или избыточного действия

Если трудно получить 100% требуемого эффекта, надо получить "чуть меньше" или "чуть больше" - задача при этом может существенно упроститься.

Прием уже знаком по задаче 34: цилиндры окрашивают с избытком, который затем удаляют.

17. Принцип перехода в другое измерение

а. Трудности, связанные с движением (или размещением) объекта по линии, устраняются, если объект приобретает возможность перемещаться в двух измерениях (т. е. на плоскости). Соответственно задачи, связанные с движением (или размещением) объектов в одной плоскости, устраняются при переходе к пространству трех измерений.

б. Использовать многоэтажную компоновку объектов вместо одноэтажной.

в. Наклонить объект или положить его "набок".

г. Использовать обратную.сторону данной площади.

д. Использовать оптические потоки, падающие на соседнюю площадь или на обратную сторону имеющейся площади.

Прием 17а можно объединить с приемами 7 и 15в. Получается цепь, характеризующая общую тенденцию развития технических систем: от точки к линии, затем к плоскости, потом к объему и, наконец, к совмещению многих объемов.

Пример. "Способ хранения зимнего запаса бревен на воде путем установки их на экватории рейда, отличающийся тем, что с целью увеличения удельной емкости экватории и уменьшения объема промороженной древесины бревна формируют в пучки:, шириной и высотой в поперечном сечении превышающими длину бревен, после чего сформированные пучки устанавливают в вертикальном положении" (а. с. № 236 318).

18. Использование механических колебаний

а. Привести объект в колебательное движение.

б. Если такое движение уже совершается, увеличить его частоту (вплоть до ультразвуковой).

в. Использовать резонансную частоту.

г. Применить вместо механических вибраторов пьезовибраторы.

д. Использовать ультразвуковые колебания в сочетании с электромагнитными полями.

Пример. "Способ безопилочного резания древесины, отличающийся тем, что с целью снижения усилия внедрения инструмента в древесину резание осуществляют инструментом, частота пульсация которого близка к собственной частоте колебаний перерезаемой древесины" (а. с. № 307986).

19. Принцип периодического действия

а. Перейти от непрерывного действия к периодическому (импульсному) .

б. Если действие уже осуществляется периодически, изменить периодичность.

в. Использовать.паузы между импульсами для другого действия.

Пример. "Способ автоматического управления термическим циклом контактной точечной сварки, преимущественно деталей малых толщин, основанный на измерении термо-э.д.с., отличающийся тем, что с целью повышения точности управления при сварке импульсами повышенной частоты измеряют термо-э.д.с. в паузах между импульсами сварочного тока" (а. с. № 336 120).

20. Принцип непрерывности полезного действия

а. Вести работу непрерывно (все части объекта должны все время работать с полной нагрузкой).

б. Устранить холостые и промежуточные ходы.

Пример. "Способ обработки отверстий в виде двух пересекающихся цилиндров, например гнезд сепараторов подшипников, отличающийся тем, что с целью повышения производительности обработки ее осуществляют сверлом (зенкером), режущие кромки которого позволяют производить резание как при прямом, так и при обратном ходе инструмента" (а. с. № 262 582).

21. Принцип проскока

Вести процесс или отдельные его этапы (например, вредные или опасные) на большой скорости.

Пример. "Способ обработки древесины при производстве шпона путем прогрева, отличающийся тем, что с целью сохранения природной древесины прогрев ее осуществляют кратковременным воздействием факела пламени газа с температурой 300-600°С непосредственно в процессе изготовления шпона" (а. с. № 338 371).

22. Принцип "обратить вред в пользу"

а. Использовать вредные факторы (в частности, вредное воздействие среды) для получения положительного эффекта.

б. Устранить вредный фактор за счет сложения с другими вредными факторами.

в. Усилить вредный фактор до такой степени, чтобы он перестал быть вредным.

Пример. "Способ восстановления сыпучести смерзшихся насыпных материалов, отличающийся тем, что с целью ускорения процесса восстановления сыпучести материалов и снижения трудоемкости смерзшийся материал подвергают воздействию сверхнизких температур" (а. с. № 409 938).

23. Принцип обратной связи

а. Ввести обратную связь.

б. Если обратная связь есть, изменить ее.

Пример. "Способ автоматического регулирования температурного режима обжига сульфидных материалов в кипящем слое путем изменения потока нагружаемого материала в функции температуры, отличающийся тем, что с целью повышения динамической точности поддержания заданного значения температуры подачу материала меняют в зависимости от изменения содержания сернистого газа в отходящих газах" (а. с. .№ 302 382).

24. Принцип "посредника"

а. Использовать промежуточный объект, переносящий или передающий действие.

б. На время присоединить к объекту другой (легкоудаляемый) объект.

Пример. "Способ тарировки приборов для измерения динамических напряжений в плотных средах при статическом нагружении образца среды с заложенными внутри него прибором, отличающийся тем, что с целью повышения точности тарировки нагружение образца с заложенным внутри него прибором ведут через хрупкий промежуточный элемент" (а. с. № 354 135).

25. Принцип самообслуживания

а. Объект должен сам себя обслуживать, выполняя вспомогательные и ремонтные операции.

б. Использовать отходы (энергии, вещества).

Пример. В электросварочном пистолете сварочную проволоку обычно подает специальное устройство. Предложено использовать для подачи проволоки соленоид, работающий от сварочного тока.

26. Принцип копирования

а. Вместо недоступного, сложного, дорогостоящего, неудобного или хрупкого объекта использовать его упрощенные и дешевые копии.

б. Заменить объект или систему объектов их оптическими копиями (изображениями). Использовать при этом изменение масштаба (увеличить или уменьшить копии).

в. Если используются видимые оптические копии, перейти к копиям инфракрасным или ультрафиолетовым. Пример. "Наглядное учебное пособие по геодезии, выполненное в виде написанного на плоскости художественного панно, отличающеееся тем, что с целью последующей геодезической съемки с панно изображения местности оно выполнено по данным тахеометрической съемки и в характерных точках местности снабжено миниатюрными геодезическими рейками" (а. с. № 86560).

27. Дешевая недолговечность взамен дорогой долговечности

Заменить дорогой объект набором дешевых объектов, поступившись при этом некоторыми качествами (например, долговечностью).

Пример. Мышеловка одноразового действия: пластмассовая трубка с приманкой; мышь входит в ловушку через конусообразное отверстие; стенки отверстия разгибаются и не дают ей выйти обратно.

28. Замена механической схемы

а. Заменить механическую схему оптической, акустической или "запаховой".

б. Использовать электрические, магнитные и электромагнитные поля для взаимодействия с объектом.

в. Перейти от неподвижных полей к движущимся, от фиксированных к меняющимся во времени, от неструктурных к имеющим определенную структуру.

г. Использовать поля в сочетании с ферромагнитными частицами.

Пример. "Способ нанесения металлических покрытий на термопластичные материалы путем контакта с порошком металла, нагретым до температуры, превышающей температуру плавления термопласта, отличающийся тем, что с целью повышения прочности сцепления покрытия с основой и его плотности процесс осуществляют в электромагнитном поле" (а. с. № 445 712).

29. Использование пневмо- и гидроконструкций

Вместо твердых частей объекта использовать газообразные и жидкие: надувные и гидронаполяемые, воздушную подушку, гидростатические и гидрореактивные.

Пример. Для соединения гребного вала судна со ступицей винта в вале сделан паз, в котором размещена эластичная полая емкость (узкий "воздушный мешок"). Если в эту емкость подать сжатый воздух, она раздуется и прижмет ступицу к валу (а. с. ЛЬ 313 741). Обычно в таких случаях использовали металлический соединительный элемент, но соединение с "воздушным мешком" проще изготовить: не нужна точная подгонка сопрягаемых поверхностей. Кроме того, такое соединение сглаживает ударные нагрузки. Интересно сравнить это изобретение с опубликованным позже изобретением по а. с. № 445 611 на контейнер для транспортирования хрупких изделий (например, дренажных труб): в контейнере имеется надувная оболочка, которая прижимает изделия и не дает им биться при перевозке. Разные области техники, но задачи и решения абсолютно идентичны. В a. c. № 249583 надувной элемент работает в захвате подъемного крана. В а. с. № 409 875 - прижимает хрупкие изделия в устройстве для распиловки. Таких изобретений великое множество. Видимо, просто, поpa прекратить патентовать такие предложения, а в учебники конструирования ввести простое правило: если надо на время деликатно прижать один предмет к другому, используйте "воздушный мешок". Это, конечно, не значит, что весь прием 29 перестанет быть изобретательским.

"Воздушный мешок", прижимающий одну деталь к другой, - типичный веполь, в котором "мешок" играет роль механического поля. В соответствии с общим правилом развития вепольных систем следовало ожидать перехода к фепольной системе. Такой переход действительно произошел: в а. с. № 534 351 предложено внутрь "воздушного мешка" ввести ферромагнитный порошок, а для. усиления прижима использовать магнитное поле. И снова несовершенство формы патентования привело к тому, что запатентована не универсальная идея управления "воздушным мешком", а частное усовершенствование шлифовального "воздушного мешка"...

30. Использование гибких оболочек и тонких пленок

а. Вместо обычных конструкций использовать гибкие оболочки и тонкие пленки.

б. Изолировать объект от внешней среды с помощью гибких оболочек и тонких пленок.

Пример. "Способ формирования газобетонных изделий путем заливки сырьевой массы в форму и последующей выдержки, отличающийся тем, что с целью повышения степени вспучивания на залитую в форму сырьевую массу укладывают газонепроницаемую пленку" (а. с. № 339 406).

31. Применение пористых материалов

а. Выполнить объект пористым или использовать дополнительные пористые элементы (вставки, покрытия и т. д.).

б. Если объект уже выполнен пористым, предварительно заполнить поры каким-то веществом.

Пример. "Система испарительного охлаждения электрических машин, отличающаяся тем, что с целью исключения необходимости подвода охлаждающего агента к машине активные части и отдельные конструктивные элементы выполнены из пористых материалов, например пористых порошковых сталей, пропитанных жидким охлаждающим агентом, который при работе машины испаряется и таким образом обеспечивает кратковременное, интенсивное и равномерное ее охлаждение" (а. с. № 187 135).

32. Принцип изменения окраски

а. Изменить окраску объекта или внешней среды.

б. Изменить степень прозрачности объекта или внешней среды.

в. Для наблюдения за плохо видимыми объектами или процессами использовать красящие добавки.

г. Если такие добавки уже применяются, использовать люминофоры.

Пример. Патент США № 3 425 412: прозрачная повязка, позволяющая наблюдать рану, не снимая повязки.

33. Принцип однородности

Объекты, взаимодействующие с данным объектом, должны быть сделаны из того же материала (или близкого ему по свойствам).

Пример. "Способ получения постоянной литейной формы путем образования в ней рабочей полости по эталону методом литья, отличающийся тем, что с целью компенсации усадки изделия, полученного в этой форме, эталон и форму выполняют из материала, одинакового с изделием" (а. с. № 456 679).

34. Принцип отброса и регенерация частей

а. Выполнившая свое назначение или ставшая ненужной часть объекта должна быть отброшена (растворена, испарена и т. п.) или видоизменена непосредственно в ходе работы.

б. Расходуемые части объекта должны быть восстановлены непосредственно в ходе работы.

Пример. "Способ исследования высокотемпературных зон, преимущественно сварочных процессов, при котором в исследуемую зону вводят зонд-световод, отличающийся тем, что с целью улучшения возможности исследования высокотемпературных зон при дуговой и электрошлаковой сварке используют плавящийся зонд-световод, который непрерывно подают в исследуемую зону со скоростью не менее скорости его плавления" (а. с. № 433 397).

35. Изменение агрегатного состояния объекта

Сюда входят не только простые переходы, например от твердого состояния к жидкому, но и переходы к "псевдосостояниям" ("псевдожидкость") и промежуточным состояниям, например использование эластичных твердых тел.

Пример. Патент ФРГ № 1 291 210: участок торможения для посадочной полосы выполнен в виде "ванны", заполненной вязкой жидкостью, на которой расположен толстый слой эластичного материала.

36. Применение фазовых переходов

Использовать явления, возникающие при фазовых переходах, например изменение объема, выделение или поглощение тепла и т. д.

Пример. "Заглушка для герметизации трубопроводов и горловин с различной формой сечения, отличающаяся тем, что с целью унификации и упрощения конструкции она выполнена в виде стакана, в который заливается легкоплавкий металлический сплав, расширяющийся при затвердевании и обеспечивающий герметичность соединения" (а. с. № 319 806).

37. Применение теплового расширения

а. Использовать тепловое расширение (или сжатие) материалов.

б. Использовать несколько материалов с разными коэффициентами теплового расширения.

Пример. В а. с. No 463423 предложено крышу парников делать из шарнирно-закрепленных пустотелых труб, внутри которых.находится легкорасширяющаяся жидкость. При изменении температуры меняется центр тяжести труб, поэтому трубы сами поднимаются и опускаются. Кстати, это ответ на задачу 30. Разумеется, можно использовать и биметаллические пластины, укрепленные.на крыше парника.

38. Применение сильных окислителей

а. Заменить обычный воздух обогащенным.

б. Заменить обогащенный воздух кислородом.

в. Воздействовать на воздух или кислород, ионизирующими излучениями.

г. Использовать озонированный кислород.

д. Заменить озонированный (или ионизированный) кислород озоном.

Пример. "Способ получения пленок феррита путем химических газотранспортных реакций в окислительной среде, отличающий с я тем, что с целью интенсификации окисления и увеличения однородности пленок процесс осуществляют в среде озона" (а. с. №261 859).

39. Применение инертной среды

а. Заменить обычную среду инертной.

б. Вести процесс в вакууме. Этот прием можно считать антиподом предыдущего.

Пример. Способ предотвращения загорания хлопка в хранилище, отличающийся тем, что с целью повышения надежности хранения хлопок подвергают обработке инертным газом в процессе его транспортировки к месту хранения" (а. с. № 270 171).

40. Применение композиционных материалов перейти от однородных материалов к композиционным

Пример. "Среда для охлаждения металла при термической обработке. отличающаяся тем, что с целью обеспечения заданной скорости охлаждения она состоит из взвеси газа в жидкости" (а. с. № 187060).

ТЕХНИЧЕСКИЕ ПРОТИВОРЕЧИЯ

Попытаемся решить задачу о дождевателе обычными приемами. Нужно втрое увеличить размах крыльев; что ж, сделать трехсотметровую ферму технически вполне осуществимо. Что мы при этом проиграем? Возрастет вес. Если размах крыльев увеличить втрое, ферма станет тяжелее в 27 раз.

У машин и механизмов (вообще у технических объектов) есть несколько важнейших показателей, характеризующих степень их совершенства: вес, габариты, мощность, надежность и др. Между этими показателями существуют определенные взаимозависимости. Скажем, на одну единицу мощности требуется определенный вес конструкции. Чтобы увеличить одии из показателей уже известными в данной отрасли техники путями, приходится «платить» ухудшением другого.

Вот типичный пример из авиаконструкторской практики: «Увеличение в 2 раза площади вертикального оперения одного из типов самолетов уменьшило амплитуду колебаний самолета всего лишь на 50%. Но это, в свою очередь, повысило восприимчивость самолета к порывам ветра, увеличило лобовое сопротивление, утяжелило конструкцию самолета, -что выдвинуло дополнительные сложные задачи К

Конструктор, учитывая конкретные условия, выбирает наиболее благоприятное сочетание характеристик: что-то выигрывает, а что-то проигрывает. «Когда вы обдумываете решение и технические условия,- говорит известный авиаконструктор О. Антонов,- которые, может быть, и не будут никогда записаны на бумаге, выделите самое главное. Только в крайнем случае, если что-нибудь не удается выполнить, идите к допустимому. Допустимое - это некоторое невыполнение заданных технических условий, так сказать, компромиссное решение. Предположим, конструируя самолет, вы выполните требования по грузоподъемности и скорости, но у вас немножко не выйдет с длиной разбега. Тогда вы начнете взвешивать эти три важных требования и, возможно, несколько поступитесь разбегом - пусть разбег будет не 500, а 550 метров, зато все остальные качества будут достигнуты. Это как раз то, что допустимо».

Академик А. Н. Крылов в своих воспоминаниях рассказывает о таком эпизоде. В 1924 году ученый работал в составе советско-французской комиссии, осматривавшей в гавани Бизерты русские военные корабли, уведенные туда Врангелем. Здесь бок о бок с русским эсминцем стоял эсминец французский - примерно того же возраста и размеров. Разница в боевой мощи кораблей была настолько велика, что адмирал Буи - председатель комиссии- не выдержал и воскликнул: «У вас пушки, а у нас пукалки! Каким образом вы достигли такой разницы в вооружении эсминцев?» Крылов ответил так: «Взгляните, адмирал, на палубу: кроме стрингера, в котором вся крепость, все остальное, представляющее как бы крышу, проржавело почти насквозь, трубы, их кожухи, рубки и т. п.- все изношено. Посмотрите на ваш эсминец, на нем все как новенькое, правда, наш миноносец шесть лет без ухода и без окраски, но не в этом главная суть. Ваш миноносец построен из обыкновенной стали и на нем взято расчетное напряжение в 7 кг на 1 мм2, как будто бы это был коммерческий корабль, который должен служить не менее 24 лет. Hauf построен целиком из стали высокого сопротивления, напряжение допущено в 12 кг и больше - местами по 23 кг/мм2. Миноносец строится на 10-12 лет, ибо за это время он успевает настолько устареть, что не представляет более истинной боевой силы. Весь выигрыш в весе корпуса и употреблен на усиление боевого вооружения, и вы видите, что в артиллерийском бою наш миноносец разнесет вдребезги, по меньшей мере, четыре, т. е. дивизию ваших, раньше, чем они приблизятся на дальность выстрела своих пукалок». «Как это просто!» - сказал адмирал»2.

Искусство конструктора во многом зависит от умения определить, что надо выиграть и чем можно за это поступиться. Изобретательское творчество состоит в том, чтобы найти такой путь, при котором уступки вообще не требуется (или она непропорционально мала по сравнению с получаемым результатом).

Предположим, для ускорения погрузки-разгрузки на необорудованных аэродромах необходимо создать портативное подъемное устройство, монтируемое на тяжелых транспортных самолетах. Такую задачу вполне можно решить уже имеющимися в современной технике средствами. Основываясь на общих принципах конструирования подъемных устройств и используя, скажем, опыт создания легких автокранов, квалифицированный конструктор в состоянии спроектировать требуемое устройство. Понятно, что это увеличит в той или иной мере «мертвый вес самолета. Выигрывая в одном, конструктор одновременно проигрывает в чем-то другом. Зачастую с этим можно смириться, и задача конструктора сводится к тому, чтобы побольше выиграть и поменьше проиграть.

Необходимость в изобретении возникает в тех случаях, когда задача содержит дополнительное требование: выиграть и… ничего не проиграть. Например, подъемное устройство должно быть достаточно мощным и в то же время не должно утяжелять самолет. Решить эту задачу известными приемами невозможно: даже лучшие передвижные краны имеют немалый вес. Здесь нужен новый подход, нужно изобретение.

Таким образом, обычная задача переходит в разряд изобретательских в тех случаях, когда необходимым условием ее решения является устранение технического противоречия.

Нетрудно создать новую машину, игнорируя технические противоречия. Но тогда машина окажется неработоспособной и нежизненной.

Всегда ли изобретение состоит в устранении технического противоречия?

Надо сказать, что существуют два понятия «изобретение»- правовое (патентное) и техническое. Правовой понятие различно в разных странах, к тому же оно чаете! меняется.

Правовое понятие стремится возможно точнее отразить границы, в которых в данный момент экономически целесообразна юридическая защита новых инженерных конструкций. Для технического же понятия важны не столько эти границы, сколько сердцевина изобретения, его исторически устойчивая сущность.

С точки зрения инженера, создание нового изобретения всегда сводится к преодолению (полному или частичному) технического противоречия.

Возникновение и преодоление противоречия - одна из главных особенностей технического прогресса. Анализируя развитие мельниц, Маркс писал в «Капитале»: «Увеличение размеров рабочей машины и количества ее одновременно действующих орудий требует более крупного двигательного механизма… Уже в XVIII веке была сделана попытка приводить в движение два бегуна и два же постава посредством одного водяного колеса. Но увеличение размеров передаточного механизма вступило в конфликт с недостаточной силой воды…»

Это яркий пример технического противоречия: попытка улучшить какое-либо свойство машины вступает в конфликт с другим ее свойством.

Многочисленные примеры технических противоречий приводит Фридрих Энгельс в статье «История винтовки» В сущности, вся эта статья представляет собой анализ внутренних противоречий, определяющих историческое развитие винтовки. Энгельс показывает, например, что с» момента появления винтовки и до изобретения винтовок, заряжающихся с казенной части, главное противоречие состояло в том, что для усиления огневых свойств требовалось укорачивание ствола (заряжение производилось со ствола и при коротком стволе облегчалось), а для усиления «штыковых» свойств винтовки нужно было, наоборот, удлинять ствол. Эти противоречивые качества были соединены в винтовке, заряжающейся с казенной части.

Вот несколько задач из разных отраслей техники, содержащих технические противоречия. Задачи эти не придуманы автором, а взяты из газет, журналов, книг.

Горное дело

С давних пор для изоляции района подземного пожара шахтеры возводят перемычки - Специальные стенки из кирпича, бетона или брусчатки. Сооружение перемычек сильно осложняется, если в шахте выделяются газы. В таком случае перемычку нужно делать герметичной, тщательно заделывать каждую щелку, и все это под постоянной угрозой взрыва. Чтобы уберечься, горняки стали сооружать по две перемычки. Первую - временную- кладут наспех. Она пропускает воздух и служит лишь баррикадой, под прикрытием которой можно, уже не торопясь, сооружать вторую, постоянную. Таким образом, горняки выиграли в безопасности, но проиграли в трудоемкости.

Химическая технология

При повышении давления скорость синтеза увеличивается и, следовательно, растет производительность колонны синтеза. Но одновременно увеличивается расход энергии на сжатие данного количества газа: по конструктивным соображениям приходится ограничивать размеры аппаратов и, следовательно, их мощность. Увеличиваются растворимость $зотоводородной смеси в жидком аммиаке и ее потери.

Электроника

Современная электроника столкнулась с серьезной дилеммой: с одной стороны, непрерывно повышаются требования к рабочим характеристикам и, соответственно, усложняются электронные системы; с другой стороны, все более ужесточаются ограничения габаритов, веса и потребляемой мощности… Такое же, а может быть, и большее значение имеют проблемы надежности, вызванные возросшей сложностью аппаратуры.

Радиотехника

У антенны радиотелескопа есть две основные характеристики- чувствительность и разрешающая способность. Чем больше площадь антенны, тем выше чувствительность телескопа и тем дальше он может заглянуть в глубины Вселенной. Разрешающая способность - это «острота зрения» телескопа. Она показывает, насколько хорошо аппарат различает два разных источника излу-

чения, находящихся на небольшом угловом расстоянии друг от друга. Кроме того, большой «радиоглаз» должен охватывать своим взглядом возможно большую часть неба. Для этого антенна должна быть подвижной. Но перемещать громоздкую антенну, сохраняя ее форму неизменной с точностью до миллиметров, очень трудно. Пока не разрешено это противоречие, конструирование телескопов идет по двум направлениям: либо строятся очень большие, но неподвижные антенны, либо подвижные и относительно небольшие.

Принципы и методы разрешения технических противоречий в процессе дизайн разработки проектного решения.

_________________________________________________________________________

В процессе формулировки идеального конечного результата некоторые показатели качества могут быть либо противоречивыми по отношению друг к другу, либо один из них может быть противоречив по отношению к целой группе показателей. В этом случае имеет место так называемое техническое противоречие , состоящее в том, что улучшение одного показателя вызывает ухудшение другого показателя.

В процессе выявления и разрешениятехнических противоречий проявляется творчество изобретателей, разработчиков, проектировщиков и конструкторов, создаются продукты интеллектуальной собственности (патенты, ноу-хау, промышленные образцы и др.).

Следует иметь в виду, что в литературе и в конструкторско-изобретательском лексиконе все противоречия называют техническими, хотя по своей природе они могут отражать физические, экономические, информационные, социальные, и дажеадминистративные аспекты решаемой задачи. Таким образом, термин «технические противоречия» отражает не природу (первопричину) их возникновения, а принадлежность к носителям этих противоречий - к техническим объектам.

Технические противоречия условно подразделяются на внешние и внутренние.

Внешние противоречия обусловлены несоответствием свойств и параметров технического объекта, условиям его изготовления и нормального функционирования в процессе взаимодействия с человеком и окружающей средой.

Внутренние противоречия обусловлены несоответствием структуры и состава конструктивного исполнения технического объекта его функциональному значению.

Различают шесть источников возникновения технических противоречий .

1. Противоречия между техническим объектом и человеком , который управляет этим объектом (оператором) или эксплуатирует его (пользователем). В процессе их взаимодействия конфликтные ситуации могут возникнуть из-за изменения условий эксплуатации технического объекта, из-за изменившихся требований к его безопасности, эргономичности, эффективности. Поэтому, при усовершенствовании технического объекта, прежде всего, формулируются новые или уточняются действующие требования по безопасности и эргономичности конструкции, определяются условия его наиболее полной реализации. Анализу подвергаются те свойства объекта, которые должны быть изменены в соответствии с новыми или уточненными требованиями. При этом определяются те компоненты конструкции объекта и их параметры, изменения которых позволяют в конечном счете разрешить возникшее противоречие.



2. Противоречие между техническим объектом и средой его функционирования из-за несоответствия функциональных параметров его конструктивного исполнения с параметрами окружающей среды. Для устранения этих противоречий анализируются состав и структура конструктивного исполнения технического объекта, выявляются источники, пути и методы устранения противоречий, проводится соответствующее обновление конструкции.

3. Противоречие между техническим объектом и его изготовителем из-за конфликта между предметом труда и производственным работником. Такая ситуация может возникнуть, например, при применении каких-то конструкционных материалов или режимов их обработки, которые наносят ущерб здоровью или превышают возможности человеческого организма. В этом случае особое внимание уделяется обеспечению технологичности и безопасности как конструкции технического объекта, так и используемых конструкционных материалов.

4. Противоречие между техническим объектом и производственной средой . Производственная среда является одной из составляющих окружающей среды. Соблюдение норм и требований к обеспечению сохранности окружающей среды приводит к необходимости создания экологически чистых конструкций, технических изделий и технологий их изготовления. Неизменно возникает конфликт в требованиях повышения качества продукции и снижения ресурсоемкости конструкции изделия. Внесение в нее рациональных технических решений позволяет разумно использовать материальные и топливно-энергетические ресурсы, которыми располагает производство, внедрять безотходную и малоотходную технологию, повышать качество продукции и эффективность производства.

Все четыре выше рассмотренных источника технических противоречий являются внешними , отражая функциональные структурные взаимосвязи технических объектов с окружающей (производственной) средой.

Обратимся теперь к источникам внутренних технических противоречий.

5. Противоречие между целым (конструктивным исполнением, системой) и частью (компонентом, элементом, подсистемой) технического объекта. Оно порождается тем, что целое и часть любого технического объекта не тождественны друг другу ни по выполняемым функциям, ни по своему составу, ни по своей структуре, формируются и обновляются по своим законам. В то же время часть по отношению к целому обладает относительной самостоятельностью в своем развитии. Компоненты, входящие в состав конструкции изделия, имеют различную интенсивность обновляемости. Объединяя элементы в единое конструктивное образование, структура целого исполнения обладает большой инерционностью в своем развитии и обновлении по сравнению с входящими в нее компонентами.

6. Противоречие между содержанием и формой компонентов исполнения технического объекта, суть которого заключена в диалектической взаимосвязи отдельных компонентов. Так, найденная форма изделия, обладая относительно большой стабильностью, сохраняется длительное время, пока накопление количественных изменений в содержании изделия не приведет в силу возникших противоречий к очередным качественным изменениям ее формы.

Многовековая общественно-полезная практика человечества накопила бесконечно большое число приемов устранения технических противоречий, познать которые в полном объеме не представляется возможным. Исходя из этого, рассмотрим лишь небольшое количество типовых приемов, которые являются основной информационной и творческой базой для создания новых технических объектов. Образно говоря, типовые приемы - это универсальные коды или ключи, с помощью которых можно раскодировать и открывать сложные и хитроумные замки решений творческих задач.

Типовые приемы - это взятые из технической литературы, из научно-технических журналов и патентных фондов наиболее часто встречающиеся в проектно-конструкторской практике приемы, разработанные учеными, инженерами, изобретателями прошлых и нынешнего поколений. Очевидно, что абсолютное число таких приемов бесконечно велико и поэтому их стараются определенным образом обобщить в крупные типичные группы и даже создать межотраслевые, отраслевые или проблемные фонды типовых приемов.

Во многих книгах типовые приемы (способы, правила) называют методологическим инструментарием решения творческих и изобретательских задач, поскольку они содержат краткое указание или предписание как преобразовывать имеющийся у разработчика прототип технического объекта и в каком направлении надо вести поиск, чтобы получить желаемое решение.

Из всего множества реально существующих и возможных типовых приемов преобразования компонентов субстанции технических объектов можно выделить следующие пять групп:

1) приемы преобразования формы вещества;

2) приемы преобразования содержания вещества;

3) приемы преобразования энергии;

4) приемы преобразования информации;

5) комплексные энерго-информационно-вещественные приемы, базирующиеся на использовании новых технологий и способов изготовления, транспортировки и применения технических объектов.

Существует два подхода к выбору из известного набора (банка) типовых приемов разрешения технических противоречий наиболее целесообразного (эффективного) приема: эвристический и алгоритмический .

Эвристический подход к выбору и переработке наиболее ценной информации базируется на использовании уникальных и специфических свойств нашего головного мозга. В процессе длительной эволюции головной мозг человека приспособился отбирать из большого массива избыточной информации только наиболее ценную и нужную информацию, отбрасывая всю остальную. Некие особые и, к тому же, неосознанные, правила работы мозга по отбору и переработке информации, включающие в себя этапы «осенения», интуиции и творчества, называют эвристическими. В дальнейшем из этих «правил» в мозге составляются также неосознаваемые «программы» выбора решения.

Алгоритмический подход к выбору типовых приемов разрешения технических противоречий предусматривает выполнение ряда поисковых операций по заранее разработанному алгоритму (правилу).

Современные методы поиска новых решений позволяют рационализировать различные стороны поисковой деятельности. Все известные методы решения творческих задач можно условно разделить на две большие группы по признаку доминирования в них эвристических (интуитивных) или логических процедур и соответствующих им правил деятельности.

Первая группа - это эвристические (интуитивные )методы,которые опираются на активизацию творческой деятельности человека и развитие его творческих способностей на основе развития интуитивных процедур деятельности, фантазии, аналогий и др. В эту группу входят: метод проб и ошибок, метод контрольных вопросов, «мозговой штурм», синектика, морфологический анализ, ассоциативные методы и др.

Вторая группа методов основана на использовании оптимальной логики анализа технического или другого совершенствуемого объекта, закономерностей его развития. Здесь предлагают логические правила анализа и синтеза, сравнения, обобщения, классификации, индукции, дедукции и т.д. Это рациональные (логические) методы решения творческих задач. К ним относятся: алгоритм решения изобретательских задач (АРИЗ), функционально-стоимостный анализ, функционально-физический метод конструирования и т.д.

Современная научно-техническая революция, характерной чертой которой является бурное развитие науки, техники и производства, вошла в противоречие со старыми малопроизводительными способами мышления и поиска новых решений, что привело к созданию эвристики.Под термином «эвристика» понимается определенная совокупность логических приемов и методических правил теоретического исследования и отыскивания истины, которые используются в условиях неполноты исходной информации и не требуют четкой программы управления процессом решения задачи.

Методом проб и ошибок (МпиО) изобретатели пользовались и пользуются при решении самых разнообразных технических задач. Суть его заключается в том, что изобретатель при поиске решения задачи перебирает всевозможные варианты и среди них находит тот, который удовлетворяет поставленным требованиям.

Метод контрольных вопросов впервые использовался для поиска новых идей и наилучших решений творческих задач. Суть этого метода состоит в использовании при поиске решений творческих задач списка специально подготовленных вопросов. Изобретатель отвечает на них и в связи с ними анализирует свою задачу. Одним из лучших считают список вопросов для изобретателей и разработчиков новых технических объектов, составленный Т. Эйлоартом, который представляет собой программу его работы.

Список содержит следующие позиции.

1. Перечислить все качества и определения предполагаемого изобретения. Изменить их.

2. Сформулировать задачи ясно. Попробовать новые формулировки. Определить второстепенные задачи и аналогичные задачи. Выделить главные.

3. Перечислить недостатки имеющихся решений, их основные принципы, сформулировать новые предложения по их устранению.

4. Набросать фантастические, биологические, экономические, молекулярные и др. аналогии.

5. Построить математическую, гидравлическую, электронную, механическую и другие модели (они точнее выражают идею, чем аналогии).

Попробовать различные виды материалов и энергии: газ, жидкость, твердое тело, пену, пасту и др.; тепло, магнитную энергию, свет, силу удара и т.п.; различные длины волн, поверхностные свойства и пр., переходные состояния - замерзание, конденсацию и т. п.

7. Установить варианты, зависимости, возможные логические совпадения.

8. Узнать мнение некоторых совершенно неосведомленных в данном деле людей.

9. Устроить групповое обсуждение, выслушивая любые идеи без всякой критики.

10. Попробовать «национальные» решения: хитрое шотландское, всеобъемлющее немецкое, расточительное американское, сложное китайское и др.

11. Спать с проблемой, идти на работу, гулять, ехать, пить, есть, играть в теннис - все с ней.

12. Бродить среди стимулирующей обстановки (свалка лома, технические музеи, магазины дешевых вещей), пробегать журналы, комиксы.

13. Набросать таблицу цен, величин, перемещений, типов материалов и т.п. разных решений проблемы или ее частей, искать проблемы в решениях или новые комбинации.

14. Определить идеальное решение, разрабатывать другие возможные.

15. Видоизменить решение проблемы с точки зрения времени (скорее или медленнее), размеров, вязкости и т. п.

16. В воображении «залезть» внутрь механизма.

17. Выявить и исключить из дальнейшего обсуждения альтернативные варианты решения проблемы, уводящие в сторону от траектории поиска лучшего решения.

18. Кого и почему интересует решаемая проблема?

19. Кто придумал это первый? История вопроса. Какие ложные толкования этой проблемы имели место?

20. Кто еще решал эту проблему? Чего он добился?

21. Определить общепринятые граничные условия и причины их установления.

Метод мозгового штурма (брейнсторминг) появился в Соединенных Штатах Америки в конце 1930-х годов, он представляет собой двухэтапную процедуру решения задачи: на первом этапе выдвигаются идеи, а на втором они конкретизируются, развиваются. Работа в рамках этапов этого метода (этап выдвижения (генерации) идей и этап анализа выдвинутых идей) должна выполняться при соблюдении ряда основных правил . На этапе генерации их три:

3. Поощрение всех выдвигаемых идей, включая нереальные и фантастические.

На этапе анализа основное правило - это выявление рациональной основы в каждой анализируемой идее.

Рассмотрим последовательность организации и проведения мозгового штурма.

1. Оптимальное количество людей, решающих поисковую задачу методом «мозгового штурма», должно составлять 12-25 человек. Половина из них генерирует идеи, а другая их анализирует. В группу «генераторов» включают людей с бурной фантазией, склонных к абстрактному мышлению, но не скептиков; нельзя сюда включать и людей, присутствие которых может в какой-то степени стеснять других (например, руководителей и подчиненных). Желательно, чтобы в состав этой группы вошли и специалисты-смежники, и один-два человека со стороны, не имеющие отношения к решаемой задаче. В группу «экспертов» вводят людей с аналитическим, критическим складом ума. Руководит «сессией» ведущий, наиболее опытный участник «мозгового штурма»,

2. Основная задача «генераторов» должна заключаться в предложении максимального количества идей решения поисковой задачи (в том числе идей фантастических, а иногда и шутливых). Идеи протоколируются или фиксируются с помощью магнитофона. Задача «экспертов» состоит в отборе приемлемых идей. Ведущий, не прибегая к приказаниям и критическим замечаниям, задает вопросы, иногда подсказывает и уточняет высказывания участников обсуждения, следит, чтобы беседа не прерывалась.

3. Продолжительность «сессии» должна зависеть от сложности решаемой задачи, но не превышать 30-50 мин.

4. Между участниками «мозгового штурма» должны быть установлены свободные и доброжелательные отношения. При генерации идей запрещается всякая критика, скептические улыбки, жесты и мимика. Надо, чтобы идеи, выдвинутые одним участником, подхватывались и развивались другими. Анализ идей группой «экспертов» проводится очень внимательно. Без тщательного анализа не должны быть отвергнуты даже самые фантастические или абсурдные идеи. При этом в ходе анализа (идеи оцениваются, например, в десятибалльной системе), учитывается мнение каждого «эксперта». В случаях расхождений в оценке проводят дополнительный анализ.

5. Если «сессия» окончилась безуспешно и задача не решена, повторять ее с предыдущими установками нет смысла. Нужно заменить состав групп или изменить формулировку задачи, оставив конечную цель.

Опыт использования «мозгового штурма» показывает, что генерации идей способствуют такие приемы, как аналогия (сделай так, как это делалось при решении другой задачи), инверсия (сделай наоборот), фантазия (предложи нечто неосуществимое) и пр. Большую роль играют здесь и субъективные качества участников штурма - наличие прошлого опыта, боязнь оказаться бесполезным, отсутствие творческого настроения, усталость и т. д.

Синектика , так же как и мозговой штурм, предполагает коллективный поиск новых решений. В 1961 г. в США вышла книга У. Гордона «Синектика: развитие творческого воображения». Книга открыла новую главу в истории методов поиска новых решений. Описанный в ней подход к организации творчества, правила работы и обучения оказали большое влияние на разработчиков новой техники, методологов.

Идея синектики состоит в объединении отдельных творцов в единую группу для совместной постановки и решения конкретных задач. Метод включает в себя практические подходы к сознательному решению и использованию бессознательных механизмов, проявляющихся у человека в момент творческой активности.

Еще одно отличие синектики от мозгового штурма. Подбор группы генераторов мозгового штурма состоит в выявлении активных творцов, обладающих различными знаниями. Их эмоциональные типы особо не учитываются. В синектике же, наоборот, скорее будут выбраны два человека с одним и тем же багажом знаний, если при этом у них значительны отличия в эмоциональной сфере.

Организация работы в синектике включает следующие основные моменты:

Первоначальная постановка проблемы;

Анализ проблемы и сообщение необходимой вводной информации. Роль эксперта, как правило, выполняет учитель или учащийся, обладающий определённой подготовкой.

Выяснение возможностей решения проблемы;

Переформулирование проблемы каждым учащимся в своём собственном понимании;

Совместный выбор одного из вариантов переформулированной проблемы;

Выдвижение образных аналогий - ключевой этап для синектики;

- «подгонка» намеченных группой подходов к решению или готовых решений к требованиям, заложенным в постановке проблемы.

Важнейшим элементом синектического процесса является практическая реализация полученных в процессе работы идей.

Операторы синектики - конкретные психологические инструменты, которые поддерживают и ведут вперед весь творческий процесс. Их следует отличать от психологических состояний – таких, как эмпатия, вовлеченность, игра и пр. Психологические состояния являются основой творческого процесса, но они не управляемы. Операторы синектики, ее механизмы предназначены для побуждения, активизации этих сложных психологических состояний.

Решая задачу, бессмысленно пытаться убедить себя или группу быть творческим , интуитивным, вовлеченным или же допускать очевидные несоразмерности. Необходимо дать средства, позволяющие человеку делать это. Глобально синектическая работа включает в себя два базовых процесса:

Превращение незнакомого в знакомое;

Превращение знакомого в незнакомое.

Первое, что делает человек, которому предстоит решить проблему - пытается ее понять. Этап превращения незнакомого в знакомое очень важен, он позволяет человеку свести новую ситуацию к уже испытанным, известным. Этот этап ведет за собой огромное разнообразие решений, но требование новизны - это, как правило, требование новой точки зрения, взгляда на проблему. Большинство из проблем не являются новыми. Смысл в том, чтобы сделать их новыми, создав тем самым потенциал для выхода на новые решения.

Превратить знакомое в незнакомое - означает исказить, перевернуть, переменить повседневный взгляд и реакцию на вещи, события. В «известном мире» предметы всегда имеют свое определенное место. В то же время различные люди могут видеть один и тот же объект под различными углами зрения, неожиданными для других. Настаивать на рассмотрении известного как неизвестного - основа творчества.

Основные понятия классической ТРИЗ, в том числе, противоречия, были определены еще в книгах Г.С. Альтшуллера и с тех пор не подвергались серьезной ревизии и уточнению.

Сегодня ТРИЗ применяется не только в сфере развития технических систем, но и в других сферах человеческой деятельности, в частности, в сферы развития информационных и бизнес-систем. Для успешного применения ТРИЗ в этих сферах требуется согласование понятий, в том числе, противоречий, с понятиями, которые используются специалистами по информационным и бизнес-системам.

Сегодня уже предпринимаются попытки, например, в , провести такую ревизию понятий. Однако пока не решены некоторые проблемы, в том числе,

  1. Плохо определена связь между административным и техническим противоречием.
  2. Нет единой модели, описывающей разные виды противоречий, в частности, как соотносится противоречие альтернативных систем с техническим и физическим противоречиями.
  3. Наименования и структура видов противоречий плохо подходят для использования в других (не-технических) областях.

В данной статье предлагается общая схема понятия противоречий, в которой устранены указанные недостатки.

Требования и ограничения

Понятие «требование» является одним из ключевых в инженерной деятельности. Пожалуй, наиболее зрелые технологии управления требованиями сегодня используются в таких сферах, как системная инженерия и инженерия программного обеспечения .

В системной инженерии сегодня принято различать 2 уровня требований:

  1. Система рассматривается в виде «чёрного ящика». Требования к системе описывают, что от системы хотят ее стейкхолдеры, а также что необходимо надсистеме, в которую входит рассматриваемая система. Такого рода требования называются требованиями стейкхолдеров .
  2. Система рассматривается в виде «прозрачного ящика» на различных стадиях жизненного цикла. Соответственно, такие требования включают предположения о том, как система должна быть устроена (состав и структура системы), а также как она должна себя вести (функционирование системы). Такого рода требования называются системными требованиями .

Очевидно, что системные требования связаны с требованиями стейкхолдеров. По сути, системные требования описывают способы, посредством которых в системе должны реализовываться требования стейкхолдеров.

Особый вид требований в системной инженерии – это ограничения, которым должна удовлетворять система. Широко применяемое в ТРИЗ понятие «нежелательный эффект» полностью соответствует понятию «ограничение».

Пример. Компания «К» внедрила систему электронного документооборота. Данная система позволила планировать сроки обработки и длительность маршрута каждого документа в подразделениях компании «К». Для этого в компании «К» для каждого вида документа установлены нормативные сроки его обработки в подразделении.
Однако в деятельности компании «К» присутствуют документы, которые поступают от внешних контрагентов «А» (накладные, счета и т.п.), а также документы, маршрут обработки которых предполагает их передачу контрагентам «А» и последующий возврат в компанию «К» (коммерческие предложения, договоры, проектная документация и т.п.).
Одно из возможных решений – это согласование с контрагентами «А» для определенных видов документов нормативных сроков их обработки у контрагента. Но не все контрагенты согласны такие нормативы устанавливать и соблюдать. В некоторых случаях согласование нормативов невозможно из-за сроков или по каким-либо другим причинам.

В приведенном выше примере можно выделить следующие требования стейкхолдеров:

  1. Руководство компании «К» хочет, чтобы в системе документооборота устанавливались сроки и маршруты обработки каждого документа.
  2. Руководство контрагента «А» хочет, чтобы документы компании «К» обрабатывались без нормативов.

Системные требования :
(СТ1) Для каждого вида документа и каждого вида обработки в подразделениях компании «К» должны быть установлены сроки выполнения.

Системное ограничение :
(СО1) Для документов, обрабатываемы контрагентами «А», сроки выполнения обработки документов у контрагента неизвестны.

Общая схема противоречий

Административное противоречие

Известно следующее определение административного противоречия (АП): «нужно что-то сделать, а как сделать – неизвестно…» .

В рамках предлагаемой схемы АП может быть представлено как требование и неизвестный (или не определенный) способ его выполнения. Схема административного противоречия представлена на следующем рисунке.

Из представленной схемы следует, что АП описывает неопределенную изобретательскую ситуацию. Для ее уточнения и выявления противоречия необходимо выбрать известный способ выполнения требования.

Например, в приведенном выше примере требование СТ1 (для каждого вида документа и каждого вида обработки в подразделениях компании «К» должны быть установлены сроки выполнения) не может быть реализовано, для случая, когда документ обрабатывается контрагентом. В этом случае имеет место ограничение СО1 (для документов, обрабатываемы контрагентами «А», сроки выполнения обработки документов у контрагента неизвестны).

В рассматриваемом примере административное противоречие может быть определено следующим образом:

Как реализовать требование СТ2 (в системе документооборота нужно установить в нормативный срок обработки документа у контрагента «А»)?

Техническое противоречие

В ТРИЗ техническое противоречие (ТП) определено как …взаимодействия в системе, состоящие, например, в том, что полезное действие вызывает одновременно и вредное. Или – введение (усиление) полезного действия, либо устранение (ослабление) вредного действия вызывает ухудшение (в частности, недопустимое усложнение) одной из частей системы или всей системы в целом .

В рамках предлагаемой схемы ТП может быть представлено следующим образом: известный способ (или его изменение) приводит к возникновению противоречия между 2-мя требованиями. Схема ТП представлена на следующем рисунке.

Из схемы следует, что ТП описывает отношение между способом и противоречивыми требованиями. Соответственно, мы можем использовать для обозначения данной структуры термин «противоречие требований». Данный термин уже используют М. Рубин и В. Кияев в .

Пример. Для реализации требования СТ2 (в системе документооборота нужно установить в нормативный срок обработки документа у контрагента «А») можно использовать следующий известный способ: согласовать с контрагентом «А» нормативный срок обработки документа. Однако использование данного способа нарушит одно из требований стейкхолдеров (руководство контрагента «А» хочет, чтобы документы компании «К» обрабатывались без нормативов).
В этом случае мы получаем противоречие:
Если
согласовать нормативные сроки обработки документов с контрагентом «А»,
То
(+) мы сможем реализовать требование СТ1 (в системе документооборота нужно установить в нормативный срок обработки документа у контрагента «А»),
Но
(-) не реализуем требование стейкхолдера (руководство контрагента «А» хочет, чтобы документы компании «К» обрабатывались без нормативов).

Разделение противоречия на ТП1 и ТП2 в АРИЗ в рамках предлагаемой схемы противоречий представляет собой операцию со способом: изменение способа порождает ТП1, не изменение способа – ТП2. В частном случае, это может быть использование и не использование известного способа.

Например, в системе документооборота ТП1 может быть сформулировано так, как указано выше, а ТП2 – следующим образом:
Если
Не согласовать нормативные сроки обработки документов с контрагентом «А»,
То
i>(+) мы обеспечиваем реализацию требования стейкхолдера (руководство контрагента «А» хочет, чтобы документы компании «К» обрабатывались без нормативов).
Но
(-) мы не сможем реализовать требование СТ1 (в системе документооборота нужно установить в нормативный срок обработки документа у контрагента «А»).

Противоречие альтернативных систем

Понятие альтернативного технического противоречия (АТП) или противоречия альтернативных систем предложено В. Герасимовым и С. Литвиным в методе объединения альтернативных систем в надсистему, описанном в . В соответствии с этим методом пара технических противоречий формулируется в соответствии со следующим шаблоном :

АТП1 : Если система реализована в виде базовой системы, то ее достоинством является (указать), но при этом имеется недостаток (указать).
АТП2 : Если система реализована в виде (указать название альтернативной системы), то ее достоинством является (указать устраненный недостаток базовой системы), но при этом имеется недостаток (указать).

В рамках предлагаемой схемы альтернативное техническое противоречие (АТП) может быть представлено следующим образом.

В ТРИЗ физическое противоречие (ФП) определено следующим образом:
… часть рассматриваемой системы должна находиться в таком-то физическом состоянии, чтобы удовлетворять одному требованию задачи, и должна находиться в противоположном состоянии, чтобы удовлетворять другому требованию задачи .

М. Рубин и В. Кияев в предложили новое наименование для ФП – противоречие свойств (ПС). Их определение выглядит так:
формулировка противоположного состояния того или иного свойства одного элемента системы, необходимое для реализации противоположенных требований к системе.

Другими словами, для определения ФП (ПС) необходимо выделить элемент, который должен обладать противоположными свойствами, чтобы удовлетворить противоречивым требованиям. Очевидно, что объект с противоположными свойствами – это элемент, который входит в состав способа, который был выбран в АП и рассматривался в ТП.

В рамках предлагаемой схемы ФП (ПС) может быть представлено следующим образом:

Например, в противоречии, сформулированном для системы документооборота, мы рассматриваем способ (согласовать нормативные сроки обработки документов с контрагентом «А»). Объект, который лежит в основе противоречия – это срок обработки документа у контрагента «А».

Соответственно, противоречие свойств можно сформулировать следующим образом:
нормативный срок должен быть установлен , чтобы мы сможем реализовать требование СТ1 (в системе документооборота нужно установить в нормативный срок обработки документа у контрагента «А»),

И
нормативный срок не должен быть установлен , чтобы мы смогли реализовать требование стейкхолдера (руководство контрагента «А» хочет, чтобы документы компании «К» обрабатывались без нормативов).

В случае АТП элемент является частью способа, реализованного в базовой системе.

Заключение

Предлагаемая общая схема противоречия отличается от существующих в ТРИЗ определений тем, что для описания противоречия используются понятия «требование» и «способ реализации требований».

Использование в схеме противоречия способа реализации требований позволяет установить связь между административным и техническим противоречием. На уровне административного противоречия нам не известен (либо не выбран) способ реализации требования. Выбирая способ, решатель переходит от административного к техническому противоречию (противоречию требований). Затем, выбирая элемент способа, решатель переходит от ТП (противоречия требований) к ФП (противоречию свойств).

Использование в структуре модели противоречия требований позволяет интегрировать ТРИЗ с достаточно развитыми в различных сферах деятельности технологиями управления требованиями. В перспективе данная схема противоречий и методы работы с ними могут быть интегрированы в системы управления требованиями (RMS) .

Литература

  1. Рубин М.С., Кияев В.И. Основы ТРИЗ и инновации. Применение ТРИЗ в программных и информационных системах: Учебное пособие. 2013.
  2. ISO/IEC 15288:2002. System Engineering. System Life-Cycle Processes.
  3. Software Engineering Body of Knowledge, IEEE, 2004
  4. Альтшуллер Г.С. Найти идею, Введение в теорию решения изобретательских задач, Петрозаводск, Скандинавия, 2003
  5. Альтшуллер Г.С. АРИЗ – значит победа. В сб. Правила игры без правил / Сост.: А.Б. Селюцкий, Петрозаводск, Карелия, 1989.
  6. Альтшуллер Г.С. Алгоритм решения изобретательских задач АРИЗ-85В. 1985.
  7. Герасимов В.М., Литвин С.С. Зачем технике плюрализм? Развитие альтернативных технических систем путем их объединения в надсистему. Ленинград. Журнал ТРИЗ, №1, 1990.
  8. Альтшуллер Г.С., Селюцкий А.Б. Крылья для Икара. Как решать изобретательские задачи. Петрозаводск, Карелия, 1980.