16.06.2019

Что такое иерархическая система. Иерархические системы управления (ису). г - многосвязная


Организацию любой системы. Поскольку система обладает свойством иерархичности (по определению), то элементом системы является подсистема. И только подсистема низшего уровня (уровня, на котором подсистема уже неделима) является собственно элементом. С другой стороны, конкретную систему можно рассматривать как подсистему большей системы (системы более высокого уровня). ледовательно, в системе можно выделить внутренние связи между ее п дсистемами и связи внешние, устанавливаемые ею с другими системами той большой системы, в которую она входит. Например, если факультет ВУЗа рассматривать как систему, то по дсистемами последней являются кафедры, и в то же время сам факультет наряду с другими факультетами является подсистемой учебного заведения.

Если для архитектора дом плюс отопительная система плюс электросистема плюс водоснабжение -одна большая система, то для инженера-теплотехника системой является отопительная система, а само здание есть внешняя среда. Для социолога -семья есть система, а дом, квартира -это окружение, или внешняя среда для этой семьи.

Если внутренние связи в системе в некотором смысле "сильнее" внешних, то система может существовать как таковая и явля ься подсистемой большей системы. Если же внутренние связи ослабевают и увеличивается сила или число внешних связей с отдельными элементами (подсистемами данной системы), то целостность нарушается, и система в рамках большей системы перестает существовать как целое.


Иерархичность системы. Элементы системы находятся в различных отношениях между собой и место каждого из них является местом на иерархической лестнице системы.

Система хотя и проявляет себя как единичный и целостный объект, но состоит из элементов (подсистем, частей), т.е., систем более низкого порядка. В то же время она сама может быть системой (подсистемой, частью), входящей в состав системы более высокого порядка.

Все элементы нашего мира взаимосвязаны в той или иной степени. Отсюда следует, что в принципе существует только одна Система под названием "Мир" (Вселенная, и т.д.), а всё, что в нём существует, является его элементами (подсистемами, СФЕ, частями, элементами, членами, и т.д.). Мы пока не знаем ни целей этой Системы, ни даже того, существует ли эта Система (Вселенная, доступная нам в изучении) в единственном числе, или их много. Возможно существуют бесконечные продолжения в стороны более высокого или низкого порядков.

Но в любом случае биосфера является органичным элементом этого мира и, в то же время, окружающей средой для организма человека. А организм человека является естественным элементом биосферы, которая воздействует на него и вызывает его реакции. Именно воздействия внешней среды могут привести к различным болезням – поражениям различных СФЕ организма.

Иерархичность систем обусловлена иерархичностью целей. У системы есть цель. А для достижения этой цели необходимо решить ряд более мелких подцелей, для которых большая система содержит ряд подсистем различной степени сложности, от минимальной (СФЕ) до максимально возможной сложности.

Иерархичность – это различие между целями системы и целями её элементов (подсистем), которые являются для неё подцелями. Причём, системы более высокого порядка ставят цели перед системами более низкого порядка. Таким образом, цель высшего порядка подразделяется на ряд подцелей (целей более низкого порядка). Иерархия целей определяет иерархию систем. Для достижения каждой из подцелей требуется специфический элемент (следует из закона сохранения). Управление в иерархической лестнице осуществляется согласно закону "вассал моего вассала не мой вассал". Т.е., прямое управление возможно лишь на уровне "система – собственная подсистема", и невозможно управление системой подсистемы её подсистемы. Царь, если он хочет отрубить голову рабу, он не делает это сам, а приказывает своему подчинённому палачу.

Любой живой организм является частью (системой, подсистемой) системы более высокого порядка – семьи, рода, вида и мира живых существ. А эти системы более высокого порядка, в свою очередь, являются элементами другой системы ещё более высокого порядка, называемой биосферой, которая сама является элементом системы ещё более высокого порядка, называемого "планетой Земля". Элементы живого организма (системы и подсистемы, состоящие из клеток, жидкостей и пр.) являются системами более низкого порядка по отношению к нему самому. Цель организма как системы – выжить в условиях биосферы. Эта цель подразделяется на ряд более мелких целей (подцелей) – двигаться, питаться, снабжать себя кислородом, удалять из себя все конечные продукты метаболизма, и т.д. Для каждой из этих подцелей существуют специфические системы (подсистемы, элементы), каждая из которых имеет только их специфические функции.

2. Суть преобразований в системе

Иерархичность системы состоит в том, что она может быть рассмотрена как элемент системы более высокого порядка, а каждый ее элемент, в свою очередь может являться системой более низкого уровня.

Эмерджентность определяет, что сумма свойств элементов не равна свойствам системы.

Функциональность предопределяет, что все элементы системы действуют и взаимодействуют в рамках своего функционального назначения.

Необходимым условием системного образования является:

наличие как минимум двух элементов;

наличие связи между элементами;

наличие функции;

наличие цели;

наличие тектологической границы.

Элемент – это неделимая часть системы. Дальнейшее деление элементов приводит к разрушению его функциональных связей с другими элементами и получению свойств выделенной совокупности, неадекватной свойствам элемента как целого.

Связь - это то, что соединяет элементы и свойства системы в единое целое. Связи между элементами и подсистемами одного и того же уровня называются горизонтальными, а связи системы со всеми подсистемами соподчиненных иерархических уровней называются вертикальными.

Подсистема - выделенное по определенным правилам и признакам целенаправленное подмножество взаимосвязанных элементов любой природы.

Каждую подсистему можно разделить на более мелкие подсистемы. Система отличается от подсистемы только лишь правилом и признаками объединения элементов. Для системы правило является общим, а для подсистем – более индивидуальным. Исходя из этого, систему можно представить и как нечто целое, состоящее из подсистем, каждую из которых можно рассматривать относительно самостоятельно. Подсистемы, выделенные на одном горизонте, являются подсистемами одного уровня. Деление подсистем на подсистемы более низкого уровня называется иерархией и означает подчинение более низкого уровня системы более высокому.

Тектологические границы как область соприкосновения взаимодействия нескольких систем (элементов систем), являются контурами системы.

Цель системы – это "желаемое" состояние ее выходов, т.е. некоторое значение или подмножество значений функций системы. Цель может быть заданной извне или поставлена системой самой себе, в этом случае цель будет отражать внутренние потребности системы.

Функция системы задается из вне и показывает, какую роль данная система выполняет по отношению к более общей системе, в которую она включена составной частью, наряду с другими системами, выступающими для нее внешней средой. Любое изменение функции, производимое средой, вызывает смену механизма функционирования системы, а это приводит к изменению структуры системы и связей. Система существует пока она функционирует.

Структура системы представляет собой совокупность устойчивых связей и отношений элементов, конкретизированных по величине, направлению и назначению.

Множество систем, существующих в окружающем нас мире, можно классифицировать в зависимости от ряда признаков.

Наиболее часто используются следующие подходы к классификации:

по взаимодействию с окружающей средой;

по степени сложности;

по возможности действия системы во времени;

по назначению объекта;

по формальным свойствам формальной системы.

По взаимодействию с окружающей средой системы подразделяются на закрытые и открытые.

По степени сложности различают простые и сложные. Простые системы характеризуются небольшим количеством внутренних и внешних связей.

По возможности действия системы во времени системы делятся статические и динамические. Статические системы характеризуются не изменчивостью, т.е. их параметры не зависят от времени. Динамические системы, в отличие от статических, изменчивы, т.е. их параметры связаны со временем.

По назначению объекта системы подразделяются на: организационные, энергетические, технические, управленческие и т.д.

По формальным свойствам формальной (например, математической) системы: линейные, нелинейные, непрерывные, дискретные и другие системы.

С позиции системного подхода управление рассматривается как многомерная система и предполагает выделение в системе:

управляемой системы, являющейся объектом управления;

управляющая система, субъект управления, является частью системы;

управления, осуществляющей управленческое воздействие.

    Страта (уровень абстракции и уровень описания) – каждая система может быть описана не менее чем на 2-х уровнях описания:

    1. на физическом уровне – описываются на языке физических законов процессы, происходящие в компьютере при переработке информации,

      на языке информатики - применяется операционная система, языки программирования, трансляторы и т.д.

Например: Производственный процесс описывается 3 уровнями: 1. На языке физических законов, 2. На языке теории управления, 3. На языке экономики, т.е. продукт труда, рассматривается как товар.

    Слой (уровень принятия решения)

    Эшелон (уровень расположения или уровень подчинения элементов)

Многоуровневые иерархические системы

Многоуровневая система представляется с использованием 3-ех понятий уровней:

    “Страта” - уровень описания или абстрагирования;

    “Слой” - уровень сложности принимаемого решения;

    “Эшелон” - организационный уровень.

Рассмотрим более подробно каждый из уровней.

Страта” - уровень описания или абстрагирования.

Действительно сложную систему почти невозможно описать полно и детально. Основная дилемма состоит в нахождении компромисса между простотой описания и необходимостью учета многочисленных поведенческих характеристик сложной системы. Разрешение этой дилеммы ищется в иерархическом описании. Система задается семейством моделей, каждая из которых описывает поведение системы с точки зрения различных уровней абстрагирования. Для каждого уровня существует ряд характерных особенностей и переменных, законов и принципов, с помощью которых и описывается поведение системы. Чтобы иерархическое описание было эффективным, необходима как можно большая независимость моделей для различных уровней системы. Уровни абстрагирования, включающие стратифицированное описание называются стратами.

Для иллюстрации приведем несколько примеров созданных человеком систем, требующих стратифицированного описания. Рассмотрим модель электронной вычислительной машины. Ее функционирование обычно описывается не менее чем на двух стратах (рис. 1).

Рис. 1. Стратифицированное представление ЭВМ с помощью 2-х страт.

На первой страте система описывается на языке физических законов, в то время как на второй страте мы имеем дело с абстрактными нефизическими понятиями, такими, как двоичные разряды или информационные потоки. На страте физических законов нас интересует функционирование различных электронных компонентов. На страте обработки информации мы имеем дело с проблемами вычисления, программирования и т. д., а стоящие за этим физические законы не рассматриваются.

Другой пример стратифицированной системы, созданной человеком, автоматизированный промышленный комплекс. Полностью автоматизированный промышленный комплекс обычно моделируется на трех стратах:

    физические процессы обработки материалов и преобразование энергии;

    управление и обработка информации;

    экономические процессы, где рассматриваются такие показатели как производительность и прибыльность и т.п.

Графически стратифицированное представление автоматизированного промышленного производства приведено на рис. 2.

Рис. 2. Стратифицированное представление автоматизированного промышленного производства

Заметим, что на любой из трех страт мы имеем дело с тем же самым предметом – основным физическим продуктом. На первой страте он рассматривается как физический объект, который подлежит обработке в соответствии с физическими законами; на второй страте его рассматривают как управляемую переменную; на третьей страте это уже товар как экономическая категория. Для каждого аспекта этой системы имеется свое описание и своя модель, однако система, конечно, остается одной и той же.

Слои” - уровень сложности принимаемого решения.

Почти в любой реальной ситуации принятие решения существует две предельно простые, но чрезвычайно важные особенности:

    Когда приходит время принимать решения, принятие и выполнения нельзя откладывать;

    Неясность относительно последствий различных альтернативных действий и отсутствие достаточных знаний о имеющихся связях препятствуют достаточно полному формализованному описанию ситуации, необходимому для рационального выбора действий.

Функциональная иерархия принятия решения учитывает три основные аспекта проблемы принятия решения в условиях полной неопределенности:

    выбор стратегии, которая должна быть использована в процессе решения;

    уменьшением или устранением неопределенности;

    поиском предпочтительного или допустимого способа действий, удовлетворяющего заданным ограничениям.

Обычно же функциональная иерархия состоит из трех слоев:

    Слой выбора: задача этого слоя - выбор способа действий т. Принимающий решение элемент на этом слое получает внешние данные (информацию) и, применяя тот или иной алгоритм (определяемый на верхних слоях), находит нужный способ действий.

    Слой обучения, или адаптации. Задача этого слоя - конкретизация множества неопределенностей U, с которым имеет дело слой выбора. Следует заметить, что множество неопределенностей U рассматривается здесь как множество, включающее в себя все незнание о поведении системы и отражающее все гипотезы о возможных источниках и типах таких неопределенностей. U получают, конечно, с помощью наблюдений и внешних источников информации. Назначение, второго слоя - сужение множества неопределенностей U .

    Слой самоорганизации. Этот слой должен выбирать структуру, функции и стратегии, используемые на нижележащих слоях, таким образом, чтобы по возможности приблизиться к глобальной цели (обычно определяемой в терминах, которые трудно сделать операционными). Если общая цель не достигается, этот слой может изменить стратегию обучения на втором слое в случае неудовлетворительности оценки неопределенности.

Графически функциональная многослойная иерархия решений приведена на рис. 3.

Рис. 3. Функциональная многослойная иерархия решений.

Многоэшелонные системы: организационные иерархии.

Это понятие иерархии подразумевает, что: 1) система состоит из семейства четко выделенных взаимодействующих подсистем; 2) некоторые из подсистем являются принимающими решения (решающими) элементами и 3) принимающие решения элементы располагаются иерархически в том смысле, что некоторые из них находятся под влиянием или управляются другими решающими элементами.

Блок-схема системы такого типа приведена на рис. 4. Уровень в такой системе называется эшелоном. Эти системы мы будем называть также многоэшелонными, многоуровневыми.

Рис. 4. Многоуровневая организационная иерархия; многоэшелонная система.

Рис. 5. Вертикальное распределение задач для организации иерархий.

Рис. 6. Многослойное представление функционирования решающих элементов многоэшелонной системы.

Рис.7. Представление решающих элементов, образующих многослойную иерархию в виде многослойных и многоэшелонных иерархий.

Большая система, как это кратко было описано в главе 1, - это сложная система, составленная из множества компонентов или меньших подсистем, которые выполняют свои функции, имеют общие ресурсы, и управляемая взаимосвязанными целями и ограничениями (Machmoud, 1977; Jamshidi, 1983). Хотя взаимодействие подсистем может быть организованно в различных формах, одна из общеизвестных - это иерархическая, которая естественна для экономики, менеджмента, в управлении предприятиями, в смешанных отраслях промышленности, таких как роботостроение, производство нефти, стали и бумаги. В этих иерархических структурах, подсистемы расположены на уровнях с различными степенями иерархичности. Подсистема на каком-либо уровне управляет или координирует подсистемы, расположенные на уровне ниже ее, и, в свою очередь, управляется или координируется подсистемой расположенной уровнем выше. Рисунок 4.1 показывает типичную иерархическую (многоуровневую) систему. Верхний уровень управления, иногда его называют координатор высшего уровня (supremal coordinator), можно сравнить с советом директоров корпорации, в то время как другие уровни можно сравнить с президентом, вице-президентом, директорами и т.д. Низший уровень может быть, например, управляющим завода, директором магазина и т.д. тогда как сама большая система - это корпорация. Несмотря на то, что представление иерархической структуры кажется вполне естественным, ее точное поведение еще не совсем изучено, из за того, что сделано мало исследований в области больших систем (March and Simon, 1958). Mesarovic и др. (1970) представили один из самых ранних формальных количественных подходов к иерархической (многоуровневой) системе.С тех пор было сделан много работ в этой области (Schoeffler and Lasdon, 1966; Benveniste et al., 1976; Smith and Sage, 1973; Geoffrion, 1970; Schoeffler, 1971; Pearson, 1971; Cohen and Jolland, 1976; Sandell et al., 1978; Singh,1980; Jamshidi, 1983; Huang and Shao, 1994a,b). Заинтересованный читатель может найти относительно исчерпывающую информацию об управлении многоуровневыми системами и их применении в работе Mahmoud (1977).

В этом разделе дано описание понятия «иерархия», свойств и типов иерархических процессов и представлены некоторые причины для их существования. Полная оценка иерархических методов представлена в разделе 4.6.

Ниже представлены основные свойства иерархических систем, хотя они не общеприняты:

1. Иерархическая система состоит из управляющих блоков, которые организованны по принципу пирамиды.

2. У системы есть общая цель, которая может совпадать или не совпадать с целью отдельных компонентов системы.

3. Различные уровни иерархии системы многократно обмениваются информацией между собой (обычно вертикально).

4. С увеличением уровня временной диапазон тоже увеличивается, то есть компоненты нижних уровней быстрее, чем компоненты верхних.

В иерархических (многоуровневых системах) можно выделить три основные структуры, в зависимости от параметров модели, искомых переменных, поведения и окружающей среды, изменчивости и существования множества взаимоисключающих целей и задач.

1. Многопластовая иерархическая структура. В этой многоуровневой структуре уровни называют пластами. Подсистемы нижнего уровня дают более точное описание большой системы, чем подсистемы верхнего уровня.

2. Многослойная иерархическая структура. Эта структура является результатом сложности процесса регулирования. Задачи управления распределены вертикально, как показано на рисунке 4.2 (Singh and Titli, 1978). В многослойной системе, которая изображена на рисунке, регуляция (на первом уровне) является прямым управлением, а за ним следует оптимизация (вычисление контрольных точек регуляторов), адаптация (непосредственная адаптация закона управления и модели управления) и самоорганизация (выбор модели и управление как функция параметров окружающей среды).

3. Многозвенная иерархическая система. Это самая распространенная из всех трех структур; она состоит из нескольких подсистем, которые располагаются на уровнях таким образом, что каждый уровень (как описано выше) может управлять подсистемами нижнего уровня, и управляется подсистемами верхних уровней. Эта структура, изображенная на рис 4.1, принимает во внимание взаимоисключающие цели и задачи различных подуровней. Другими словами, ступени высшего уровня достигают взаимоисключающих целей путем ослабления взаимодействия между ступенями низшего уровня. Распределение задачи управления данной структуры показано на рисунке 4.2 и, в отличие от многослойной структуры, - горизонтально.

Кроме вертикального и горизонтального распределения задач управления, существует третий способ - временное или функциональное распределение. Это распределение, дающее подсистемам функциональную оптимизацию проблемы, заключается в декомпозиции задачи на конечное число простых задач оптимизации на нижнем уровне и в результате дает немалое сокращение вычислений. Эта схема использовалась для иерархического управления дискретными системами у Jamshidi (1983).

Далее в этой главе говорится о том, как можно эффективно управлять иерархическими системами, используя процессы, известные как декомпозиция и согласование. Эти два процесса представлены на рис 4.3. В итоге, определение иерархического управления: (а) декомпозиция - разделение системы на множество подсистем, и (б) согласование работы этих подсистем, пока не будет достигнуто оптимальное управление всей системой (посредством многоуровневого итеративного алгоритма).

В разделе 4.2 описана возможность применения согласования для иерархических систем. раздел 4.3 посвящен управлению по разомкнутому контуру. Управлению по замкнутому контуру посвящен раздел 4.4, так же в нем даны определения «interaction prediction» и метода структурных возмущений. В разделе 4.5 описано иерархическое управление, основанное на разложение на ряды Тейлора и Чебышева. Проблема управления решается линейными алгебраическими уравнениями. На примерах показаны различные методы решений. Оптимизация линейных и нелинейных иерархических систем описана в главе 6. раздел 4.6 содержит дальнейшее развитие методов иерархического управления.

Одним из главных средств преодоления организованной сложности системы - это декомпозиция, т. е. деление системы на части (так называемые «черные ящики») и организация этих частей в иерархическую систему. Расчленение системы на соподчиненные части производится так, чтобы каждая часть содержала объекты, наиболее тесно связанные друг с другом. Следовательно, расчленение системы производится по слабым связям.

Декомпозиция является условным приемом, позволяющим в конечном итоге оценить степень сложности объекта и привести его к некоторым конечным элементам, анализ которых может быть выполнен известными методами. Будем считать, что элемент - это часть системы, дальнейшее разделение которого приводит к нарушению функциональных связей элемента и получению свойств выделенной совокупности, не адекватных свойствам элемента как целого.

Выгода в использовании «черных ящиков» заключается в том, что пользователю необходимо знать лишь вход и выход «черного ящика» и его назначение, т. е. выполняемую функцию, не вдаваясь в принципы работы и используемые алгоритмы. В обыденной жизни мы достаточно часто сталкиваемся с «черными ящиками» и охотно пользуемся ими. Например, мы используем принтер для подготовки документов, не зная, каким образом он производит перекодирование и печать информации. Мы можем заменить принтер на другой при поломке или на более современный, не будучи специалистами по техническому обеспечению. Идея организации «черных ящиков» в иерархические структуры взята человеком у природы. Все сложные системы Вселенной организованы в иерархии. И сама Вселенная включает галактики, звездные системы, планеты и т. д.

Иерархическая система

Если множество элементов объединено в систему по определенному признаку, то всегда можно ввести некоторые дополнительные признаки для разделения этого множества на подмножества, выделяя тем самым из системы ее составные части - подсистемы. Возможность многократного деления системы на подсистемы приводит к тому, что любая система содержит ряд подсистем, полученных выделением из исходной системы. В свою очередь, эти подсистемы состоят из более мелких подсистем и т. д.

Подсистемы, полученные выделением из одной исходной системы, относят к подсистемам одного уровня или ранга. При дальнейшем делении получаем подсистемы более низкого уровня. Такое деление называют иерархией (деление должностей на высшие и низшие, порядок подчинения низших по должности лиц высшим и т. п.). Одну и ту же систему можно делить на подсистемы по-разному - это зависит от выбранных правил объединения элементов в подсистемы. Наилучшим, очевидно, будет набор правил, который обеспечивает системе в целом наиболее эффективное достижение цели.

При делении системы на подсистемы следует помнить о правилах такого разбиения:

    каждая подсистема должна реализовывать единственную функцию системы;

    выделенная в подсистему функция должна быть легко понимаема независимо от сложности ее реализации;

    связь между подсистемами должна вводиться только при наличии связи между соответствующими функциями системы;

    связи между подсистемами должны быть простыми (насколько это возможно).

Число уровней, число подсистем каждого уровня может быть различным. Однако всегда необходимо соблюдать одно важное правило: подсистемы, непосредственно входящие в одну систему более высокого уровня, действуя совместно, должны выполнять все функции той системы, в которую они входят.

Управление любой организацией, производящей товары или оказывающей услуги, строится по иерархическому принципу. Деятельность по созданию товаров и услуг имеет место во всех организациях. Производство - это создание товаров и оказание услуг путем преобразования входа системы (необходимых ресурсов всех видов) в ее выход (готовые товары и услуги). На производственных фирмах деятельность по созданию товаров обычно очевидна. Ее результатом являются конкретные товары (например, станки или самолеты). В других организациях. которые не создают физические товары, производственные функции могут быть менее очевидны, скрыты от публики и каждого из покупателей. Например, это деятельность, которая осуществляется в банке, офисе аэролинии или колледже. Деятельность таких компаний называют сервисом. Управляющие производственной деятельностью принимают решения, которые необходимы для преобразования ресурсов в товары и услуги.

В иерархической системе, управления любая подсистема некоторого уровня подчинена подсистеме более высокого уровня, в состав которой она входит и управляется ею. Для систем управления деление системы возможно до тех пор, пока полученная при очередном делении подсистема не перестает выполнять функции управления. С этой точки зрения системой управления низшего иерархического уровня являются такие подсистемы, которые осуществляют непосредственное управление конкретными орудиями труда, механизмами, устройствами или технологическими процессами. Система управления любого другого уровня, кроме низшего, всегда осуществляет управление технологическими процессами не непосредственно, а через подсистемы промежуточных, более низких уровней.

Важным принципом построения системы управления предприятием является рассмотрение предприятия как системы с многоуровневой (иерархической) структурой (рис. 1.2). От звеньев, расположенных на более высоком уровне, идет поток управляющих воздействий, а информация о текущем состоянии объекта управления более низкого уровня поступает звеньям более высокого уровня. Рассматривая своеобразное «дерево» управления, можно отметить, что преимущество иерархической структуры управления состоит в том, что решение задач управления возможно на базе локальных решений, принимаемых на соответствующих уровнях иерархии управления.

Рис. 1.2. Иерархические системы управления предприятия

Нижний уровень управления является источником информации для принятия управленческих решений на более высоком уровне. Если рассматривать поток информации от уровня к уровню, то количество информации, выраженное в числе символов, уменьшается с повышением уровня, но при этом увеличивается ее смысловое (семантическое) содержание.

На современном уровне развития общества научно-технический прогресс в области материального производства и систем управления обеспечивает возможность концентрации и централизации значительных финансовых, материальных и других ресурсов. Эти возможности реализуются в индустриально развитых странах в виде создания межнациональных объединений (например, Европейский союз, объединяющий ряд европейских стран; дочерние фирмы, филиалы и предприятия крупных концернов во многих странах мира и т. д.). Преимуществом централизации является возможность направлять на реализацию решений крупные ресурсы, что позволяет решать сложные проблемы, требующие больших капиталовложений. В централизованной системе сравнительно легко обеспечить скоординированную, согласованную деятельность подсистем, направленную на достижение единых целей. Потери в отдельных частях системы компенсируются результатами работы других ее частей. Многоуровневая централизованная система обладает большой живучестью за счет оперативного перераспределения функций и ресурсов. Не случайно в армиях всех времен и народов строго соблюдается принцип централизации.

Вместе с тем централизация в системах большой размерности имеет свои недостатки. Многоуровневость и связанная с этим многократная передача информации с уровня на уровень вызывает задержки, снижающие оперативность оценки обстановки и реализации управленческих решений, приводит к искажениям как в процессе передачи информации, так и при ее обработке на промежуточных уровнях. В ряде случаев стремление подсистем к самостоятельности входит в противоречие с принципом централизации. В многоуровневых централизованных организационно-административных системах управления, как правило, присутствуют элементы децентрализации.

При рациональном сочетании элементов централизации и децентрализации информационные потоки в системе должны быть организованы таким образом, чтобы информация использовалась в основном на том уровне, где она возникает, т. е. надо стремиться к минимальной передаче данных между уровнями системы. В децентрализованных одноуровневых системах всегда выше уровень оперативности как при сборе информации о состоянии управляемой системы, оценке ситуации, так и при реализации принятых решений. Благодаря оперативному контролю за реакцией на управляющие воздействия снижаются отклонения от выбранной траектории движения к цели.

Степень централизации системы, которая определяется на основе установления соотношения взвешенных объемов задач, решаемых на смежных уровнях, служит в известном смысле мерой разделения полномочий между уровнями. Смещение основной массы решений в сторону вышестоящего уровня, т. е. повышение степени централизации, отождествляют обычно с повышением управляемости подсистем. Оно требует, как правило, улучшения переработки информации на верхних уровнях иерархии управления. Повышение степени децентрализации соответствует увеличению самостоятельности подсистем и уменьшению объема информации, перерабатываемой верхними уровнями.

Обычно высшие менеджеры многоуровневых систем разрабатывают стратегические решения, например, сколько моделей автомобилей должен производить каждый из заводов компании. Они не должны решать вопроса о типоразмерах и количестве каждой выпускаемой модели на каждом из заводов. Это относится к уровню тактических решении, которые принимаются заводскими менеджерами среднего звена управления. Заводской менеджер должен решить вопрос, сколько произвести и продать, сколько сохранить на складе готовой продукции (сезонный спрос) и сколько рабочих нанять или уволить. Операционное принятие решений осуществляется на производственном уровне начальниками цехов, которые определяют детальное планирование и производство. Этот иерархический подход, который должен включать и обратную связь, может и не обеспечить оптимальное решение, но он позволяет лучше и более своевременно управлять производственным процессом.

Структура систем управления в народном хозяйстве строится по отраслевому или территориальному принципу. Отраслевой принцип применяется в тех случаях, когда речь идет о сложных, специфических видах производства, проектирования и строительства, о развитии и внедрении научных исследований в производство определенного типа. По территориальному принципу построены органы государственного административного управления.

Различные виды структур имеют специфические особенности и могут рассматриваться как самостоятельные понятия теории систем и системного анализа.

Структура может быть представлена в виде графа, в матричной форме, в форме теоретико-множественных описаний, с помощью языка алгебры и прочее.

Рассмотрим основные типы структур.

Линейная (последовательная) структура (рис. 5.1, а) характеризуется тем, что каждый элемент связан с двумя другими. При выходе из строя хотя бы одного элемента (связи) структура разрушается. Примером такой структуры является конвейер.

Кольцевая структура (рис. 5.1, б) отличается замкнутостью, любые два элемента обладают двумя направленными связями. Это повышает скорость обмена информацией, делает структуру более живучей.

Сотовая структура (рис. 5.1, в) характеризуется наличием резервных связей, что повышает надежность (живучесть) функционирования структуры, но приводит к повышению ее стоимости.

Многосвязная структура (рис. 5.1, г) имеет структуру полного графа. За счет наличия кратчайших путей надежность ее функционирования максимальная, эффективность функционирования высокая, однако стоимость тоже максимальная.

Звездная структура (рис. 5.1, д) имеет центральный узел, который выполняет роль центра, все остальные элементы системы являются подчиненными.

а - линейная

б - кольцевая

в - сотовая

г - многосвязная

д - звезда

е - графовая

Рис. 5.1. Типы структур

Графовая структура (рис. 5.1, е) используется обычно при описании производственно- технологических систем.

Сетевая структура или сеть (см. рис. 5.2) представляет собой декомпозицию системы во времени. Она отображает порядок действия технических систем (телефонная сеть, электрическая сеть и т. п.), этапы деятельности человека (при производстве продукции - сетевой график, при проектировании - сетевая модель, при планировании - сетевой план и т. д.).

При применении сетевых моделей пользуются определенной терминологией: вершина, ребро, путь критический путь и т.д. Элементы сети могут быть расположены последовательно и параллельно.

Сети бывают разные. Наиболее распространены и удобны для анализа однонаправленные сети. Но могут быть и сети с обратными связями, с циклами.

Для анализа сложных сетей существует математический аппарат теории графов, прикладная теория сетевого планирования и управления, имеющая широкую распространенность при представлении процессов организации производства и управления предприятиями.

Иерархическая структура получила наиболее широкое распространение при проектировании систем управления. Все элементы, кроме верхнего и нижнего уровней обладают, как командными, так и подчиненными функциями управления. Иерархические структуры представляют собой декомпозицию системы в пространстве.

Иерархические структуры, в которых каждый элемент нижележащего уровня подчинен одному узлу (вершине) вышестоящего уровня называют иерархическими или древовидными структурами с сильными связями (рис. 5.3).

Структуры, в которых каждый элемент нижележащего уровня может быть подчинен двум и более узлам (вершинам) вышестоящего уровня называют иерархическими или древовидными структурами со слабыми связями (рис. 5.4).

Пример 1.

Иерархия каталогов в ОС может быть деревом или сетью.

Дерево (MS-DOS) - файлу разрешено входить только в один каталог (иерархическая структура с сильными связями, рис. 5.5 а);

Сеть (UNIX) - файл может входить сразу в несколько каталогов (рис.5.5 б).

Иерархия каталогов в MS DOS

Иерархия каталогов в UNIX

В общем случае термин иерархия означает соподчиненность, порядок подчинения низших по должности и чину лиц высшим. Термин возник как наименование «служебной лестницы» в религии, широко применяется для характеристики взаимоотношений в аппарате управления государством, армией и т. д. Концепция иерархии была распространена на любой согласованный по подчиненности порядок объектов.

Матричные структуры. Структуры систем можно представить не только в графическом, но и в табличном (матричном) виде, что позволяет представить взаимоотношения между уровнями иерархической структуры.

Иерархическая структура с сильными связями может быть представлена матричной структурой (табл. 5.1). Такое представление иногда удобнее на практике, например, при оформлении планов работ, когда нужно указать исполнителей, формы отчетности и т.п.

Взаимоотношения между уровнями иерархии со «слабыми» связями могут быть представлены в виде двумерной матричной структурой (табл. 5.2) Важной особенностью такого представления является возможность отразить не только наличие связей, но и их силу: либо словами («сильная» - «слабая»), либо путем введения количественных характеристик силы связи.

Таблица 5.1

В иерархических структурах важно лишь выделение уровней соподчиненности, а между уровнями и между компонентами в пределах уровня могут быть любые взаимоотношения. В соответствии с этим существуют структуры, использующие иерархический принцип, но имеющие специфические особенности, и их целесообразно выделить особо. Это так называемые многоуровневые иерархические структуры.

М.Месаровичем предложены особые классы иерархических структур типа «страт», «слоев», «эшелонов»", отличающиеся принципами взаимоотношения элементов в пределах уровня и правом вмешательства вышестоящего уровня в организацию взаимоотношений между элементами нижележащего.

Учитывая важность этих видов структур для решения проблем управления предприятиями в современных условиях многоукладной экономики, для проблемы проектирования сложных систем, остановимся на их характеристике несколько подробнее.

Страты. При отображении сложных систем основная проблема состоит в том, чтобы найти компромисс между простотой описания, позволяющей составить и сохранять целостное представление об исследуемом или проектируемом объекте, и детализацией описания, позволяющей отразить многочисленные особенности конкретного объекта. Один из путей решения этой проблемы - задание системы семейством моделей, каждая из которых описывает поведение системы с точки зрения соответствующего уровня абстрагирования. Для каждого уровня существуют характерные особенности, законы и принципы, с помощью которых описывается поведение системы на этом уровне.

Таким образом, можно задать систему семейством моделей с целью отображения многочисленных особенностей объекта. Такое представление названо стратифицированным , а уровни абстрагирования - стратами .

Основные страты изучения систем: макроскопический и микроскопический анализы.

Макроскопический анализ заключается в игнорировании деталей структуры системы и наблюдении только общего поведения системы как целого.

Цель макроскопического анализа состоит в создании модели изучаемой системы в ее взаимодействии с окружением (модель «вход-выход» - модель типа «черный ящик»).

Микроскопический анализ детально описывает каждый из компонентов системы; центральным при этом является понятие элемента: изучаются связи и функции элементов, структура системы и др.

К задачам микроанализа можно отнести следующие:

    выделение элементов в системе;

    изучение каждого из элементов;

    установление структуры системы;

    выявление связей между элементами.

Примеры.

1. На рис. 5.6 приведен пример стратифицированного описания ЭВМ в виде двух страт. Нижняя страта это физические операции, т.к. система описывается на языке физических законов, управляющих работой и взаимодействием ее механических и электронных элементов. Верхняя страта это математические и логические операции (программирование и реализация программ, осуществляемые с помощью абстрактных, нефизических понятий, информационные потоки, команды языков программирования и т. п.). Заметим, что может представлять интерес описание системы (ЭВМ) и на других уровнях абстрагирования, помимо названных двух основных, При конструировании некоторых электронных компонентов может представить интерес страта атомной физики, а при разработке сложного программного обеспечения, систем с разделением времени - системная страта.

2. Автоматизированный промышленный комплекс обычно моделируют на трех стратах (рис. 5.7)

3. При разработке баз данных принято выделять концептуальный, логический и физический уровни.

4. Ю.И.Черняк выделил уровни абстрагирования системы от философского или теоретико-познавательного описания ее замысла до материального воплощения, как это показано на см. рис. 5.8.

Такое представление помогает понять, что одну и ту же систему на разных стадиях познания и проектирования можно и нужно описывать различными выразительными средствами, т.е. как бы на разных «языках»:

Философском или теоретико-познавательном - вербальное описание замысла, концепции;

Научно-исследовательском - в форме моделей разного рода, помогающих глубже понять и раскрыть замысел системы;

Проектном - техническое задание и технический проект, для разработки и представления которого могут понадобиться математические расчеты, принципиальные схемы;

Конструкторском - конструкторские чертежи, сопровождающая их документация;

Технологическом - технологичекие карты, стандарты и другая технологическая документация (конструкторская и технологическая страты могут быть объединены);

Материальное воплощение, реализация системы - детали, блоки, собранное изделие или созданная система, принципы функционирования которой отражены в соответствующей нормативно-технической и нормативно-методической документации (инструкциях по эксплуатации, положениях и т.п.).

Выделение страт в структуре функционирования АСУ соответствует сложившимся уровням управления: управление технологическими процессами и организационное управление предприятием.

Стратифицированное представление может использоваться как средство последовательного углубления представления о системе, ее детализации. Чем ниже опускаемся по иерархии страт, тем более детальным становится раскрытие системы; чем выше поднимаемся, тем яснее становится смысл и значение всей системы. Объяснить назначение системы с помощью элементов нижней страты в сложных системах практически невозможно.

Например, изучение принципов построения и функционирования отдельных клеток организма, каким бы детальным оно ни было, не позволяет понять построение и функционирование органов, которые состоят из этих клеток, а изучение органов не позволит полностью понять функционирование всего организма в целом. Но, с другой стороны, чтобы правильно понять и реализовать общий замысел системы, сконструировать систему, необходимо реализовать нижележащие страты.

Сказанное отображает в структуре суть одной из основных закономерностей теории систем - закономерности целостности, что помогает приблизить теоретические исследования закономерностей к практическому их применению.

Начинать изучение системы можно с любой страты. В процессе исследования могут добавляться новые страты, изменяться подход к выделению страт, но система сохраняется до тех пор, пока не изменяется представление на верхней страте, т.е. ее концепция, замысел системы.

Многослойные иерархические структуры. Для организации процессов принятия решений, уменьшения неопределенности ситуации выделяются уровни сложности принимаемого решения, или слои . При этом определяется совокупность последовательно решаемых проблем. Решение вышележащей проблемы определяет ограничение при моделировании на нижележащем уровне.

Вид многоуровневой структуризации предложен М.Месаровичем для организации процессов принятия решений. Для уменьшения неопределенности ситуации выделяются уровни сложности принимаемого решения - слои, т. е. определяется совокупность последовательно решаемых проблем. При этом выделение проблем осуществляется таким образом, чтобы решение вышележащей проблемы определяло бы ограничения (допустимую степень упрощения) при моделировании на нижележащем уровне, т. е. снижало бы неопределенность нижележащей проблемы, но без утраты замысла решения общей проблемы.

Многослойная иерархия показана на рис. 5.9. Показано, что каждый слой D i есть блок, принимающий решение и вырабатывающий ограничение X j -1 для нижележащего D i -1 -го блока.

На рис. 5.10 представлена информационная система организации, состоящая из нескольких взаимодействующих слоев.

Информационная система организации создается для работы прикладных программ. Именно эти программы обеспечивают сотрудников необходимой информацией для принятия решений и автоматизируют деятельность различных служб. Поэтому при проектировании информационной системы, сначала определяются требования к этим программам, а уже затем определяется какие системные сервисы, базы данных, операционные системы, сетевые средства, компьютеры и серверы необходимы для их эффективного функционирования.

В основании модели лежит слой различных типов компьютеров , являющихся средствами хранения и обработки данных. Компьютеры определяют аппаратную платформу информационной системы.

Транспортная система состоит из активных и пассивных сетевых устройств, объединяющих компьютеры в локальные и глобальные сети и обеспечивающих обмен данными. Активными сетевыми устройствами являются сетевые карты и модемы компьютеров, концентраторы, коммутаторы, маршрутизаторы и другие подобные устройства. Среда передачи данных и элементы кабельной сети составляют пассивную часть транспортной системы.

Слой сетевых операционных систем обеспечивает выполнение приложений пользователей и посредством транспортной системы организует доступ к ресурсам других компьютеров и предоставляет свои ресурсы в общее пользование. Операционные системы компьютеров определяют программную платформу информационной системы. Ряд активных сетевых устройств, таких как коммутаторы и маршрутизаторы, как правило, работают под управлением собственных операционных систем, называемых операционными системами межсетевого взаимодействия.

Над слоем операционных систем работают слои различных приложений . Системные сервисы служат для обработки и преобразования информации, полученной от систем управления базами данных(СУБД) и других ресурсов, в вид удобный для восприятия конечным пользователем или прикладной программой. СУБД иногда выделяются в отдельный слой. Этим подчеркивается их высокая значимость как средства хранения в упорядоченном виде данных и выполнения базовых операций поиска и извлечения нужной информации.

Верхний слой информационной системы составляют приложения предметной области, специфические для конкретной организации или определенного типа организаций. Это могут быть программные системы автоматизации бухгалтерского учета, проектирования, управления производством, агрегатами, технологическими процессами и другие.

Многоэшелонные иерархические структуры. Понятие многоэшелонной иерархической структуры вводится следующим образом.

Система представлена в виде относительно независимых, взаимодействующих между собой подсистем, имеющих иерархическое расположение (см. рис.5.11). Некоторые из подсистем находятся под влиянием или управляются вышестоящими. Уровень такой иерархии называют эшелоном .

Основной отличительной особенностью многоэшелонной структуры является предоставление подсистемам всех уровней определенной свободы в выборе их собственных решений.

Подсистемы всех уровней свободны в выборе собственных решений, которые могут и не быть решениями верхнего уровня. Свобода повышает эффективность функционирования системы в целом.

Подсистемам предоставлена свобода в выборе целей, поэтому многоэшелонные структуры называют еще многоцелевыми.

В таких системах могут быть использованы разные способы принятия решений. Естественно, что при предоставлении прав самостоятельности в принятии решений подсистемы могут формировать противоречащие друг другу (конфликтные) цели и решения, что затрудняет управление, но является в то же время одним из условий повышения эффективности функционирования системы.

Для того, чтобы на это обратить внимание в разделены понятия собственно «управления » и «координации ». При этом координация может иметь разную силу воздействия (вмешательства) и осуществляется в разной форме. В связи с этим теорию многоуровневых систем М.Месаровича иногда называют теорией координации. В этой теории рекомендуется, чтобы в процессе принятия решений подсистемы не всегда стремились бы отстаивать свои интересы, доводя дело до конфликтных ситуаций, а вступали бы в коалиции.

В зависимости от принятых принципов (конфликты) или (коалиции), силы и форм вмешательства вышестоящих эшелонов в дела нижележащих процесс принятия решения может происходить по-разному, т. е. по-разному может быть организована система управления принятием решений, поэтому многоэшелонные, многоцелевые иерархические структуры называют в также организационной иерархией.

Существуют смешанные иерархические структуры с вертикальными и горизонтальными связями, в которых могут быть использованы одновременно несколько видов иерархических структур - от древовидных до многоэшелонных.

В реальных системах организационного управления (особенно на уровне региона, государства) могут быть использованы одновременно несколько видов иерархических структур - от древовидных до многоэшелонных. Такие иерархические структуры называют смешанными. Основой объединения таких структур могут быть страты.

В таких смешанных иерархических структурах могут быть как вертикальные связи разной силы (управление, координация), так и горизонтальные взаимодействия между элементами (подсистемами) одного уровня. Впервые идея структур такого вида предложена советским академиком В.М.Глушковым при разработке общегосударственной автоматизированной системы управления (ОГАС).

В качестве примера приведем модель структуры управления государством, которая была положена в основу концепции ОГАС. В нашей стране управление всегда осуществлялось с использованием смешанного принципа территориально-отраслевого управления. В соответствии с этим принципом органы территориального и отраслевого управления не могут рассматриваться как подчиненные друг другу. Это всегда затрудняло графическое представление структуры управления страной, особенно проявилось в связи с необходимостью представления структуры функциональной части ОГАС, что и потребовало применения нового вида структур.

Смешанный характер носит и организационная структура современного предприятия (объединения, акционерного общества и т. п.).

Таким образом, в смешанных иерархических структурах могут быть как вертикальные связи разной силы (управление, координация), так и горизонтальные взаимодействия между элементами одного уровня.

Существуют структуры с произвольными связями , которые применяют на начальном этапе познания объекта, когда идет поиск способов установления взаимоотношений между компонентами, не могут быть определены последовательности взаимодействия элементов во времени, распределение элементов по уровням иерархии.

Формируются структуры с произвольными связями путем установления возможных отношений между предварительно выделенными элементами системы, введения ориентировочных оценок силы связей.

После формирования таких структур связи упорядочиваются и получают иерархические или сетевые структуры.