31.08.2019

Перспективы развития транкинговой радиосвязи. аппаратура служебной связи. требования к функциональным характеристикам средств коммутации сообщений телеграфной сети связи ГА


Современное состояние систем радиосвязи

Тенденции развития современной связи предполагают объединение фиксированных и мобильных услуг Сети сотовой подвижной связи динамично развиваются во всех странах мира и уже охватывают территорию, на которой проживает около 60 процентов населения Земли. Количество абонентов сотовой связи к 2002 году превысило число абонентов стационарных сетей связи. Эксперты предполагают, что в 2005 году число абонентов сотовой связи может достигнуть 1,8 млрд.

Этапность развития систем, сетей и средств радиосвязи определяется возможностью предоставления потребителям соответствующего набора услуг. Документы МСЭ определяют три класса услуг: низко-, средне- и высокоскоростные.

На сегодняшний день уже сформировалась основная идея построения телекоммуникационных сетей - переход на интегрированные мультисервисные сети с пакетной коммутацией. Так как объем трафика данных превосходит телефонный, то, очевидно, что сети с коммутацией пакетов станут доминирующими. Доставка по единой сетевой инфраструктуре, базирующейся на коммутации пакетов, такого разнородного трафика, как данные, голос и видео, является перспективным направлением для разработчиков и потребителей услуг радиосвязи.

Транкинговые системы связи обеспечивают явные преимущества для отдельных групп потребителей и реализуют новые возможности. В транкинговых сетях могут быть реализованы все виды вызовов: прямая радиосвязь между абонентами без использования инфраструктуры сети, динамическая перегруппировка абонентов, режим "двойного наблюдения" и т.д.

Современные средства беспроводной связи вошли в повседневную жизнь и стали ее неотъемлемым атрибутом. Прогресс в этой области настолько быстро идет вперед, что способы передачи информации, казавшиеся пять-десять лет назад недостижимыми, сегодня становятся уже устаревшими.

При проектировании и построении систем радиосвязи прежде всего следуют приоритетным целям и задачам, которым эти системы должны соответствовать, например, радиус зоны радиосвязи, количество абонентов системы, возможность выхода в городскую телефонную сеть общего пользования.

Дальность радиосвязи определяют два фактора: условия распространения радиоволн обозначенного диапазона и технические характеристики используемого оборудования. Среди основных диапазонов, используемых в радиосвязи выделяют следующие: длинные волны и средние волны, способные обогнуть земную поверхность, короткие волны, отражающиеся от ионосферы, и ультракороткие волны (УКВ). Ультракороткие волны имеют особенность исключительно прямолинейного распространения. Другими словами, связь на УКВ возможна только в пределах прямой видимости, т.е. в пределах линии горизонта. Радиус линии горизонта находится в прямой зависимости от высоты точки обзора, т.е. антенны. Если антенна установлена на высоком здании или специальной вышке, то дальность устойчивой связи может достигать 60-70 км.

Практически все системы поездной радиосвязи, станционной Связи с подвижными объектами, ремонтно-оперативной, служебно-оперативной радиосвязи и т. п. реализуются в диапазонах 2, 160, |530 и 450 МГц на радиостанциях с угловой модуляцией с фиксиро­ванным закреплением каналов связи. Лишь в некоторых подсисте­мах системы «Транспорт» предусматривалось использование прин­ципа равнодоступных каналов (транкинга).

Совершенствование сетей технологической железнодорожной радиосвязи ведется в два этапа с учетом этапов развития сети связи железных дорог и создания единой интегрированной цифровой сети связи.

Первый этап.

Внедрение поездной радиосвязи гектометрового диапазо­на (2 МГц) на основе модернизированных радиосредств: РС-46М, РС-23М, СР-234М, УС-2/4М, двухдиапазонных радиостанций РВ-1М, РВ-1.1М.

Внедрение поездной диспетчерской дуплексной радиосвязи систе­мы «Транспорт» диапазона 330 МГц на основных направлениях сети железных дорог Сибири и Дальнего Востока, что позволит органи­зовать сети радиосвязи при использовании на локомотивах трех- диапазонных радиостанций РВ-1М.

Поездная диспетчерская радиосвязь создается в двух диапазо­нах - дециметровом (330 МГц) и гектометровом (2 МГц).

В диапазоне 330 МГц организуется основной канал диспетчерской связи, обеспечивающий непрерывную радиосвязь ДНЦ, ЭЧЦ и поезд­ного диспетчера по локомотивам (ТНЦ) с машинистами поездных ло­комотивов в пределах всего диспетчерского участка.

Сеть дуплексной поездной диспетчерской радиосвязи обеспечи­вает тестовую проверку исправности стационарной и возимой ап­паратуры с отображением результатов контроля. В гектометровом диапазоне организуется резервный канал диспетчерской связи, ис­пользуемый в основном для радиотелефонных переговоров диспет­черов с машинистами.

Связь машинистов поездных локомотивов с ДСП и по переез­дам организуется в гектометровом (2 МГц) и метровом (160 МГц) диапазонах.

Связь машинистов поездных локомотивов с дежурными по локомо­тивным депо, стрелками военизированной охраны, руководителями ре­монтных работ с различными категориями абонентов, оснащенных носимыми радиостанциями организуется в метровом диапазоне волн (160 МГц) с возможностью приема на возимой радиостанции фиксированных команд и сообщений от специализированных на­польных устройств или носимых радиостанций («Внимание, пере­езд», «Ремонт пути», «Пожар в поезде», «ЧП в поезде» и др.).

Связь машинистов поездных локомотивов с машинистами встречных и вслед идущих поездов организуется в гектометровом и метровом диапазонах волн и с помощниками машинистов при вы­ходе последних из кабины локомотива - в диапазоне метровых волн. Помощники машинистов при этом должны иметь носимые радиостанции.

Связь начальника (бригадира) пассажирского поезда с машинистом поездного локомотива, с дежурными по станциям и переездам и различ­ными категориями работников, оснащенных носимыми радиостанция­ми (дежурные по перрону, по вокзалу, сотрудники милиции и др.) организуется в метровом диапазоне волн (160 МГц).

Внутрипоездная сеть связи и громкоговорящего оповещения обеспечивает передачу информации пассажирам поезда и связь на­чальника поезда с членами бригады.

3. Разработка и внедрение поездной диспетчерской радиосвязи ПРС460 на основных направлениях сети дорог Европейской части России и районов Урала. При этом на подвижных объектах желез­нодорожного транспорта будут устанавливаться двухдиапазонные дуплексно-симплексные радиостанции дециметрового (460 МГц) и метрового (160 МГц) диапазонов. В переходный период будут оставаться в эксплуатации радиостанции гектометрового диапазо­на 42РТМ-А2-ЧМ (ЖР-К-ЛП) или РК-1.

Станционная и ремонтно-оперативная радиосвязь (РОРС) с использованием закрепленных каналов в диапазоне метровых волн (160 МГц). Тенденция развития РОРС связана с внедрением сетей, использующих равнодоступные каналы (транкинговых сетей).

Радиосвязь с использованием равнодоступных каналов в диа­пазоне дециметровых (460 МГц) волн.

В транкинговые сети должны включаться абоненты руководя­щего состава, а также абоненты следующих сетей станционной и ремонтно-оперативной связи: ремонтных служб пути, электроснаб­жения, связи и СЦБ; работников военизированной охраны; началь­ника пассажирского поезда с дежурными по вокзалам, линейными пунктами милиции; службы капитального строительства; площа­док погрузочно-разгрузочных работ; грузовой и коммерческой ра­боты; радиосетей локомотивного хозяйства; пунктов коммерческого осмотра вагонов; транспортно-экспедиционных предприятий по до­ставке контейнеров и грузов; радиосети пожарных и восстанови­тельных поездов.

Второй этап.

Создание цифровых сотовых сетей подвижной радиосвязи, при­нятых МСЖД (GSM-R) в соответствии с Рекомендациями UIC-751.4, которые позволят организовать каналы, обеспечивающие переда­чу ответственных команд в системе управления движением поездов; поездной диспетчерской радиосвязи для обеспечения связи диспет­черского аппарата с машинистами поездных локомотивов; поезд­ной технологической радиосвязи для решения всех технологичес­ких задач, включая станционную и ремонтно-оперативную радиосвязь (кроме маневровой и горочной связи), а также радио­связь обслуживания пассажиров за счет избыточной емкости поез­дной технологической радиосвязи и с выходом в сеть ЖАТС.

Организация связи обслуживания пассажиров и внутрипоездной радиосвязи с использованием средств железнодорожной технологической радиосвязи, сухопутной подвижной радиосвязи общего пользования и подвижной спутниковой связи.

Внутрипоездная радиосвязь должна строиться в соответствии с Рекомендациями МСЖД (ТЛС-568 с учетом требований к поезд­ной радиосвязи ШС-751.3) и обеспечивать:

Громкоговорящее оповещение пассажиров в пределах всего по­езда начальником поезда и поездным диспетчером с использовани­ем поездной диспетчерской радиосвязи; в пределах вагона - про­водником поезда;

Связь начальника поезда с проводниками и машинистами локомотива в пределах поезда, а на остановках - ив пределах перронов;

Связь пассажиров поезда с абонентами ЖАТС, абонентами в других поездах, выход в телефонную сеть общего пользования; связь с абонентами, входящими в систему железнодорожной технологи­ческой поездной радиосвязи, работающей в режиме цифровых тран- кинговых радиосетей и/или в системе GSM-R.

Необходимость совершенствования технологической радиосвя­зи обусловлена следующими задачами, стоящими перед железно­дорожным транспортом:

Совершенствование структуры управления и технологии рабо­ты транспорта;

Повышение производительности труда работников и сокраще­ние эксплуатационных расходов;

Повышение безопасности движения на основе развития систем управления движением поездов по радиоканалу;

Повышение качества обслуживания пассажиров, развитие сфе­ры услуг и коммерческих пассажирских перевозок.

Требования, предъявляемые эксплуатационными службами желез­нодорожного транспорта к системе технологической радиосвязи:

Наращивание числа абонентов сетей железнодорожной радио­связи и оснащение радиосредствами работников всех служб МПС;

Расширение зон связи и повышение надежности связи диспетчер­ского аппарата при организации поездной и маневровой радиосвязи;

Организация сетей радиосвязи работников ремонтных и эксп­луатационных подразделений;

Предоставление ряду категорий абонентов железнодорожного транспорта мобильных (носимых) радиотерминалов с обеспечени­ем возможности установления оперативной связи в телефонном ре­жиме или режиме передачи данных с аппаратом МПС, управлений и отделений дорог по сети общетехнологической связи МПС.

На современном этапе развития подвижной железнодорожной радиосвязи могут быть существенно изменены технологии ее исполь­зования. До настоящего времени радиосвязь применялась преиму­щественно в радиотелефонном режиме и только в отдельных тех­нологических процессах, например, для управления маневровыми" локомотивами или локомотивами соединенных поездов - в режи­ме передачи телеметрической информации.

В настоящее время значительное внимание должно уделяться ре­шению задач автоматизации управления движением поездов по ра­диоканалу, мониторинга технологических процессов транспорта и информационного обеспечения автоматизированных систем управ­ления.

Анализ возможностей современных средств подвижной радио­связи показывает, что их использование позволяет обеспечить ре­шение многих прикладных задач, в частности:

Автоматическое управление маневровыми и горочными локо­мотивами на станциях;

Контроль и передача диагностической информации о состоя­нии поезда и локомотива в депо, центры технического обслужива­ния;

Оповещение машинистов поездов и бортовых средств управле­ния с помощью аппаратуры контроля технического состояния под­вижного состава на ходу поезда (ДИСК, ПОНАБ и др.);

Интервальное регулирование движением поездов, в том числе для высокоскоростных магистралей,

Полуавтоматическая блокировка на малодеятельных линиях;

Пожарная и охранная сигнализация в депо, местах отстоя под­вижного состава;

Организация радиотелефонной связи, передачи факсимильной, видеоинформации с места проведения восстановительных работ с обеспечением возможности ведения переговоров и передачи ин­формации на уровень МПС России, управлений и отделений же­лезных дорог;

Оповещение ремонтных бригад и машинистов поездов о при­ближении к месту проведения ремонтных работ;

Передача телеметрической информации для управления стаци­онарными объектами электроснабжения, тяговыми подстанциями, шлагбаумами на неохраняемых переездах, компрессорными стан­циями и др.;

Управление соединенными поездами повышенной массы и длины;

Идентификация и контроль местоположения поездов по сты­кам дорог, границам диспетчерских участков и станций с переда­чей данных о поезде, включая сведения из натурного листа в реаль­ном масштабе времени в диспетчерский центр управления дороги в систему ДИСПАРК и др.

Контроль местоположения поездов, перевозящих особо ценные и опасные грузы;

Услуги доступа к системе «Экспресс-3» для заказа и приобрете­ния билетов в поездах.

На основании детального изучения и анализа потребностей всех служб железнодорожного транспорта в передаче речевой ин­формации и данных и с целью обеспечения совершенствования управления перевозочным процессом на основе удовлетворения этих потребностей разработаны «Эксплуатационно-технические требования к цифровой системе радиосвязи железнодорожного транспорта России».

Цифровые системы радиосвязи

В связи с модернизацией систем технологической радиосвязи МПС России осуществляет переход к цифровым системам. На ста­дии испытаний находятся система транкинговой связи стандарта TETRA и система сотовой связи GSM-R.

Общая характеристика стандарта TETRA, Стандарт TETRA описывает цифровую систему радиосвязи, предоставляющую ши­рокий спектр телекоммуникационных услуг. В их число входят ин­дивидуальные и групповые вызовы, выход в телефонную сеть об­щего пользования, передача данных, а также различные дополнительные службы.

Важнейшее свойство стандарта TETRA заключается в том, что он позволяет организовать одновременную работу множества не­зависимых виртуальных сетей, принадлежащих различным ве­домствам и организациям, в рамках одной и той же системы. Або­ненты каждой из них, общаясь между собой, никак не будут ощущать присутствие «чужих» сетей. В то же время при необходимости (на­пример, в чрезвычайных ситуациях) можно оперативно организо­вать их взаимодействие.

Стандарт TETRA обеспечивает надежную защиту информации. Для этого предусмотрена система мер, включая обязательное шиф­рование радиопереговоров. Несанкционированный доступ в систе­му стандарта TETRA невозможен - при каждом соединении або­нент и сеть проводят взаимную проверку подлинности, используя криптостойкий алгоритм. Пользователи, предъявляющие повышен­ные требования к конфиденциальности, могут воспользоваться ус­лугой сквозной передачи зашифрованной информации - этот ме­тод исключает перехват сообщений не только в эфире, но и в сетевой инфраструктуре.

Системы стандарта TETRA предоставляют абонентам широкий спектр услуг передачи данных - от пересылки коротких текстовых сообщений до организации каналов, позволяющих вести обмен ин­формацией со скоростью 28,8 кбит/с. Абонент сети TETRA может одновременно пользоваться услугами речевой связи и передачи дан­ных. Кроме того, абонентские радиостанции TETRA, имеющие встроенный графический дисплей и поддерживающие протокол WAP (Wireless Application Protocol - протокол беспроводных при­ложений), могут обращаться к информационным ресурсам ведом­ственных. корпоративных сетей и Интернет.

Стандарт TETRA позволяет назначить каждому абоненту опре­деленный уровень приоритета. Пользователи, имеющие высокий приоритет, располагают безусловным правом доступа в сеть-даже если все каналы окажутся занятыми, система при поступлении зап­роса немедленно разорвет одно из текущих соединений и предоста­вит канал связи. В стандарте TETRA используются специальные методы обработки речевого сигнала, которые обеспечивают не толь­ко верную передачу тембра голоса, но и сохранение разборчивости при работе в условиях сильных внешних шумов (например, на стройплощадках, железнодорожных станциях и т.д.). В момент перехода абонента из одной зоны обслуживания в другую разго­вор не прерывается.

Таким образом, стандарт TETRA позволяет создавать цифро­вые сети радиосвязи, в полной мере отвечающие потребностям са­мых разных абонентов. Несмотря на то, что стандарт включает се­годня все необходимые производителям спецификации, работы по его расширению продолжаются. Так, ведется разработка техноло­гии, которая позволит значительно увеличить дальность радиосвя­зи - до 100 км. Кроме того, совершенствуется спецификация TETRA PDO - специальная версия стандарта, ориентированная только на пакетную передачу данных.

В соответствии со спецификацией V+D, реализующейся в стан­дарте TETRA, пользователю для передачи данных предоставляет­ся одна из трех услуг: передача данных с коммутацией цепей (CD), передача коммутируемых пакетов данных (PD) и передача корот­ких сообщений (SDS). Метод CD в основном предназначен для транспортировки больших объемов данных поверх основного тра­фика канала, причем в каждом канале шириной 25 кГц задействуется один из четырех тайм-слотов. Именно в этом случае стандарт TETRA обеспечивает нужное качество обслуживания, так как по требованию можно зарезервировать необходимую полосу пропус­кания. Если пользователю необходимо повысить пропускную спо­собность, можно объединить два-четыре временных слота и уста­новить канал связи сквозным из конца в конец, а для повышения скорости пользователю придется понижать степень защищенности такого канала.

Что касается режима PD, то на сегодняшний день это наиболее интересный и перспективный метод, что связано в основном с об­щемировыми тенденциями, в частности, с сетью Интернет. Тоталь­ное распространение IP-протокола и, как следствие, приложений, базирующихся на IP, нашло свое применение и в сетях TETRA. В данном случае мобильная радиостанция выступает в качестве IP- клиента, а сеть TETRA- в качестве транспортной среды. Такая схема отличается повышенными гибкостью и надежностью за счет существования различных путей доставки радиосигнала, готовно­сти к увеличенному трафику, возможности подсоединения к радио­станции практически любого компьютерного оборудования и, ес­тественно, поддержки стандартных продуктов и приложений.

Функциональные схемы построения различных сетей связи стан­дарта TETRA представляются как совокупность элементов сети, со­единенных определенными интерфейсами. Сети стандарта TETRA содержат следующие основные элементы:

Базовая приемопередающая станция BTS (Base Transceiver Station) - базовая стационарная радиостанция, обеспечивающая связь в определенной зоне (ячейке). Такая станция выполняет ос­новные функции, связанные с передачей радиосигналов: сопряже­ние с мобильными станциями, шифрование линий связи, простран­ственно-разнесенный прием, управление выходной мощностью мобильных радиостанций, управление радиоканалами;

Устройство управления базовой станцией BCF (Base Station Control Function) - элемент сети с возможностями коммутации, ко­торый управляет несколькими базовыми станциями и обеспечивает доступ к внешним сетям, а также используется с целью подключе­ния диспетчерских пультов и терминалов для эксплуатационного и технического обслуживания;

Контроллер базовой станции BSC(Base Station Controller) - элемент сети с большими по сравнению с устройством BCF ком­мутационными возможностями, позволяющий обмениваться дан­ными между несколькими BCF. BSC имеет гибкую модульную структуру, позволяющую использовать большое число интерфей­сов разного типа;

Диспетчерский пульт - устройство, подключаемое к контрол­леру базовой станции по проводной линии и обеспечивающее об­мен информацией между оператором (диспетчером сети) и други­ми пользователями сети. Часто используется для широковещатель­ной передачи информации, создания групп пользователей и т.п.;

Мобильная станция MS (Mobile Station) - радиостанция, ис­пользуемая подвижными абонентами;

Стационарная радиостанция FRS (Fixed Radio Station) - ра­диостанция, используемая абонентом в определенном месте;

Терминал технического обслуживания и эксплуатации - тер­минал, подключаемый к устройству управления базовой станцией BCF и предназначенный для контроля за состоянием системы, про­ведения диагностики неисправностей, учета тарификационной ин­формации, внесения изменений в базу данных абонентов и т.п. С помощью таких терминалов реализуется функция управления ло­кальной сетью LNM (Local Network Management). Благодаря мо­дульному принципу разработки оборудования, сети связи стандар­та TETRA могут быть реализованы с разными иерархическими уровнями и различной географической протяженностью (от локаль­ных до национальных). Функции управления базой данных и ком­мутации распределяются по всей сети, что обеспечивает быструю передачу вызовов и сохранение ограниченной работоспособности сети даже при потере связи с ее отдельными элементами.

На национальном или региональном уровне структура сети мо­жет быть реализована на основе сравнительно небольших, но пол­ных подсетей TETRA, соединенных между собой с помощью меж­системного интерфейса ISI для создания общей сети. При этом возможно централизованное управление сетью. Вариант построе­ния такой сети показан на рис. 21.7.

Каждая подсеть TETRA выполняет свои функции управления и коммутации, а также предоставляет возможность для централизо­ванного управления более высокого уровня. Структура подсети за­висит от нагрузки, а также от требований к эффективности уста­новления связи. В случае, если не требуется резервирование каналов, возможно и достаточно создание подсети по конфигурации звезды. При использовании линейных трактов подсеть TETRA может быть реализована в виде длинной линии (цепи). В этом случае каждый модуль устройства управления базовой станцией BCF наряду с тре­буемой дальностью связи обеспечивает локальный доступ к вне­шним сетям. Простейшая конфигурация подсети TETRA включает только один модуль BCF.

В сетях связи стандарта TETRA предусматриваются различные способы обеспечения отказоустойчивости, позволяющие в случае отказа отдельных элементов сети сохранять полную или частичную работоспособность, возможно - с ухудшением ряда параметров,

таких, как время установления соединения и т.д. Для сетей нацио­нального уровня, как правило, используется несколько альтерна­тивных маршрутов соединения сетей регионального уровня. В ре­гиональных сетях подобные альтернативные маршруты используются для соединения контроллеров базовых станций. Кро­ме этого, для региональных сетей предусматривается взаимное ко­пирование баз данных в контроллерах базовых станций.

Общая характеристика GSM-R. Система радиосвязи GSM-R разработана на основе сотового стандарта GSM и ориентирована на удовлетворение потребностей европейских железных дорог в обмене информацией с подвижными объектами, а также на созда­ние условий для реализации систем управления движением с исполь­зованием радиоканалов за счет применения полос шириной 4 МГц в диапазонах 876-880 МГц и 921-925 МГц (рис. 21.8).

Железнодорожный участок разбивается на несколько районов, покрываемых распорядительными центрами RBC. В системе фор­мируются команды управления, осуществляется контроль скорос­ти, определяется местоположение поезда. Во время связи между поездом и центром RBC возможна дуплексная передача. Например, центр передает разрешение для движения поезда, а поезд - инфор­мацию о своем местонахождении.

Стандарт GSM был принят Международным союзом железных дорог (МСЖД) в 1993 г. в качестве базовой технологии для реали­зации железнодорожной системы цифровой связи. Но так как дан­ный стандарт не обладал сервисом, необходимым для профессио­нальных систем, то в 1993 г. МСЖД сделал запрос в ETSI (European Telecommunication Standards Institute) на реализацию дополнитель­ных свойств ASCI. Они включают в себя расширенные многоуров­невые приоритеты, резервирование, услуги широковещательного речевого оповещения и речевого группового вызова. Наряду с ASCI для удовлетворения требований железных дорог на услуги поезд­ной, маневровой радиосвязи, передачи данных для управления дви­жением поездов, телеуправления и т.д. должны быть реализованы функциональная адресация, адресация в зависимости от текущего местоположения и обработка вызовов с высоким приоритетом.

Сеть GSM-R можно разделить на несколько подсистем:

Бортовые устройства;

Стационарные устройства;

Центр управления.

Разделение задач между тремя управляющими подсистемами осуществляется следующим образом:

Центр управления берет на себя управление маршрутами и обес­печивает поездам бесконфликтное назначение участков пути (регу­лирование порядка следования поездов);

Бортовые устройства выдают задания стационарным устрой­ствам в соответствии с назначенными им маршрутами и контроли­руют движение поездов;

Стационарные устройства выполняют, в свою очередь, функ­ции управления и контроля стрелок, подходов к пассажирским плат­формам и переездам.

Каждая из подсистем имеет свой доступ к сети радиосвязи и спо­собна взаимодействовать с другими подсистемами. Распределение функций обеспечения безопасности между несколькими подсистема­ми потребовало формирования единой базы данных. Это необходи­мо прежде всего для согласования данных на поездах и в центре уп­равления. Поэтому подсистемы работают с данными единого атласа линии, содержащего всю описывающую эту линию информацию. К ней относятся, наряду с топологическими сведениями (модель ли­нии, местоположение стрелок и переездов), данные о максимально допустимых скоростях и адресации в системе радиосвязи.

Сеть GSM-R состоит из сотов, расположенных вдоль железной дороги или на территории станции. Каждая ячейка сотов оборудует­ся одним или несколькими приемопередатчиками в зависимости от нагрузки. Каждый контроллер базовой станции прикреплен к опре­деленным номерам сотов. Контроллеры базовых станций соединены с центром управления MSC (Mobile Switching Center)/VLR (Visitor Location Register). MSC устанавливает внешние соединения и обеспечивает интерфейс с другими сетями (рис. 21.9), где использо­ваны следующие сокращения:

AUC (Authentication Center) - центр аутенфикации;

BSC (Base Station Controller) - контроллер базовой станции;

BTS (Base Station System) - приемопередатчик базовой станции;

GCR (Group Call Register) - регистр группировки вызовов;

EIR (Equipment Identification Register) - регистр идентифика­ции оборудования;

SMS (Short Message Service) - служба коротких сообщений;

VMS (Visitor Management Server) - сервер управления переме­щениями;

OSS (Operation System Server) - сервер центра управления;

ОМС (Operation and Maintenance Center) - центр управления и обслуживания;

SCP (Service Control Point) - пункт управления услугами связи;

IN (Intelligent Networks) - интеллектуальная сеть;

PABX (Private Automatic Branch Exchange) - автоматический коммутатор выделенных каналов.

Все сетевые компоненты в стандарте GSM-R взаимодействуют в соответствии с системой сигнализации ITU-T SS.No (CCITT SS №7).

Центр коммутации обслуживает группу сотов и обеспечивает все виды соединений подвижной станции.


ЛИТЕРАТУРЫ

1. Архипов Е. В., Гуревич В. Н. Справочник электромонтера СЦБ. М.: Транспорт, 1999. -351 с.

2. Буканов М.А. Безопасность движения поездов (в условиях нару­шения нормальной работы устройств СЦБ и связи). М.: Транспорт,- 112 с.

3. Волков В.М., Зоръко А.П., Прокофьев В.А. Технологическая телефонная свяязь на железнодорожном транспорте. М.: Транс­порт, 1990. -293 с.

4. Волков В.М., Лебединский А.К., Павловский А. А., Юркин Ю.В. / Под ред. В.М. Волкова. Автоматическая телефонная связь на желез­нодорожном транспорте. М.: Транспорт, 1996. - 342 с.

5. Гапеев В.И., Пищик Ф.П., Егоренко В И. Обеспечение безопасно­сти движения и предупреждения травматизма на железнодорожном транспорте. Минск, 1994. - 310с.

6. Грачев Г.Н., Колюжный К.О., Липовецкий Ю.А., Цывин М.Е. Кодовая автоблокировка на электронной элементной базе / Авто­матика, телемеханика и связь, №7, 1995. - С. 28-29.

7. Казаков А. А., Бубнов В.Д., Казаков Е. А. Автоматизированные системы интервального регулирования движения поездов. М.: Транспорт, 1995.- 320 с.

8. Козлов П.А. Курс - на комплексную автоматизацию сортиро­вочных станций // Автоматика, связь, информатика, №1, 2001. - С. 6-9.

9. Кондратьева Л. А., Борисов Б.Б. Устройства автоматики, теле­механики и связи на железнодорожном транспорте. М.: Транспорт,-407 с.

10. Косова В. В. Оперативно-технологическая связь отделения желез- нойдороги. М.: Транспорт, 1993. - 144 с.

11. Кравцов Ю.А., Нестеров В.Л., Леку та Г. Ф. Системы железнодо- оожной автоматики и телемеханики. М.: Транспорт, 1996. - 400 с.

12. Иванова Т.Н. Абонентские терминалы и компьютерная теле­фония. М.: Эко-Трендз, 1999. - 240 с.

13. Инструкция по движению поездов и маневровой работе на железных дорогах Российской Федерации: ЦД-790 / МПС России. М.: Техинформ, 2000. - 317 с.

14. Инструкция по обеспечению безопасности движения поездов при производстве работ по техническому обслуживанию и ремонту устройств СЦБ: ЦЩ/530 / МПС России. М.: Трансиздат, 1998. - 96 с.

15. Инструкция по сигнализации на железных дорогах Российс­кой Федерации / МПС России. М.: Транспорт, 2000. - 128 с.

16. Инструкция по эксплуатации железнодорожных переездов МПС России: ЦП/483 / МПС России. М.: Транспорт, 1997. - 103 с.

17. Петров А. Ф. Устройство заграждения железнодорожного пере­езда // Автоматика, связь, информатика, №7, 1998. - С. 24-28.

18. Правила технической эксплуатации железных дорог Российской Федерации /МПС России. М.:Техинформ, 2000. - 190 с.

19. Сапожников В. В., Елкин Б.Н., Кокурин И.М., Кондратенко Л. Ф., Кононов В.А. Станционные системы автоматики и телемеханики. М.: Транспорт, 1997. - 432 с.

20. Слепое Н.Н. Синхронные цифровые сети SDH. М.: Эко-Трендз, 1998, - 148 с.

21. Соколов С. В. Автоматизированное рабочее место поездного дис­петчера - АРМ ДНЦ «Сетунь» / Автоматика, связь, информатика, №5, 2001, -С. 13-16.

22. Современные телекоммуникации железнодорожного транспор­та / Под ред. Г.В. Горелова. - УМК МПС РФ, 2000. - 577 с.

23. Убайдуллаев P.P. Волоконно-оптические сети. М.: Эко-Трендз,- 240 с.

24. Чернин М.А., Протопопов О.В. Автоматизированная система дис­петчерского контроля // Автоматика, связь, информатика, №10,- 48 с.

25. Щиголев С. А., Талалаев В.И., Шевцов В. А., Сергеев Б. С. Алго­ритм функционирования системы УКП СО и увязка с полуавтомати­ческой блокировкой // Автоматика, связь, информатика, №5,1999. - С. 10-14.

ВВЕДЕНИЕ 3

СИСТЕМЫ РЕГУЛИРОВАНИЯ ДВИЖЕНИЯ ПОЕЗДОВ

Глава 1. Элементы систем регулирования движения 6

Классификация систем 6

Общие сведения об элементах систем 9

Общие сведения о реле 11

Реле постоянного тока 16

Реле переменного тока 24

Трансмиттеры и электронные приборы 26

Глава 2. Светофоры 31

Назначение, виды и места установки светофоров 31

Сигнализация светофоров 37

Классификация и устройство светофоров 43

Глава 3. Электропитание устройств автоматики и телемеханики.. 46

Аппаратура электропитания 46

Системы электропитания 49

Глава 4. Рельсовые цепи 52

Устройство, принцип действия и назначение рельсовых цепей.. 52

Классификация рельсовых цепей 56

Основные режимы работы рельсовых цепей 58

Надежность работы рельсовых цепей 61

Схемы рельсовых цепей 63

Глава 5. Полуавтоматическая блокировка 73

Назначение и принципы построения

полуавтоматической блокировки 73

Способы фиксации проследования

и контроля прибытия поезда 78

Релейная полуавтоматическая блокировка системы ГТСС 80

Глава 6. Автоматическая блокировка 91

Общие сведения и классификация систем автоблокировки 91

Системы сигнализации 94

Принципы построения автоблокировки постоянного тока 97

Принципы построения двухпутной

автоблокировки переменного тока 107

Глава 7. Автоматическая локомотивная

сигнализация и автостопы 119

Общие сведения 119

Автоматическая локомотивная

сигнализация непрерывного типа 121

Автоматическая локомотивная сигнализация

единого ряда с непрерывным каналом связи 129

Система автоматического управления тормозами 130

Глава 8. Ограждающие устройства на переездах 133

Назначение и виды автоматических

ограждающих устройств на переезде 133

Управление переездными светофорами

и автоматическими шлагбаумами 139

Устройство заграждения железнодорожного переезда 143

Глава 9. Электрическая централизация стрелок и сигналов 147

Назначение и классификация систем

электрической централизации 147

Оборудование станции устройствами

релейной централизации 151

Стрелочные электроприводы 170

Схемы управления стрелками 175

Релейная централизация промежуточных станций 179

Релейная централизация для средних и крупных станций 189

Принципы построения блочной

маршрутно-релейной централизации 201

Микропроцессорные системы ЭЦ 211

Глава 10. Механизация и автоматизация

работы сортировочных горок 223

Принципы механизации и автоматизации

работы сортировочных станций 223

Горочные вагонные замедлители 227

Горочный пульт управления 229

Комплексная автоматизация

работы сортировочных станций 237

Действия дежурного по горке при нарушении нормальной работы

устройств автоматизации и механизации 241

Глава 11. Диспетчерская централизация 244

Общие сведения 244

Аппараты управления и контроля 246

Основные требования, предъявляемые

к поездному диспетчеру и дежурному по станции 254

Глава 12. Диспетчерский контроль

за движением поездов и системы технической диагностики 256

Общие сведения 256

Система частотного диспетчерского контроля 258

Автоматизированная система

диспетчерского контроля АСДК 261

Система телеконтроля 262

Системы контроля состояния

подвижного состава на ходу поезда 264

Глава 13. Безопасность движения поездов

при неисправности устройств СЦБ 271

Обеспечение безопасного движения поездов

при полуавтоматической блокировке 271

Организация безопасного движения поездов при АБ 274

Организация безопасного движения на переездах 277

Организация безопасного движения

поездов при неисправности устройств ЭЦ 281

Раздел II СВЯЗЬ

Глава 14. Особенности и назначение железнодорожной связи 291

Состояние сети связи МПС России 291

Основные понятия и определения 292

Виды железнодорожной связи и их назначение 293

Перспективы развития телекоммуникаций

на железнодорожном транспорте 295

Глава 15. Линии связи 297

Назначение и классификация линий связи 297

Воздушные и кабельные линии связи 298

Волоконно-оптические линии связи 302

Глава 16. Телефонные аппараты и коммутаторы 306

Принцип телефонной передачи речи.

Схема двусторонней телефонной передачи 306

Конструкция телефонных аппаратов.

Телефонные аппараты технологической связи 309

Телефонные коммутаторы.

Назначение и принцип действия 313

Коммутаторы оперативной

и оперативно-технологической связи 315

Цифровые телефонные аппараты и коммутаторы 319

Глава 17. Телеграфная связь и передача данных 324

Принцип организации и назначение телеграфной связи 324

Телеграфные аппараты.

Автоматическая телеграфная связь 328

Создание сети передачи данных железных дорог России 334

Глава 18. Автоматическая телефонная связь

на железнодорожном транспорте 339

Принципы автоматической коммутации.

Общие сведения о системах АТС 339

АТС координатной системы и квазиэлектронные АТС 344

Цифровые АТС 347

Аппаратура оперативно-технологической

связи с временной коммутацией 349

Глава 19. Многоканачьные системы передачи 352

Особенности каналов связи и методы их уплотнения 352

Аналоговые многоканальные системы передачи 358

Цифровые многоканальные системы передачи 360

Цифровая первичная сеть 360

Глава 20. Технологическая телефонная связь

на железнодорожном транспорте 367

Классификация и назначение

технологической связи 367

Системы избирательного вызова 375

Магистральная и дорожная технологическая связь 382

Оперативно-технологическая связь

отделения железной дороги 385

Станционная технологическая связь 391

Единая цифровая платформа для организации общетехнологической и оперативно-технологической связи 395

Глава 21. Радиосвязь 399

Основные понятия 399

Станционная радиосвязь 402

Поездная радиосвязь 404

21.4. Ремонтно-оперативная радиосвязь 406

Радиорелейная связь 408

Перспективы развития железнодорожной радиосвязи 411

Цифровые системы радиосвязи 416

СПИСОК ЛИТЕРАТУРЫ 425


В приведенных единицах.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Системы транкинговой радиосвязи, представляющие собой радиальнозоновые системы подвижной УКВ радиосвязи, осуществляющие автоматической распределение каналов связи ретрансляторов между абонентами, являются классом систем подвижной связи, ориентированным, прежде всего, на создание различных ведомственных и корпоративных сетей связи, в которых предусматривается активное применение режима связи абонентов в группе. Они широко используются силовыми и правоохранительными структурами, службами общественной безопасности, транспортными и энергетическими компаниями различных стран для обеспечения связи подвижных абонентов между собой, со стационарными абонентами и абонентами телефонной сети.

Существует большое количество различных стандартов транкинговых систем подвижной радиосвязи общего пользования, отличающихся друг от друга методом передачи речевой информации (аналоговые и цифровые), типом многостанционного доступа, временным или кодовым, способом поиска и назначения канала (с децентрализованным и централизованным управлением), типом канала управления (выделенный и распределенный) и другими характеристиками.

Мы живем в такое время, когда доступ к информации является важнейшим фактором обеспечения оперативности и эффективности работы организаций. Поэтому необходимо обеспечить соответствие уровня мобильного доступа к информации растущему уровню мобильности современных организаций. Это касается и доступа в Интернет, и использование решений на базе Интернета.

С начала 90-х гг. системы "СмартЗона" устанавливаются по всему миру. "Скотланд Ярд" и ЮКОС, муниципалитет Рима и МВД России, транспортные предприятия и коммерческие операторы по достоинству оценили возможности системы, способной обеспечить связь через границы не только городов или областей, но и стран. Каждый из многочисленных пользователей находит в системе достоинства, привлекательные для него в первую очередь. Засекречивание речи и передача данных, непрерываемый телефонный разговор и телеметрия, диспетчеризация парка абонентов и многое другое заставили более миллиона человек сделать выбор в пользу систем семейства "СмартНет", к которому относится "СмартЗона"

Современные цифровые транкинговые системы радиосвязи знаменуют новый этап в развитии подвижной радиосвязи в России, да и во всем мире. По сравнению с сотовыми системами подвижной радиосвязи транкинговые оказываются в ряде случаев более экономичными, отличаясь многообразием реализаций в рамках одного стандарта при использовании оборудования от различных фирм-производителей.

Главная задача данной курсовой работы рассмотреть перспективы развития транкинговой связи (различных стандартов) в мире и в России в целом.

1. Транкинговая радио связь. Основные понятия

Системы транкинговой радиосвязи, представляющие собой радиально-зоновые системы подвижной УКВ-радиосвязи, осуществляющие автоматическое распределение каналов связи ретрансляторов между абонентами, являются классом систем подвижной связи, ориентированным, прежде всего, на создание различных ведомственных и корпоративных сетей связи, в которых предусматривается активное применение режима связи абонентов в группе. Они широко используются силовыми и правоохранительными структурами, службами общественной безопасности различных стран для обеспечения связи подвижных абонентов между собой, со стационарными абонентами и абонентами телефонной сети.

Цифровые стандарты транкинговой радиосвязи пока не получили широкого распространения в России, но уже сейчас можно говорить об их активном и успешном внедрении.

Цифровая транкинговая связь характеризуется такими характеристиками как (имеет такие преимущества как)

1. Высокая оперативность связи.

2. Передача данных.

3. Безопасность связи.

4. Услуги связи.

5. Возможность взаимодействия. Для служб общественной безопасности особенно актуальным является требование по обеспечению возможности взаимодействия подразделений различных ведомств для координации совместных действий при чрезвычайных ситуациях: стихийных бедствиях, террористических актах и т. п.

К наиболее популярным, заслужившим международное признание стандартам цифровой транкинговой радиосвязи, на основе которых во многих странах развернуты системы связи, относятся:

EDACS, разработанный фирмой Ericsson;

TETRA, разработанный Европейским институтом стандартов связи;

APCO 25, разработанный Ассоциацией официальных представителей служб связи органов общественной безопасности;

Tetrapol, разработанный фирмой Matra Communication (Франция);

iDEN, разработанный фирмой Motorola (США).

Все эти стандарты отвечают современным требованиям к системам транкинговой радиосвязи. Они позволяют создавать различные конфигурации сетей связи: от простейших локальных однозоновых систем до сложных многозоновых систем регионального или национального уровня.

1.1 Общие сведения о стандартах цифровой транкинговой радиосвязи

Система EDACS

Одним из первых стандартов цифровой транкинговой радиосвязи был стандарт EDACS (Enhanced Digital Access Communication System), разработанный фирмой Ericsson (Швеция).

Цифровые системы EDACS выпускались на диапазоны частот 138-174 МГц, 403-423, 450-470 МГц и 806-870 МГц с разносом частот 30; 25; и 12,5 кГц.

Скорость передачи информации в рабочем канале соответствует 9600 бит/с.

Речевое кодирование в системе производится путем компрессии импульсно-кодовой последовательности со скоростью 64 Кбит/с, полученной с помощью аналого-цифрового преобразования сигнала с тактовой частотой 8 кГц и разрядностью 8 бит. Основными функциями стандарта EDACS, обеспечивающими специфику служб общественной безопасности, являются различные режимы вызова (групповой, индивидуальный, экстренный, статусный), динамическое управление приоритетностью вызовов (в системе может использоваться до 8 уровней приоритета), динамическая модификация групп абонентов (перегруппировка), дистанционное выключение радиостанций (при утере или краже радиосредств).

Одной из основных задач разработки системы было достижение высокой надежности и отказоустойчивости сетей связи на основе данного стандарта.

На сегодняшний день в мире развернуто большое количество сетей стандарта EDACS, в числе которых есть многозоновые сети связи, используемые службами общественной безопасности различных стран. В России функционирует около десяти сетей данного стандарта. Вместе с тем фирма Ericsson не проводит работ по совершенствованию системы EDACS, прекратила поставки оборудования для развертывания новых сетей данного стандарта и только поддерживает функционирование действующих сетей.

Система TETRA

TETRA представляет собой стандарт цифровой транкинговой радиосвязи, состоящий из ряда спецификаций, разработанных Европейским институтом телекоммуникационных стандартов ETSI (European Telecommunications Standards Institute). Стандарт TETRA создавался как единый общеевропейский цифровой стандарт. В настоящее время TETRA расшифровывается как Наземное транкинговое радио (TErrestrial Trunked RAdio).

TETRA - открытый стандарт, т. е. предполагается, что оборудование различных производителей будет совместимо.

В стандарт TETRA входят спецификации беспроводного интерфейса, интерфейсов между сетью TETRA и цифровой сетью с интеграцией услуг (ISDN), телефонной сетью общего пользования, сетью передачи данных, учрежденческими АТС и т. п.

Радиоинтерфейс стандарта TETRA предполагает работу в стандартной сетке частот с шагом 25 кГц. Необходимый минимальный дуплексный разнос радиоканалов - 10 МГц. Для систем стандарта TETRA могут использоваться некоторые поддиапазоны частот. В странах Европы за службами безопасности закреплены диапазоны 380-385/390-395 МГц, а для коммерческих организаций предусмотрены диапазоны 410-430/450-470 МГц. В Азии для систем TETRA используется диапазон 806-870 МГц.

Стандарт TETRA обеспечивает два уровня безопасности передаваемой информации:

стандартный уровень, использующий шифрование радиоинтерфейса (обеспечивается уровень защиты информации, аналогичный системе сотовой связи GSM);

высокий уровень, использующий сквозное шифрование (от источника до получателя).

Сети TETRA развернуты в Европе, Северной и Южной Америке, Китае, Юго-Восточной Азии, Австралии, Африке.

Система APCO 25

Стандарт APCO 25 разработан Ассоциацией официальных представителей служб связи органов общественной безопасности (Association of Public safety Communications Officials-international), которая объединяет пользователей систем связи, работающих в службах общественной безопасности.

Стандарт APCO 25 предусматривает возможность работы в любом из стандартных диапазонов частот, используемых системами подвижной радиосвязи: 138-174, 406-512 или 746-869 МГц.

Заложенная в стандарте APCO 25 система идентификации абонентов позволяет адресовать в одной сети не менее 2 миллионов радиостанций и до 65 тысяч групп. При этом задержка при установлении канала связи в подсистеме в соответствии с функциональными и техническими требованиями к стандарту APCO 25 не должна превышать 500 мс (в режиме прямой связи - 250 мс, при связи через ретранслятор - 350 мс).

Наибольший интерес к данному стандарту проявляют специалисты МВД России. Пилотная сеть (пока не транкинговой, а конвенциональной радиосвязи) на основе двух базовых станций была развернута МВД России в Москве в 2001 г. В 2003 г. в Санкт-Петербурге к 300-летию города была развернута сеть диспетчерской радиосвязи на 300 абонентов в интересах различных силовых структур.

Система Tetrapol

Работы по созданию стандарта цифровой транкинговой радиосвязи Tetrapol были начаты в 1987 г., когда фирма Matra Communications заключила контракт с французской жандармерией на разработку и ввод в эксплуатацию сети цифровой радиосвязи Rubis. Сеть связи была введена в эксплуатацию в 1994 г. По данным фирмы Matra на сегодняшний день сеть французской жандармерии охватывает более половины территории Франции и обслуживает более 15 тыс. абонентов.

Системы связи стандарта Tetrapol имеют возможность работы в диапазоне частот от 70 до 520 МГц, который в соответствии со стандартом определяется как совокупность двух поддиапазонов: ниже 150 МГц (VHF) и выше 150 МГц (UHF). Большая часть радиоинтерфейсов для систем этих поддиапазонов является общей, различие заключается в использовании различных методов помехоустойчивого кодирования и кодового перемежения.

Скорость передачи информации в канале связи составляет 8000 бит/с.

В связи с тем, что с самого начала стандарт Tetrapol был ориентирован на обеспечение требований правоохранительных органов, в нем предусмотрены различные механизмы обеспечения безопасности связи, направленные на предотвращение таких угроз, как несанкционированный доступ в систему, прослушивание ведущихся переговоров, создание преднамеренных помех, анализ трафика конкретных абонентов и т. п.

В 1997 г. фирма Matra Communications выиграла тендер по созданию системы цифровой радиосвязи для королевской тайландской полиции. Контракт является частью заказа по модернизации полицейской радиосети, которая объединит 70 полицейских участков. Предполагается задействование самых современных возможностей системы, включая доступ к централизованной базе данных, электронную почту, сквозное шифрование информации, местоопределение. Имеются также сведения о развертывании нескольких систем в двух других странах юго-восточной Азии, а также в интересах полиции Мехико.

Система iDEN

Технология iDEN (integrated Digital Enhanced Network) была разработана компанией Motorola в начале 90-х годов. Первая коммерческая система на базе этой технологии была развернута в США компанией NEXTEL в 1994 г.

С точки зрения статуса стандарта iDEN можно охарактеризовать как корпоративный стандарт с открытой архитектурой. Это означает, что компания Motorola, сохраняя за собой все права по модификации системного протокола, предоставляет вместе с тем лицензии на производство компонентов системы различным производителям.

Данный стандарт разрабатывался для реализации интегрированных систем, обеспечивающих все виды подвижной радиосвязи: диспетчерской связи, мобильной телефонной связи, передачи текстовых сообщений и пакетов данных. Технология iDEN ориентирована на создание корпоративных сетей крупных организаций или коммерческих систем, предоставляющих услуги как организациям, так и частным лицам.

Система iDEN выполнена на базе технологии МДВР. В каждом частотном канале шириной 25 кГц передается 6 речевых каналов. Это достигается путем разбиения кадра длительностью 90 мс на временные интервалы по 15 мс, в каждом из которых передается информация своего канала.

В стандарте используется стандартный для Америки и Азии частотный диапазон 805-821/855-866 МГц. IDEN имеет самую высокую спектральную эффективность среди рассматриваемых стандартов цифровой транкинговой связи, он позволяет разместить в 1 МГц до 240 информационных каналов. Вместе с тем, размеры зон покрытия базовых станций (ячеек) в системах iDEN меньше, чем в системах других стандартов, что объясняется малой мощностью абонентских терминалов (0,6 Вт - для портативных станций и 3 Вт - для мобильных).

Первая коммерческая система, развернутая в 1994 г. компанией NEXTEL, в настоящее время является общенациональной и насчитывает около 5500 сайтов и 2,7 млн. абонентов. В США имеется другая сеть, оператором которой является компания Southern Co. Сети iDEN развернуты также в Канаде, Бразилии, Мексике, Колумбии, Аргентине, Японии, Сингапуре, Китае, Израиле и других странах. Общее число абонентов iDEN в мире на сегодня превышает 3 млн. человек.

В России системы iDEN не развернуты и нет сведений о разработках проектов сетей данного стандарта.

1.2 Операторы многозоновых транкинговых сетей

АМТ. Это один из первых коммерческих операторов радиотелефонной связи в России. Сеть АМТ стандарта MPT-1327 построена на базе оборудования фирмы Nokia. В зону ее действия входят территория Москвы и Московской области на расстоянии до 50 км от МКАД, а также подмосковные города Солнечногорск, Дубна и их окрестности. Услуги компании рассчитаны как на индивидуальных потребителей (радиотелефоны), так и на корпоративных заказчиков (виртуальные ведомственные сети радиосвязи). В системе используются дуплексные и полудуплексные радиостанции. Кроме голосовой связи поддерживается передача данных. Имеется полноценный выход в телефонную сеть общего пользования, обеспечивается роуминг с регионами.

АСВТ («Русалтай»). Сеть «Русалтай» построена на основе оборудования Actionet фирмы Nokia. Ведущая базовая станция располагается на Останкинской башне, а 10 других развернуты в Московской области, чтобы обеспечить ее полное покрытие и частичное покрытие прилегающих районов. Пока услуги сети позиционируются как радиотелефонные, то есть клиент получает радиотелефон с прямым московским номером. Однако, в отличие от сотового телефона, предоставляемое компанией абонентское устройство способно работать и в полудуплексном режиме, который используется в транкинге для групповой связи. В сети «Русалтай» применяется не поминутный (как в сотовой связи), а посекундный биллинг, что при аналогичной стоимости эфирного времени позволяет абонентам существенно сокращать затраты.

«РадиоТел». Этот крупнейший оператор транкинговой связи на Северо-Западе, да и в России, входит в группу «Телекоминвест». Компания «РадиоТел» - единственный петербургский оператор мобильной связи, обеспечивающий построение иерархических систем связи для корпоративных пользователей, транкинговую связь с возможностью выхода в ГТС, экстренную связь со «Скорой помощью» (03), дежурными службами администрации города и Управления по делам гражданской обороны и чрезвычайных ситуаций. В зону охвата сети «РадиоТел» входит весь Петербург и ближайшие пригороды. Терминальное оборудование производится и поставляется корпорациями Ericsson и Maxon. В начале 1996 года компания создала собственную диспетчерскую службу «Петербургское такси 068», в настоящее время обслуживающую в городе более 50% вызовов такси по телефону.

В 1999 году по заказу одной из петербургских топливных фирм «РадиоТел» разработал проект «Передача данных для приема платежей по пластиковым картам основных платежных систем». Созданная система многофункциональна и позволяет решать несколько проблем, в том числе задачу обеспечения безопасности транзакций.

В 1999 году «РадиоТел» стал победителем тендера на организацию транкинговой связи для службы «Скорой медицинской помощи» и поставил ей 350 единиц оборудования. Сегодня каждая машина «Скорой помощи» в Петербурге радиофицирована этой компанией.

«МТК-Транк». Сеть «МТК-Транк» построена на основе оборудования SmartZone фирмы Motorola. Шесть сайтов обеспечивают уверенную связь в столице и на расстоянии не менее 10 км от МКАД для портативных и не менее 50 км от МКАД для автомобильных радиостанций. Сеть ориентирована на коллективных пользователей (организации), для которых характерны высокая мобильность персонала и произвольное распределение сотрудников по территории Москвы и области. Каждому клиенту выделяется собственная виртуальная сеть. Групповые и персональные вызовы осуществляются по всей зоне радиопокрытия с любой абонентской радиостанции без дополнительных манипуляций и переключений. Имеются возможности установления связи вне зоны покрытия сети в режиме talk-arround (прямой канал), а также выхода с абонентской станции в телефонную сеть общего пользования.

«РадиоЛизинг». Это первый в Москве оператор коммерческой транкинговой сети. Под торговой маркой Translink объединены несколько сетей:

локальные сети в диапазоне 160 МГц (на "прямых" симплексных каналах);

псевдотранкинговая сеть SmarTrunk II (с 1992 года);

многозоновая транкинговая сеть МРТ-1327, построенная на базе оборудования Fylde Microsystems.

В настоящее время работают пять базовых станций (22 канала), которые поддерживают уверенную связь в пределах 50 км от МКАД.

«Регионтранк». Компания предоставляет услуги радиотелефонной связи в Москве и Московской области, а также в регионах Центральной России. Первая из сетей связи на основе протокола ESAS, работающая в диапазоне 800 МГц, была введена в строй в 1997 году. Сейчас в Москве размещено шесть базовых станций, что обеспечивает уверенный прием в черте города для портативных абонентских станций и в ближнем Подмосковье - для автомобильных устройств. Отличительной особенностью услуг «Регионтранка» является разработка профессиональных бизнес-решений, в которых учитываются особые требования заказчиков. Например, для крупного московского таксопарка создан программно-аппаратный комплекс «Диспетчерская служба такси».

«Центр-Телко». Городская интегрированная система радиотелефонной связи «Система Транк» развернута в соответствии с постановлением правительства Москвы от 29 октября 1996 года. Сеть построена на основе оборудования EDACS, благодаря чему обеспечиваются высокая защищенность каналов связи и надежность работы системы в любых экстремальных ситуациях. Четыре базовые станции поддерживают функционирование портативных станций в Москве и ближайшем Подмосковье (4-7 км от МКАД), а автомобильных - в пределах 50 км от МКАД. Помимо традиционных для сетей радиосвязи сервисов в сети «Система Транк» предоставляются услуги передачи цифровых данных и определения местонахождения объектов.

2. Перспективы р азвития транкинговой радиосвязи

Краткий сравнительный анализ данных стандартов цифровой транкинговой радиосвязи по основным рассмотренным критериям позволяет сделать определенные выводы о перспективности их развития, как в мире, так и в России.

Стандарт EDACS практически не имеет перспектив развития. По сравнению с другими стандартами, он имеет меньшую спектральную эффективность и менее широкие функциональные возможности. Компания Ericsson не планирует расширять возможности стандарта и практически свернула производство оборудования.

Стандарт iDEN не предусматривает многих специальных требований, а также, несмотря на высокую спектральную эффективность, ограничен необходимостью использования диапазона 800 МГц. Вероятно, что системы данного стандарта имеют определенный потенциал и будут еще развертываться и эксплуатироваться, в особенности в Северной и Южной Америке. В других регионах перспективы развертывания систем данного стандарта выглядят сомнительными.

Стандарт Tetrapol имеет хорошие технические показатели и достаточные функциональные возможности, однако так же, как и стандарты EDACS и iDEN, не обладает статусом открытого стандарта, что может существенно сдерживать его развитие в техническом плане, а также в части стоимости абонентского и стационарного оборудования.

Стандарты TETRA и APCO 25 обладают высокими техническими характеристиками и широкими функциональными возможностями, включая выполнение специальных требований силовых структур, имеют достаточную спектральную эффективность. Самым главным доводом в пользу этих систем является наличие статуса открытых стандартов.

В то же время, большинство экспертов склоняется к мнению, что рынок цифровой транкинговой радиосвязи будет завоеван стандартом TETRA. Данный стандарт пользуется широкой поддержкой большинства крупных мировых производителей оборудования и администраций связи различных стран. Последние события на отечественном рынке профессиональной радиосвязи позволяют сделать вывод, что и в России данный стандарт получит наиболее широкое распространение.

В настоящее время завершается разработка второй стадии стандарта (TETRA Release 2 (R2)), направленной на интеграцию с мобильными сетями 3-го поколения, кардинальное увеличение скорости передачи данных, переход от специализированных SIM-карт к универсальным, дальнейшее увеличение эффективности сетей связи и расширение возможных зон обслуживания.

2.1 Обзор проектов транкинговой радиосвязи в Европе

Многие европейские страны сделали свой выбор в пользу цифровых транкинговых стандартов для сетей профессиональной радиосвязи. В этой статье сделан краткий обзор реализованных и реализуемых проектов в Европе.

Великобритания уже начала внедрять и применять проекты на основе технологии TETRA. Команда проекта радиосети для служб общественной безопасности (Public Safety Radio Communication Project) создала сеть TETRA для полиции Великобритании. Несмотря на то, что эта сеть первоначально была создана для использования полицией, руководители проекта надеются, что вскоре пожарные бригады и бригады "скорой помощи" тоже присоединятся к числу ее пользователей. Сеть поддерживается специально созданной компанией-оператором Airwave.

Финляндия начала работать над сетью стандарта TETRA национального масштаба в 1998 г. Первая фаза проекта была запущена в эксплуатацию в январе 2001 г., и сейчас сеть действует почти на всей территории Финляндии. На данный момент сеть VIRVE используется различными пользователями, включающими полицию, пожарных, службу "скорой помощи", пограничные службы, службы береговой охраны и вооруженные силы.

Проект С2000 реализуется в Нидерландах. Сеть предназначена в основном для полиции, пожарных, службы "скорой помощи" и прочих общественных служб. Полное завершение строительства ожидается в 2004 г. Общее число базовых станций будет около 400. Ожидаемое число пользователей сети - 80 тыс.

Бельгия поддерживает проект под названием ASTRID (All-round Semi-cellular Trunking Radiocommunication system with Integrated Dispatchings). Так же как и С2000 в Нидерландах, этот проект имеет целью создание национальной сети TETRA. Планируемая сеть, в основном, предназначена для использования местной и федеральной полицией, пожарными, службой госбезопасности, службой "100" (Министерство здравоохранения) и обычными пользователями. Внедрение сети началось в 1998 г. Первоначальной целью было достижение национального радиопокрытия к концу 2003 г., однако проектирование сети затянулось. Основной причиной называются сложности в получении разрешений на установку мачт и антенных устройств.

Учитывая федеральную структуру Германии и разделение ответственности на национальном и региональном уровнях, процесс принятия решения о создании национальной сети был сложным и длительным. В 1996 г. власти различных регионов решили, что это будет цифровая сеть, основанная на европейском стандарте. Они, однако, не определили, какой именно стандарт должен использоваться. Вскоре после принятия этого решения в Берлине был создан первый пилотный проект на основе стандарта TETRA. Последующие отчеты рекомендовали устроить процедуру тендера для национальной сети на основе того же стандарта. Также сеть TETRA была создана в регионе Aachen. Эта сеть является частью так называемого "пилотного проекта трех стран" (Three Countries Trial). В рамках этого проекта оценивается эффективность сети TETRA при использовании ее несколькими государствами. Страны, вошедшие в этот проект: Бельгия, Германия и Нидерланды. Сети TETRA этих стран были объединены между собой для проведения тестирования.

Австрия, Италия, скандинавские страны, Ирландия (перечислены не все) также начали реализацию проектов сетей профессиональной радиосвязи на основе TETRA. Был организован совещательный орган, состоящий из представителей 13 стран, для обмена опытом, для выработки совместной позиции и оказания влияния на производителей, для решения частотных вопросов и для взаимной помощи. Представители совещательного органа провозгласили периодичность собраний два раза в год. Председателем органа является представитель Нидерландов.

Однако не все европейские страны остановили свой выбор на стандарте TETRA. Например, стандарт TETRAPOL, разработанный французской компанией MatraCommunications, был выбран для внедрения полицией Франции.

Также некоторое число небольших локальных сетей TETRA были реализованы в Испании, Чехии и Швейцарии.

2.2 Обзор перспектив развития транкинговой радиосвязи в России

Ведущей компанией на рынке транкинговой радиосвязи в России является ОАО "Тетрасвязь", образованное в 2004 году. «Тетрасвязь» предоставляет полный комплекс услуг по созданию сетей профессиональной цифровой радиосвязи TETRA от проектирования до запуска в эксплуатацию, включая предоставление услуг на базе существующих сетей.

"Тетрасвязь" - ведущий российский системный и сетевой интегратор, федеральный оператор услуг на базе систем ГЛОНАСС/TETRA по географии и числу абонентов, обладающий большим опытом и широкими возможностями по реализации масштабных телекоммуникационных проектов, собственными решениями для различных сегментов рынка. В 2007 году вошла в консорциум ATGroup. Зона профессионального присутствия охватывает 40 регионов, более 70 городов РФ. Головной офис находится в Москве, региональные представительства - в Санкт-Петербурге, Краснодаре, Нижнем Новгороде.

7-8 апреля в Москве состоялась Международная конференция «Проблемы модернизации телекоммуникационной инфраструктуры России и внедрение перспективных радиотехнологий», организованная Министерством связи и массовых коммуникаций РФ. Основной темой, вынесенной на обсуждение в ходе конференции, стала оценка современного состояния радиосвязи как важнейшего элемента инфраструктуры России, перспективы и направления ее дальнейшего развития.

На конференции с докладами выступили представители Минкомсвязи, территориальных управлений Роскомнадзора, научно-исследовательских и проектных институтов, организаций радиочастотной службы, компаний-лидеров телекоммуникационной отрасли, таких, как «Связьинвест», МТС, «Вымпелком», Motorola. Большой интерес аудитории вызвал доклад о современном состоянии и перспективах развития цифровой транкинговой радиосвязи в России, представленный федеральным оператором услуг профессиональной радиосвязи компанией «Тетрасвязь». Речь в докладе шла об европейском стандарте TETRA, который обладает рядом технологических и функциональных преимуществ по сравнению с сетями общего пользования и американским стандартом транкинговой связи APCO 25. На основе стандарта разрабатываются комплексные системы безопасности и управления как в мегаполисах, так и в российских регионах. При активном участии и внешнем контроле государственных организаций сети TETRA строятся в Московской, Владимирской, Курской областях, в Сочи - к Олимпиаде-2014, Владивостоке - к саммиту АТЭС-2012 для обеспечения эффективного взаимодействия правоохранительных служб

Как отмечается в докладе, реализация концепции развития стандарта TETRA в России до 2015 года связана с рядом ключевых факторов. Во-первых, симбиоз с российской системой ГЛОНАСС открывает новые перспективы использования TETRA как надежной транспортной среды в системах спутникового мониторинга, управления и диспетчеризации для экстренных служб и силовых ведомств. Во-вторых, обеспечение плавного перехода сетей на стандарт нового поколения TETRA-2 по мере появления релиза на рынке. В-третьих, постепенное создание объединенного пространства TETRA в России, формирующего зону безопасной жизнедеятельности в национальном масштабе.

Усиливается внимание со стороны государства к перспективным инвестиционным проектам в области телекоммуникаций, многие из которых связаны с такими масштабными имиджевыми мероприятиями, как, например, первая российская Зимняя Олимпиада и международный саммит стран Азиатско-Тихоокеанского региона.

Заключение

На рынке страны представлены практически все стандарты транкинговой подвижной радиосвязи, существующие на сегодня во всем мире. Россия - страна телекоммуникационных контрастов, и их надо устранять, если мы собрались занять прочные позиции на мировом рынке высоких телекоммуникационных технологий. Но, несмотря на все недостатки, отечественная индустрия высоких технологий демонстрирует неплохие 25-процентные темпы ежегодного прироста. Инвестирование денег в связь - это перспективные вложения в бизнес.

Развитие транкинговой радиосвязи незаслуженно (и не без помощи операторов сотовой радиосвязи) не получило должного роста в Российской Федерации в прошедшее десятилетие. Многие руководители, не понимая правильно разницу, сопоставляют профессиональную транкинговую радиосвязь с сотовой, и если речь заходит о стоимости абонентского оборудования (которая в два-три раза превышает стоимость абонентского оборудования мобильной радиосвязи), побеждает в итоге сотовая радиосвязь. Остается без внимания, что подвижная транкинговая радиосвязь - это, прежде всего, оперативная радиосвязь, где простым нажатием одной или нескольких клавиш происходит соединение абонентов.

Множество и других преимуществ у транкинговой радиосвязи перед сотовой: передача данных, безопасность связи, возможность проводить конференц-радиосвязь, нет беспокойства за трафик, так как зачастую плата (если это выделенная, коммерческая, сеть) проходит лишь абонентская, без учета трафика.

Нынешняя редакция Федерального закона Российской Федерации "О связи" предусматривает создание систем связи "двойного назначения". Однако о создании межведомственных систем радиосвязи в данной редакции умалчивается.

Государство, в собственности которого находится частотный диапазон, должно повлиять на развитие и модернизацию транкинговых сетей связи, вплоть до создания федеральных транкинговых сетей подвижной радиосвязи, выступить рефери в создании межведомственных систем транкинговой подвижной радиосвязи.

С писок использованных источников

1. Шлома А.М., Бакулин М.Г. «Новые алгоритмы формирования и обработки сигналов в системах подвижной связи» [Текст] Горячая Линия - Телеком, 2008г.- 344с.

2. Аннабел З.Д. «Мир телекоммуникаций. Обзор технологий и отрасли» [Текст] Олимп-Бизнес, 2002г.- 400с.

3. Довгий С.С. «Современные телекоммуникации. Технологии и экономика» [Текст] Эко-Трендз, 2003г.- 320с.

4. Шахгильдяна В.В. «Радиопередающие устройства: учебник для вузов» [Текст] Радио и связь, 2003г.- 560с.

5. Катунин, Г.В. Мамчев, В. Н. «Телекоммуникационные системы и сети. Том 2. Радиосвязь, радиовещание, телевидение. Учебное пособие» [Текст] Горячая линия - Телеком, 2004г.- 672 с.

6. Попов О.Б., Рихтер С.Г. «Цифровая обработка сигналов в трактах звукового вещания» [Текст] Горячая линия - Телеком, 2007г.- 341с.

7. Мамчев Г.В. «Основы радиосвязи и телевидения. Учебное пособие для вузов» [Текст] Горячая линия-Телеком, 2007г.- 416 с.

8. Мамаева Н.С. «Системы цифрового телевидения и радиовещания» [Текст] Горячая линия - Телеком, 2007г.- 254 с.

9. Галкин В.А., Григорьев Ю.А. «Учебное пособие для вузов, по спец. "Информатика и вычислительная техника"» [Текст] "МГТУ им. Баумана" - 608 с.

10. Крухмалев В.В., Гордиенко В.Н. «Основы построения телекоммуникационных систем и сетей» [Текст] М: BHV, 2005г. - 325 с.

Приложение 1

транкинговый радиосвязь оператор tetra

Обобщенные сведения о системах стандартов EDACS, TETRA, APCO 25, Tetrapol, iDEN и их технические характеристики

Характеристика стандарта (системы) связи

Разработчик стандарта

Ericsson (Швеция)

Matra Communications (Франция)

Статус стандарта

корпоративный

открытый

открытый

корпоративный

корпоративный с открытой архи- тектурой

Основные производители радиосредств

Nokia, Motorola, OTE, Rohde&Schwarz

Motorola, E.F.Johnson Inc., Transcrypt, ADI Limited

Matra, Nortel,CS Telecom

Возможный диапазон рабочих частот, МГц

138-174; 403-423;

Разнос между частотными каналами, кГц

12,5 (передача данных)

Эффективная полоса частот на один речевой канал, кГц

Вид модуляции

C4FM (12,5 кГц) CQPSK (6,25 кГц)

Метод речевого кодирования и скорость речепреобразования

адаптивное многоуровневое кодирование (преобразование 64Кбит/с и компрессия до 9,2 Кбит/с)

(4,8 Кбит/с)

(4,4 Кбит/с)

(7,2 Кбит/с)

Скорость передачи информации в канале,

7200 (28800 - при передаче 4-х информационных каналов на одной физичекой частоте)

9600 (до 32К при передаче данных в пакетном режиме)

Время установления канала связи, с

0,25 (в однозоновой системе)

0,2 с - при индив. вызове (min); 0,17 с - при групповом вызове (min)

0,25 - в режиме прямой связи; 0,35 - в режиме ретрансляции; 0,5 - в радио- подсистеме

не более 0,5

не более 0,5

Метод разделения каналов связи

Множественный доступ с временным разделением каналов (с использованием частотного разделения в многозоновых системах)

Частотный метод доступа к каналам связи

Частотный метод доступа к каналам связи

Множественный доступ с временным разделением каналов

Вид канала управления

выделенный

выделенный или распределенный (в зависимости от конфигурации сети)

выделенный

выделенный

Выделенный или распре- деленный (в зависимости от конфигурации сети)

Возможности шифрования информации

стандартный фирменный алгоритм сквозного шифрования

1) стандартные алгоритмы; 2) сквозное шифрование

4 уровня защиты информации

1) стандартные алгоритмы;

2) сквозное шифрование

нет сведений

Приложение 2

Функциональные возможности, предоставляемые системами стандартов цифровой транкинговой радиосвязи

Функциональные возможности системы связи

Поддержка основных видов вызова (индивид., групповой, широковещ.)

Выход на ТФОП

Полнодуплексные абонентские терминалы

Передача данных и доступ к централизованным базам данных

Режим прямой связи

Автоматическая регистрация мобильных абонентов

Персональный вызов

Доступ к фиксированным сетям IP

Передача статусных сообщений

Передача коротких сообщений

Поддержка режима передачи данных о местоположении от системы GPS

Факсимильная связь

Возможность установки открытого канала

Множественный доступ с использованием списка абонентов

Наличие стандартного режима ретрансляции сигналов

Наличие режима «двойного наблюдения»

Приложение 3

Выполнение специальных требований к системам радиосвязи служб общественной безопасности

Специальные услуги связи

Приоритет доступа

Система приоритетных вызовов

Динамическая перегруппировка

Избирательное прослушивание

Дистанционное прослушивание

Идентификация вызывающей стороны

Вызов, санкционированный диспетчером

Передача ключей по радиоканалу (OTAR)

Имитация активности абонентов

Дистанционное отключение абонента

Аутентификация абонентов

Приложение 4

Проекты ТЕТРА в России

Регион обслуживания

Заказчик

о. Валаам

Русская православная церковь

Ленинградская область

Ленинградская АЭС

г. Междуреченск, Кемеровская область

Угольная компания "Южный Кузбасс"

Rohde&Schwarz Bick Mobilfunk , ACCESSNET-T

г. Нижний Новгород

Главное управление дорожного и транспортного хозяйства Нижегородской области

Sepura, Motorola

г. Ноябрьск

ОАО "Сибнефть" ("Ноябрьскнефтегаз" и Омский НПЗ)

Rohde&Schwarz Bick Mobilfunk, ACCESSNET-T

Sepura, Motorola, Nokia

г. Санкт-Петербург

ЗАО "РадиоТел"

В процессе установки (заключение контракта)

Регион обслуживания

Заказчик

Производитель сетевой инфраструктуры, система

Производитель абонентского оборудования

Балтийский нефтепровод (Ярославль-Приморск)

Компания "Транснефть"

г. Москва

Министерство обороны

Rohde&Schwarz Bick Mobilfunk, ACCESSNET-T

Sepura, Motorola

Омская область

ОАО "Сибнефть" (Омский НПЗ)

Rohde&Schwarz Bick Mobilfunk, ACCESSNET-T

Sepura, Motorola, Nokia

Калининградская область

Министерство обороны

Rohde&Schwarz Bick Mobilfunk, ACCESSNET-T

Sepura, Motorola

Самарская область

("Средняя Волга")

Свердловская область

МПС Свердловская ж/д

Rohde&Schwarz Bick Mobilfunk, ACCESSNET-T

Тульская область

Черепетская ГРЭС

Motorola, Compact TETRA

Северо-Западный регион России

"Транснефть"

Метрополитен Санкт-Петербурга

Министерство транспорта

Поволжский регион

"Газпром"

Н.Новгород

Метрополитен г. Казань

Министерство транспорта

Размещено на Allbest.ru

Подобные документы

    Структура Кандыагашской дистанции сигнализации и связи. Необходимость перехода на цифровые стандарты радиосвязи. Проектирование и строительство системы TETRA на участке железной дороги Кандыагаш-Никельтау. Функции и технические характеристики стандарта.

    дипломная работа , добавлен 16.04.2014

    Сложность проведения мероприятий по противодействию террористическим угрозам. Программы развития системы радиосвязи органов внутренних дел. Характеристика систем радиосвязи ОВД. Радиотелефонная система общего пользования, сотовая и радиорелейная связь.

    реферат , добавлен 27.03.2009

    Состояние и перспективы развития средств беспроводной связи на железнодорожном транспорте. Оборудование сети мониторинга поездной радиосвязи в ОАО "РЖД" (ЕСМА). Структурная схема мониторинга, технические параметры радиостанций поездной радиосвязи.

    дипломная работа , добавлен 15.05.2014

    Радиосвязь - связь, в которой носителем сигнала используются радиоволны в пространстве; диапазоны частотной сетки односторонней и двухсторонней радиосвязи. Профессиональные радиостанции; отраслевая специфика и классификация решений мобильной радиосвязи.

    контрольная работа , добавлен 24.06.2012

    Перспективы мобильности беспроводных сетей связи. Диапазон частот радиосвязи. Возможности и ограничения телевизионных каналов. Расчет принимаемого антенной сигнала. Многоканальные системы радиосвязи. Структурные схемы радиопередатчика и приемника.

    презентация , добавлен 20.10.2014

    Анализ оснащенности участка проектирования системами связи. Требования к стандартам радиосвязи. Преимущества GSM-R, принципы построения, организация каналов доступа, особенности базовой структуры. Энергетический расчет проектируемой системы радиосвязи.

    дипломная работа , добавлен 24.06.2011

    Назначение и виды станционной радиосвязи. Условия обеспечения необходимой дальности связи между стационарной радиостанцией и локомотивом. Определение дальности действия радиосвязи и высоты антенны. Определение территориального и частотного разносов.

    курсовая работа , добавлен 16.12.2012

    Распространение цифровых стандартов в области сотовых сетей подвижной радиосвязи. Максимальное число обслуживаемых абонентов как основная характеристика системы подвижной радиосвязи. Достоинствами транкинговых сетей. Европейский проект стандарта W-CDMA.

    контрольная работа , добавлен 18.09.2010

    Tехнико-эксплуатационная характеристика Гомельской дистанции сигнализации и связи. Цифровой стандарт радиосвязи GSM-R. Проектирование сети GSM-R на участке дороги Минск-Гудогай. Гигиеническая оценка и нормирование СВЧ-излучений, их влияние на человека.

    дипломная работа , добавлен 30.05.2013

    Изучение предназначения аппаратуры цифровой радиосвязи. Сравнение радиомодемов МЕТА и Риф Файндер-801 методом анализа иерархии. Расчет матриц сравнения и приоритетов, рыночной стоимости радиомодема. Методы передачи, кодирования и синхронизации сигнала.

нформационно-коммуникационные технологии и услуги в настоящее время являются ключевым фактором развития всех областей социально-экономической сферы. Как и во всем мире, в России эти технологии демонстрируют бурные темпы роста. Так, в последние пять лет рост рынка услуг связи у нас ежегодно составляет около 40%.

В структуре расходов федерального бюджета на 2006 год впервые появился специальный инвестиционный фонд. Направления затрат этого фонда являются предметом жарких дискуссий в обществе и структурах власти. В частности, из инвестиционного фонда можно было бы финансировать и телекоммуникационные проекты, в первую очередь для того, чтобы создать цифровую инфраструктуру в общероссийском масштабе.

Надежность и доступность связи и телекоммуникационных услуг в нашей стране давно является острой проблемой, и такие информационные услуги, как высокоскоростной доступ в Интернет, видеосвязь, кабельное телевидение, IP-телефония и т.п., развиваются в основном в Москве и Санкт-Петербурге, хотя необходимость в такого рода услугах ощущают все жители России.

И пока у нас идут споры о том, стоит ли выделять средства из инвестиционного фонда на такие инфраструктурные проекты, как строительство межрегиональных цифровых магистралей (которые, кстати, могли бы послужить катализатором развития других сегментов ИТ-отрасли и экономики в целом), во всем мире близится пора кардинального увеличения пропускной способности цифровых информационных сетей, что неизбежно повлечет за собой появление качественно новых видов услуг, которые, возможно, будут нам уже просто недоступны.

Так, в сентябре 2005 года в г.Сан-Диего (США) прошли очередные конференция и выставка iGrid (http://www.igrid2005.org/index.html). Это международное движение, развивающее идею lambdaGrid: слово lambda обозначает длину волны, а Grid — «сетку» с намеком на географическую сеть параллелей и меридианов. В общем-то, это движение не такое уж и новое, а его технологические принципы давно разработаны. Речь идет о технологии DWDM (Dense Wavelengh-Division Multiplexing), то есть о глобальном мультиплексировании цифровых коммуникаций. Пожалуй, ближайшей и довольно точной аналогией для понимания основ этой технологии является переход от телеграфа и искрового радио Маркони и Попова к современному многочастотному радиовещанию, то есть сетевой мир переходит от примитивных технологий передачи данных по оптоволокну к одновременному использованию при передаче волн разной длины. Проще говоря, приемники/передатчики сигналов (DWDG-enabled FO tranceiver) из черно-белых превращаются в разноцветные. При этом сам опто-

проводник имеет уже достаточно широкую полосу прозрачности, а точнее, широкую полосу удержания пучка света внутри оптоволокна с малыми потерями на эмиссию не по направлению вдоль оси волокна, вследствие чего новых кабелей прокладывать не нужно.

К тому же новые DWDM-трансиверы — квазидуплексные, то есть по одному волокну можно передавать данные в обе стороны одновременно. В численном выражении это означает, что по нынешним десятигигабитным оптоволоконным каналам DWDM-технологии позволят передавать до 160 потоков одновременно, причем речь идет о магистральных, длинных каналах, в том числе о трансконтинентальных. Получается, что на все так называемое прогрессивное человечество вдруг сваливается такой неожиданный подарок, как увеличение пропускной способности сетей на два порядка. Кроме того, наличие множества свободных каналов позволит выделять их по мере необходимости и направлять потоки данных параллельно вместо последовательной передачи их по одному каналу, как было прежде. Естественно, для этого нужны новые аппаратно-программные решения и необходима интеграция сегодняшних владельцев сетей в единую информационную инфраструктуру.

К сожалению, подобные технологии дойдут до России еще очень не скоро, ибо пока, согласно карте мировых цифровых коммуникаций, наша страна оптоволоконными линиями не заполнена.

Российские особенности

ерьезные перемены ожидаются в России прежде всего в области организации телефонной связи PSTN (Public Switched Telephone Network — телефонная сеть общего пользования, ТСОП). Предполагается, что уже в этом году у абонентов появится возможность выбрать оператора междугородной и международной связи. Помимо «Ростелекома», свои услуги планируют предоставлять «Межрегиональный ТранзитТелеком» (МТТ), Golden Telecom, «ТрансТелеком» и др., хотя без особых нареканий сегодня работает только «Ростелеком». В принципе, должна появиться возможность пользоваться услугами сразу нескольких компаний, то есть пользователь будет выбирать, чьи минуты на нужном направлении дешевле. Каждому оператору будет присвоен код, начинающийся с цифры «5» (51, 52 и т.д.), который надо будет набирать после выхода на межгород. Пока же после набора привычной междугородной «восьмерки» абонент попадет к привычному «Ростелекому». А тем, кому уже сегодня дешевле звонить с помощью альтернативных операторов, необходимо написать заявление своему оператору связи, и тогда «восьмерка» станет выводить их в соответствующую сеть.

Продолжает увеличиваться и доля повременной оплаты телефонных переговоров фиксированной связи, постепенно догоняя по стоимости мобильную связь. Согласно вступившей в силу с 1 января 2004 года новой редакции закона о связи, компании-операторы обязаны предоставить абоненту два типа тарифов — повременный и фиксированный (естественно, при наличии технической возможности). В настоящее время не все межрегиональные компании (МРК) «Связьинвеста» даже уровня областных центров оснащены системами повременного учета стоимости переговоров — большинству не хватает денег на техническое перевооружение и введение биллинговых систем. И все же во многих регионах МРК уже в этом году абонентам предоставили возможность оплачивать телефонные переговоры новым способом.

А в соответствии с утвержденным 24 октября 2005 года постановлением Правительства РФ «О государственном регулировании тарифов на услуги общедоступной электросвязи и общедоступной почтовой связи», операторы связи при наличии технической возможности должны установить уже три обязательных тарифных плана:

  • с повременной системой оплаты;
  • с абонентской системой оплаты;
  • с комбинированной системой оплаты, согласно которой счетчик включается после «выговаривания» определенного количества времени.

Кроме того, оператор получит право, в дополнение к этим базовым тарифам, вводить любое количество других тарифных планов, а потребитель может выбрать тот, который ему больше по душе и по карману.

В свое время при полемике по поводу «повременки» было сломано немало копий, и в итоге Дума отвергла первый вариант закона о связи, в котором предполагался принудительный перевод всех абонентов фиксированной связи на повременную оплату переговоров, и был принят ныне действующий закон, дающий гражданину право выбирать тип тарифа. Конечно, не во всех регионах есть эта самая «техническая возможность» установить повременную систему оплаты (для этого многим необходимо кардинально менять оборудование, а средств для этого, как всегда, не хватает), но в некоторых регионах очень многие абоненты уже пользуются «повременкой», хотя бы по той причине, что в свое время их перевели на нее принудительно, — в частности это почти все абоненты «Уралсвязьинформа». В других регионах, где такие технические возможности имеются, но принудительного перевода не было, — примерно половина абонентов самостоятельно перешла на «повременку».

Наконец, и ОАО «Московская городская телефонная сеть» (МГТС) разрабатывает три тарифных плана на местную телефонную связь для своих абонентов — физических лиц. МГТС подала заявку на утверждение тарифных планов в декабре 2005 года, а само утверждение может произойти в начале 2006-го. Техническая возможность осуществлять повременный учет продолжительности местных телефонных соединений у МГТС давно уже есть: внедрены и системы повременного учета на телефонных узлах, и система биллинга.

МГТС — основной оператор телефонной связи в Москве, а абонентная плата для физических лиц составляет 200 руб., что в настоящий момент несколько выше среднего по стране. Так, сегодня средняя ежемесячная плата абонента фиксированной связи по России составляет 160 руб., тогда как точка безубыточности при оказании такой услуги, по мнению Мининформсвязи, составляет 210 руб. А если планировать дальнейшее расширение услуг связи, то, как считают чиновники, следует поднять среднюю месячную плату до 230-250 руб., и в ближайшие два-три года такое повышение, несомненно, последует. Однако, если сегодня резко поднять среднюю абонентную плату — процентов на 50, то абоненты фиксированной связи станут в массовом порядке отказываться от таких линий в пользу мобильной телефонии. Ведь в противном случае фиксированная связь практически сравняется по стоимости с мобильной, но при несравнимо большем удобстве последней. Например, в Москве ожидается повременная оплата исходящих звонков до 1,8 руб., а это примерно 0,06 долл., то есть столько же, сколько у не самого дешевого оператора сотовой связи необходимо заплатить за 1 мин исходящего звонка по его сети. А поскольку рост абонентской платы во всех регионах страны неизбежен, то мобильная связь становится все более привлекательной.

Со вступлением в силу с 1 января 2006 года утвержденных Правительством РФ правил оказания услуг телефонной связи перерегистрации домашнего телефона с одного владельца на другого не будет превышать размера одной месячной абонентской платы за услуги телефонной связи (сейчас плата за переоформление телефона взимается в размере платы за его установку и составляет несколько тысяч рублей). Кроме того, в регионах теперь должны будут проводиться конкурсы на право оказания универсальных услуг телефонной связи с использованием таксофонов, а также на право оказания услуг связи по передаче данных и предоставлению доступа к сети Интернет.

Тем временем Госдума решила уравнять в обязанностях мобильную и фиксированную телефонию и приняла в первом чтении проект закона «О внесении изменений в статью 54 Федерального закона “О связи”», где предполагается законодательно закрепить принцип бесплатности всех входящих звонков на любые телефоны для вызываемого лица. В соответствии с этим законопроектом не подлежит оплате абонентами любое телефонное соединение, установленное в результате вызова другим абонентом, кроме установленного с помощью телефониста с оплатой за счет вызываемого лица.

Если такой закон будет принят, то это будет еще один удар по системе фиксированной связи.

IP-телефония

IP-телефония (или VoIP, Voice over Internet Protocol — технология передачи голоса по Интернет-протоколу) — это еще одно технологическое нововведение, пришедшее к нам вместе с Интернетом и свидетельствующее о том, что мир больше не будет таким, как раньше. VoIP по сути своей является технологией, позволяющей удешевить междугородние и международные звонки в 3-5 раз. Происходит это за счет того, что основную часть пути голосовой сигнал идет по Интернету в цифровом виде, а это стоит гораздо меньших денег и позволяет достичь более высокого качества связи, чем при использовании обычных аналоговых линий.

В течение последнего года продажи систем связи на основе IP-телефонии превзошли аналогичный показатель для решений на базе стандартной телефонной линии. С июня 2004-го по июнь 2005 года объемы продаж VoIP-систем увеличились на 31%, в то время как стандартные решения продавались на 20% хуже (так пишет Networking Pipeline со ссылкой на аналитическую компанию Merrill Lynch). По всей видимости, именно из-за этого двунаправленного процесса общий рынок телефонных систем за год вырос всего на 2% и достиг 2,24 млрд. долл.

Интернет-провайдеры и телефонные операторы активно разрабатывают рынок IP-телефонии во всех развитых странах. Например, в США сегодня предлагаются такие пакеты услуг, когда примерно за 25 долл. можно оформить месячную подписку, позволяющую целый месяц без всяких ограничений звонить любым абонентам на территории США и Канады. Указанные инновации активно поощряются и американскими властями, которые, как известно, поставили своей целью способствовать развитию Интернет-технологий у себя в стране и в связи с этим на ближайшие годы почти полностью освободили Интернет-индустрию от налогов. Очевидно, что с появлением доступных массовому потребителю дешевых VoIP-услуг по всем законам рыночной экономики любой нормальный человек будет пользоваться именно ими, а не более дорогими услугами стандартных междугородних и международных операторов. Российские экономисты оценивают оборот сформировавшегося к настоящему моменту в нашей стране рынка услуг IP-телефонии в 300 млн. долл. в год. На этом рынке сейчас работают различные фирмы — как VoIP-отделения крупных телекоммуникационных компаний, так и небольшие локальные операторы.

Но если в развитых странах такая ситуация считается естественной, то в других государствах она вызывает серьезные опасения — и в первую очередь у операторов-монополистов традиционной связи, которые видят в развитии IP-телефонии прямую угрозу своим прибылям. И, вопреки законам свободного рынка, некоторые компании-монополисты пытаются этому развитию помешать, используя все доступные им способы. Так, в Коста-Рике, где уже много лет на рынке доминирует единственный национальный телефонный провайдер, в настоящее время деятельность VoIP-фирм пытаются законодательно отрегулировать, обложив их дополнительными налогами как компании-посредники, которые генерируют добавленную стоимость. Более того, предлагается даже вообще запретить работу VoIP-провайдеров, приравняв их деятельность к криминальной. Многие костариканские специалисты оценивают подобную перспективу как катастрофическую для экономики этой страны, поскольку в последнее время в Коста-Рике активно развивается индустрия удаленного программирования (аутсорсинга), для которой существенным подспорьем является возможность совершать дешевые международные звонки.

Не отстают от костариканцев и наши компании — традиционные операторы-монополисты, такие как «Ростелеком» или МГТС, которые тоже пытаются с помощью административного ресурса объявить бизнес VoIP-фирм нелегитимным. Применение административного ресурса в коммерческих целях, как считают представители независимых VoIP-компаний, просматривается, скажем, в постановлении Правительства РФ, которое 28 марта 2005 года ввело в действие разработанную под контролем Министерства информационных технологий и связи инструкцию под названием «Правила присоединения сетей электросвязи и их взаимодействия». По мнению специалистов указанных компаний, эти правила фактически запрещают оказание услуг IP-телефонии, устанавливая для них заведомо невыполнимые обязательства и строжайшие ограничения. В результате такого давления на местных VoIP-провайдеров позвонить по IP-телефонии в российские регионы или страны СНГ обходится в 2-3 раза дороже, чем в Америку и даже в Австралию.

Однако либерализацию рынка дальней связи в любом случае не остановить, поскольку это одно из ключевых требований при переговорах о вступлении России в ВТО (Всемирную торговую организацию).

Интернет по модему

так, в 2005 году тарифы компаний «Связьинвеста» выросли на 20-25%, в течение

2004-го — на 30%, а степень роста тарифов на фиксированную связь в 2006 году опять прогнозируется на уровне 30%. В частности, рост тарифов произойдет тогда, когда утвердят альтернативные тарифы для МРК. Впрочем, кошмарного опустошения наших кошельков от нового порядка предоставления услуг телефонии ожидать не стоит — напротив, те, кто говорит по телефону не очень долго, смогут даже сэкономить на повременной фиксированной связи.

Иное дело — выход в Интернет по PSTN-модему (dial-up), где поблажек от повременки ждать уже не приходится. И, видимо, этот способ выхода в Интернет будет постепенно уходить в прошлое. Конечно, провайдеры PSTN-Интернета даже в условиях безальтернативной повременки находят способы для того, чтобы их абоненты не оплачивали Интернет еще и поминутно, то есть по счетам оператора телефонии. Например, в тех городах, где уже используется повременная оплата, провайдеры вводят обратный звонок: вы звоните на модемный пул, соединение прерывается, а вам идет обратный звонок с пула уже как входящий. Windows XP, кстати, прекрасно отрабатывает такой обратный звонок, а потому соединение идет за счет провайдера Интернета. Способами существования PSTN-провайдеров являются и различные договора с операторами связи, которые предусматривают специальные (возможно, короткие) телефонные номера, позвонив на которые вы подключаетесь без абонентной платы. Впрочем, таким же способом можно договориться с телефонным оператором и об установке ADSL-оборудования (DSLAM) на узлы связи, а в результате перейти к более прогрессивным технологиям выхода в Интернет, вообще не занимающим телефонных линий.

К тому же качество изготовления самих PSTN-модемов становится всё хуже и хуже, ведь производство модемов для коммутируемых линий связи давно уже не является передовой отраслью IT-индустрии. В цивилизованном мире такой вид связи становится неактуальным из-за распространения скоростных информационных магистралей и из-за их доступности для массового потребителя — здесь в качестве основного конкурента модемной связи выступают и ISDN, и ADSL, и оптоволоконные линии связи, и Wi-Fi, и даже сотовые системы передачи данных типа GPRS и пр. Соответственно и производители теряют интерес к выпуску новых изделий, а некоторые уже свернули производство аналоговых модемов. А поскольку объемы продаж этого оборудования для передовых и наиболее доходных областей рынка резко упали, то производители стремятся максимально удешевить аппаратную часть своей продукции, что, естественно, негативным образом сказывается и на качестве связи с использованием таких модемов.

Кроме того, в связи с общим повышением качества телефонной связи в тех странах, где до сих пор продаются аналоговые модемы, производители перестают заботиться о том, чтобы их аппаратура работала на зашумленных линиях устаревших АТС. Таким образом, современные аналоговые модемы можно применять разве что в качестве резервного канала связи: там, где они еще уверенно работают, уже, как правило, хорошо развиты альтернативные способы доступа в Интернет, а там, где такие технологии не развиты, даже современные аналоговые модемы работают плохо. И выхода из этого замкнутого круга уже, похоже, не предвидится.

Российский рынок широкополосного доступа растет в первую очередь за счет индивидуального сегмента: количество домашних подключений за первую половину 2005 года увеличилось более чем в 1,5 раза и достигло 870 тыс. абонентов. Таким образом, 85% новых широкополосных подключений приходится на индивидуальных пользователей и только 15% — на корпоративный сегмент рынка.

Очевидным лидером роста среди широкополосных технологий является DSL: количество DSL-подключений выросло более чем на 60%, а если учитывать только домашние подключения, то рост DSL-рынка в этом сегменте составил даже более 80%. Но даже несмотря на столь впечатляющую динамику DSL-операторов, самым популярным способом подключения домашних пользователей остается Ethernet от домовых сетей — в сумме у них пока все равно в 2-3 раза больше абонентов, чем у DSL-операторов.

Впрочем, Россия хорошо выглядит только по динамике роста: количество широкополосных подключений в нашей стране, по данным международных информационных агентств, увеличилось на 52%, в то время как прирост в целом по миру составил всего 20%, а по Восточной и Центральной Европе (без учета России) — примерно 30%. Таким образом, по динамике Россия опережает все крупнейшие рынки широкополосного доступа, уступая только Филиппинам, Греции, Турции, Индии, Чехии, ЮАР, Таиланду и совсем немного Польше.

Однако по общему объему широкополосных подключений позиции России очень слабы — на ее долю, по данным агентства Point-Topic, на середину 2005 года приходилось лишь 0,7% всех широкополосных подключений в мире. Всего около 1,5 млн. широкополосных подключений в России сегодня выглядят несолидно по сравнению с 53 млн. в Китае, 38 млн. в США или даже 3,5 млн. в Нидерландах. Тем не менее Россия с первой попытки вошла в Тор-20 рейтинга Point-Topic по количеству широкополосных подключений и, по предварительным данным, увеличила это количество к концу года на 85%. В результате наша страна располагается сегодня на 17-18 месте, опережая не только Польшу, но и более развитую Швецию. Кстати, охват абонентов ТФОП услугами широкополосной связи (то есть потенциальная возможность подключиться к ADSL) только в центральном регионе (без учета Москвы), по информации ОАО «Связьинвест», составил 3 746 825 человек, а между тем реальное количество абонентов ADSL-доступа не превышает в этом регионе 224 тыс. абонентов.

Еще хуже обстоит у нас дело с проникновением «широкой полосы» в регионы — сегодня насчитывается всего 0,9 подключений на каждые 100 жителей. По этому показателю Россия в 10-30 раз уступает Южной Корее, Японии, США, а также ведущим странам Западной Европы и в 4 раза — среднему показателю новых членов Европейского Союза. Даже в Китае коэффициент распространения широкополосного доступа в Интернет среди китайских семей составляет около 3% (в целом по стране в 3 раза выше, чем у нас). Правда, в столице и Московской области распространенность широкополосного доступа довольно высокая (4,4 широкополосных подключений на 100 жителей) и вполне сопоставима с уровнем Венгрии, Польши или Чили, зато показатели остальной России крайне низки — всего 0,4 подключения на 100 жителей, примерно как на Ямайке или в Таиланде.

Вместо заключения

осмотрим еще раз на карту мировых цифровых коммуникаций: не будем обольщаться, что есть места и похуже России, но будем надеяться на высокую динамику роста и ждать, что нашему правительству достанет разума, чтобы направить часть затрат инвестиционного фонда на финансирование телекоммуникационных проектов, а в первую очередь — тех, которые позволят выровнять цифровую инфраструктуру в общероссийском масштабе и избавить ее от перекосов в сторону столицы.

А пока даже на российской почте пункты коллективного доступа в Интернет установлены не более чем в нескольких тысячах отделений связи. ФГУП «Почта России» планировало, конечно, увеличить до конца 2005 года число таких пунктов до 10 тыс., но что такое десяток тысяч пунктов в масштабах такой огромной страны, как наша?

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Филиал Нижегородский

Электронная письменная предзащита

Дисциплина

Информатика и ВТ

Перспективы развития телекоммуникационных систем в России

Фамилия выпускника

Васильева Елена Александровна

Содержание

  • Введение
  • Основная часть
  • 1.2 Беспроводная связь
  • 2.3 Спутниковая связь РФ
  • 2.4 Интернет
  • 2.5 Сотовая связь в России
  • 3. Телекоммуникационные сети
  • 3.1 Современные тенденции развития телекоммуникационных сетей
  • 3.2 Транспортный уровень
  • 3.3 Беспроводный IP-доступ
  • Заключение
  • Глоссарий
  • Список использованных источников

Введение

На сегодняшний день потребность в общении, в передачи и хранении информации возникает всё в больше и больше, это связано с развитием человеческого общества.

Новые условия жизни дают нам понять, что информационная сфера деятельности человека является определяющим фактором интеллектуальной, экономической и оборонной возможностей государства и человеческого общества в целом.

Создание всей совокупности материальных и политических условий в области связи привели к взрыву в области информации и перевороту в образе мыслей и действий людей. В настоящее время люди, общаясь друг с другом, за счет интеллектуальной речевой активности снабжают ноополе, являющееся аналогом Интернета, морфологическими языковыми структурами, которые управляют жизнью на земле.

Актуальность данной темы состоит в том, что для развития общества, необходимо внедрение инновационных систем. Это связанно с тем, что человечество переходит на новый уровень общения и передачи информации. Теперь для того, что бы передать сообщение нет необходимости находиться на близком расстоянии. Есть возможность передавать информацию из разных точек планеты. Коммуникационные системы оказывают большое влияние на все сферы жизни человека. России необходимо финансировать развитее коммуникационных систем, т.к. государство стоит на ступень ниже, в сравнении с мировыми тенденциями. Развитие связи в начале ХХI века характеризуется следующими понятиями: универсализация, интеграция, интеллектуализация - в части технических средств и в сетевом плане; глобализация, персонализация - в части услуг. Прогресс в области связи основан на разработке и освоении новых телекоммуникационных технологий, а также на дальнейшем развитии и совершенствовании еще не исчерпавших свой потенциал существующих. Последние годы в России с точки зрения развития телекоммуникаций не были стабильными. Им предшествовал мировой кризис в области телекоммуникаций, который привел к снижению темпов роста. Тем не менее даже в этот период развивались и внедрялись новые телекоммуникационные технологии. В течение этого периода в рамках ОАО "Связьинвест" была проведена структуризация бывших сетей электросвязи в сторону их укрупнения, созданы сильные, высоко капитализированные, прибыльные и конкурентно-способные компании. В результате в России существует семь межрегиональных компаний (МРК), а на телекоммуникационном рынке действует около 6500 зарегистрированных новых операторов. В июне 2003 года Государственной думой РФ был принят новый федеральный закон "О связи", введенный в действие с 1 января 2004 года. С этим связано по существу завершение одного этапа развития связи в России и начало нового этапа.

Модернизация сетей наземного эфирного вещания путем перехода на цифровые технологии является мировой тенденцией, которой следует и Российская Федерация. Переход на цифровое вещание в России не только позволит обеспечить население многопрограммным вещанием заданного качества, но и окажет стимулирующее воздействие на развитие рынков СМИ, связи и производства отечественного теле - и радиооборудования, создание инфраструктуры производственно-внедренческих, сбытовых и сервисных организаций, дальнейшее развитие малого и среднего предпринимательства и развитие конкуренции в данной сфере. Основной целью, согласно Концепции развития телерадиовещания в Российской Федерации на 2008 - 2015 годы, является обеспечение населения многопрограммным вещанием с гарантированным предоставлением общедоступных телевизионных каналов и радиоканалов заданного качества, что позволит государству полнее реализовать конституционное право граждан на получение информации.

Объектом исследования данной выпускной квалификационной работы являются телекоммуникационные системы.

Предметом исследования является анализ развития телекоммуникационных систем.

Цель выполнения данной выпускной квалификационной работы является рассмотрение перспектив развития телекоммуникационных систем.

Основная часть.

телекоммуникационная сотовая спутниковая связь

1. История развития телекоммуникаций

1.1 Волоконно-оптические системы связи

Развитие электрических систем передачи информации началось с изобретения П.Л. Шиллингом в 1832 году телеграфной линии с использованием иголок. Медный провод использовался как линия связи. Такая линия обеспечивала скорость передачи информации - 3 бит/с (1/3 буквы). Первая телеграфная линия Морзе (1844 г) обеспечивала скорость 5 бит/с (0,5 буквы). В 1860 г. была изобретена печатающая телеграфная система. Она обеспечивала скорость - 10 бит/с (1 буква). Уже в 1874 г. система шестикратного телеграфного аппарата Бодо обеспечивала скорость передачи - 100 бит/с (10 букв). Первые телефонные линии были построены на основе изобретенного в 1876 году Беллом телефона. Они обеспечивали скорость передачи информации 1000 бит/с (1кбит/с - 100 букв).

Первая телефонная цепь использованная на практике была однопроводной с телефонными аппаратами, включенными на ее концах Громаков, Ю.А. Сотовые системы подвижной радиосвязи. Технологии электронных коммуникаций / Ю.А. Громаков. - М.: Эко-Трендз, 1994. С-132. . Такой способ требовал большого количества соединительных линий и самих телефонных аппаратов. Это устройство в последствии в 1878 году было заменили коммутатором, позволившим соединить несколько телефонных аппаратов через единое коммутационное поле. Первоначально используемые однопроводные цепи с заземленным проводом были заменены двухпроводными линиями передачи до 1900года. Несмотря на изобретение коммутатора, каждый абонент имел свою линию связи. Поэтому необходимо было придумать способ, позволяющий увеличить количество каналов без прокладки дополнительных тысяч километров проводов. Первая коммерческая система уплотнения была создана в США. Благодаря этому устройству в 1918 году между Балтимором и Питсбургом начала работать четырехканальная система с частотным разделением каналов. Большинство разработок было направлено на увеличение эффективности систем уплотнения воздушных линий и многопарных кабелей. Именно по этим двум средам передачи были организованы почти все телефонные цепи до второй мировой войны.

В 1920 году была изобретена шести-двенадцати канальная система передачи. Это увеличило скорость передачи информации в заданной полосе частот до 10 000бит/с, (10кбит/с - 1000 букв). Верхние граничные частоты воздушных и многопарных кабельных линий составляли соответственно 150 и 600 кГц. Потребности передачи больших объемов информации требовали создания широкополосных систем передачи.

В 30-40 годах ХХ века были введены в обращение коаксиальные кабели. В 1948 году между городами, находящимися на атлантическом и тихоокеанском побережьях США, была введена в эксплуатацию коаксиально-кабельная система L1. Эта система позволила увеличить полосу пропускания частот линейного тракта до 1,3 МГц, и это обеспечило передачу информации по 600 каналам.

После второй мировой войны начали проводить активные исследования по совершенствованию коаксиально-кабельных систем. Изначально коаксиальные цепи прокладывались отдельно, но позднее их объединили в несколько коаксиальных кабелей в общей защитной оболочке. Например, американская фирма Белл разработала в 60-е годы ХХ века межконтинентальную систему с шириной полосы 17,5 МГц (3600 каналов по коаксиальной цепи или "трубке").

В СССР, в то же время разрабатывалась система К-3600 на отечественном кабеле КМБ 8/6, имеющем 14 коаксиальных цепей в одной оболочке. Через какое-то время изобретают коаксиальную систему с шириной полосы пропускания 60 МГц. Это обеспечивало емкость 9000 каналов в каждой паре. В общей оболочке объединены 22 пары.

Коаксиальные кабельные системы большой емкости использовались для связи между двумя близко расположенными центрами с высокой плотностью населения. Однако стоимость строительства таких систем была высокой. Это происходило из-за малого расстояния между промежуточными усилителями и вследствие большой стоимости кабеля и его прокладки. По современным воззрениям, все электромагнитные излучения, в том числе радиоволны и видимый свет, имеют двойственную структуру и ведут себя то как волнообразный процесс в непрерывной среде то как поток частиц, получивших название фотонов, или квантов. Каждый квант обладает определенной энергией.

Ньютон впервые ввел понятие о свете как о потоке частиц.А. Эйнштейн на основе теории Планка возродил в новой форме в 1905 году корпускулярную теорию света, которую теперь принято называть квантовой теорией света. В 1917 году он теоретически предсказал явление вынужденного или индуцированного излучения. Благодаря этому впоследствии были созданы квантовые усилители. В 1951 году советские ученые В.А. Фабрикант, М.М. Вудынский и Ф.А. Бутаева получили патент на открытие принципа действия оптического усилителя. В 1953 году предложение о квантовом усилителе было сделано Вебером. В 1954 г.Н.Г. Басов и А.М. Прохоров предложили теоретически обоснованный проект молекулярного газового генератора. В 1954 году, независимо от них, Гордон, Цейгер и Таунс опубликовали сообщение о создании действующего квантового генератора на пучке молекул аммиака. В 1956 г. Бломберген установил возможность построения квантового усилителя на твердом парамагнитном веществе, а в 1957 году этот усилитель был собран Сковелем, Фехером и Зайделем. Построенные до 1960 г. квантовые генераторы и усилители получили название мазеров. Это название происходит от первых букв английских слов "Microwave amplification by stimulated emission of radiation", что означает "усиление микроволн с помощью вынужденного излучения".

Следующий этап развития связан с перенесением известных методов в оптический диапазон. В 1958 году Таунс и Шавлов теоретически обосновали возможность создания оптического квантового генератора (ОКГ) на твердом теле. В 1960 году Мейман построил первый импульсный ОКГ на твердом теле - рубине. В этом же году вопрос об ОКГ и квантовых усилителях независимо был проанализирован Н.Г. Басовым, О.Н. Крохиным и Ю.М. Поповым Измайлов, Ю.Д. Развитие российской государственной группировки спутников связи и вещания / Ю.Д. Измайлов // Технологии и средства связи. Спутниковая связь и вещание. - 2008. - С. - 54 .

Первый газовый (гелий-неоновый) генератор был создан в 1961 году Джанаваном, Беннетом и Эрриотом. В 1962 г. был создан первый полупроводниковый ОКГ. Оптические квантовые генераторы (ОКГ) получили название лазеров. После создания первых мазеров и лазеров их стали использовать в системах связи.

Волоконная оптика появилась в начале 50-х годов как новое направление техники. В то же время стали делать тонкие двухслойные волокна из прозрачных материалов (стекло, кварц и др.). К этому времени было доказано, что если соответствующим образом выбрать оптические свойства внутренней и наружной частей такого волокна, то луч света, введенный во внутрь, будет только по нему и распространяться, отражаясь от оболочки. Даже если волокно изогнуть, луч по прежнему будет удерживаться внутри сердечника. Таким образом, световой луч, попадая в оптическое волокно, способен распространяться по любой криволинейной траектории. Этот процесс аналогичен, текущему по металлическому проводу, электрическому току. Поэтому двухслойное оптическое волокно часто называют светопроводом или световодом. Стеклянные или кварцевые волокна очень гибкие и тонкие, но не смотря на это прочны (прочнее стальных нитей того же диаметра). Световоды 50-х годов были недостаточно прозрачны, и при длине 5-10 м свет в них полностью поглощался.

В 1966 г. была предложена идея о возможности использования световодов для целей связи. Благодаря техническим разработкам в 1970 г. было добыто сверхчистое кварцевое волокно, способное пропустить световой луч на расстояние до 2 км. В этом же году началось стремительное развитие волоконно-оптической связи. Появились новые методы изготовления волокон; создаются миниатюрные лазеры, фотоприемники, оптические разъемные соединители и т.п.

К 1973-1974 гг. расстояние, проходимое лучом по оптоволокну, достигло 20 км, а к началу 80-х годов 200 км. В то же временя скорость передачи информации по ВОЛС возросла в несколько миллиардов бит/с. Выяснилось, что ВОЛС имеют целый ряд достоинств.

На световой сигнал не влияют внешние электромагнитные помехи. Сигнал невозможно подслушать или перехватить. Волоконные световоды имеют отличные технические и экономические показатели: применяемые материалы имеют малую удельную массу, не нуждаются в тяжелых металлических оболочках; просты при прокладке, монтаже, эксплуатации. Волоконные световоды, как и обычные электрические провода, можно закладывать в подземную кабельную канализацию, монтировать на высоковольтных ЛЭП или силовых сетях электропоездов, а также совмещать с любыми другими коммуникациями. В отличие от электрических цепей, характеристики ВОЛС не зависят от их длины, от включения или отключения дополнительных линий. В волоконных световодах не бывает искрение и замыкание, что открывает возможность использования их во взрывоопасных и подобных им производствах.

Важное значение в распространении ВОЛС имеет экономический фактор. В конце двадцатого века волоконные линии связи имели одинаковую стоимость с проводными линиями Фролов А.В., Фролов Г.В. Локальные сети персональных компьютеров. - М.: "Диалог-МИФИ"2002. С-45 . Но со временем, учитывая дефицит меди, положение непременно изменится. Это убеждение основано на неограниченных сырьевых ресурсах кварца, который является основным материалом световода, тогда как основу проводных линий составляют такие металлы, как медь и свинец. В настоящее время оптические линии связи доминируют во всех телекоммуникационных системах, начиная от магистральных сетей до домовой распределительной сети. Благодаря развитию оптико-волоконных линий связи активно внедряются мультисервисные системы, которые дают возможность довести до конечного потребителя в одном кабеле телефонию, телевидение и Интернет.

1.2 Беспроводная связь

Пейджинговая связь - это радиотелефонная связь когда, пересылка по телефону продиктованных абонентом-отправителем сообщений и прием их по радиоканалу абонентом-получателем обеспечивается с помощью пейджера - радиоприемника с жидкокристаллическим дисплеем. На пейджере высвечиваются принятые послания. Суть пейджинговой связи заключалась в том, что абонент посылает сообщение на коммутатор, где производится его запись, которая затем передается другому абоненту. Первый пейджер был разработан в 1956 году в Англии. В то время количество абонентов не могло превышать 57. Пейджеры содержали несколько настроенных контуров. Эти контуры отслеживали характерную последовательность низкочастотных сигналов, при получении которых устройство подавало звуковые сигналы. Пейджеры такого вида называют тональными. При получении тонового сигнала абонент должен был поднести устройство к уху и прослушать сообщение, которое передавал диспетчер.

Сети, в то время, носили местный характер и ими пользовались в основном врачи, служащие аэропортов. Некоторые подобные сети существуют и сегодня для нужд конкретных служб.

К концу 2000 года число владельцев пейджеров в европейских странах превысило 20 миллионов.

История пейджинговой связи началась в конце 1960-х годов еще в СССР. Системы персонального радиовызова широко использовались отдельными государственными структурами. Например пейджер использовался в 1980 году во время московской Олимпиады. Пейджер активно использовали в качестве инструмента общения до тех пор, пока не появились сотовые телефоны - средство двухсторонней связи.

С тех пор, как появилась сотовая связь, развитие пейджера остановилось. В больших городах пейджинговые компании закрылись, уступив место операторам сотовой связи. Лишь в некоторых регионах пейджинговая связь сохранилась, а число клиентов пейджинговых компаний не превышает ста тысяч.

Связь называют мобильной, если источник информации и получатель перемещаются в пространстве. Радиосвязь является мобильной. Первые радиостанции предназначались для связи с подвижными объектами-кораблями. Первый прибор радиосвязи созданный А.С. Поповым был установлен на броненосце "Адмирал Апраксин". В те годы беспроводная связь требовала громоздких приемопередающих устройств. Это тормозило распространение индивидуальной радиосвязи даже в Вооруженных силах, не говоря уже о частных клиентах.17 июня 1946 года в Сент Луисе, США, компания Southwestern Bell запускают первую радиотелефонную сеть для частных клиентов и тут же становится лидером телефонного бизнеса. Основанием аппаратуры являлись ламповые электронные приборы, из-за этого аппаратура была очень громоздкой и устанавливалась только в автомобилях. Но несмотря на это на видимые неудобства, количество пользователей мобильной связи стремительно росло. Это в свою очередь создало новую проблему. Радиостанции, работающие на близких по частоте каналах, создавали помехи друг другу. Это значительно ухудшало качество связи. Для массового внедрения требовалось решить эту проблему.

В 1947 году был изобретен транзистор, заменивший электронные лампы, и обладающий значительно меньшими размерами. Это оказало огромное значение для дальнейшего развития радиотелефонной связи и создало предпосылки широкого внедрения мобильного телефона. Но снизить влияние взаимных помех можно было только изменив принцип организации связи. Мур, М. Телекоммуникации М. Мур, Т. Притски, К. Риггс, П. Сауфвик. - СПб: БХВ-Петербург, 2005. С-90

В 40-е годы прошлого века, благодаря исследованию ультракоротковолнового диапазона волн, удалось установить его основное преимущество над короткими волнами - широкодиапазонность. Но имелся и серьезный недостаток - сильное поглощение радиоволн средой распространения. Ультракороткие радиоволны не способны огибать земную поверхность, поэтому связь обеспечивалась только на линии прямой видимости, и даже при мощном передатчик дальность связи достигала лишь 40 км. Именно этот недостаток в 1947 году использовал сотрудник американской компании Bell Laboratories Д. Ринг. Он предложил новую идею организации связи. Она заключалась в разделении пространства на небольшие участки - соты радиусом 1-5 километров и в отделении радиосвязи в пределах одной ячейки от связи между ячейками. Повторение частот позволило разрешить проблему использования частотного ресурса. Это позволяло использовать одни и те же частоты в разных сотах распределенных в пространстве. Эта конструкция выглядела так: в центре отдельной ячейки располагалась базовая приемно-передающая радиостанция, которая обеспечивала радиосвязь в пределах ячейки со всеми абонентами. Размеры соты определялись максимальной дальностью связи радиотелефонного аппарата с базовой станцией. Максимальный радиус получил название радиуса соты. Во время разговора сотовый радиотелефон соединяется с базовой станцией радиоканалом, по которому передается телефонный разговор. Абоненты связываются между собой через базовые станции, которые соединены друг с другом и с городской телефонной сетью общего пользования.

Для обеспечения бесперебойной связи при переходе абонента от одной зоны к другой потребовалось применение компьютерного контроля за телефонным сигналом, излучаемым абонентом. Именно компьютерный контроль позволил в течение всего лишь тысячной доли секунды переключать мобильный телефон с одного промежуточного передатчика на другой. Таким образом, центральной частью системы мобильной связи являются компьютеры, которые отыскивают абонента, находящегося в любой из сот, и подключают его к телефонной сети. Практическое применение сотовой связи стало возможным только после изобретения микропроцессоров и интегральных полупроводниковых микросхем, т.к. компьютерная техника была еще на таком уровне, что ее коммерческое применение в системах телефонной связи было затруднено.

Первый сотовый телефонный аппарат прототип современного аппарата сконструировал Мартин Купер (фирма Motorola, США) в 1973 году.

В 1983 году в Чикаго была запущена в работу сеть стандарта AMPS (Advanced Mobile Phone Service), который был разработан фирмой Bell Laboratories. В 1985 г., в Англии, был принят стандарт TACS (Total Access Communications System), являвшийся разновидностью американского AMPS. Через два года, из-за резко возросшего числа абонентов, был принят стандарт HTACS (Enhanced TACS), добавивший новые частоты и частично исправивший недостатки предшественника. Франция же стояла отдельно от всех и начала использовать собственный стандарт Radiocom-2000 с 1985 года. Следующим стал стандарт NMT-900, использующий частоты 900 МГц диапазона. Новая версия стала применяться в 1986 году. Она позволила увеличить число абонентов и улучшить стабильность системы. К концу 1980-х годов началось создание второго поколения систем сотовой связи, основанных на базе цифровых методов обработки сигналов.

В 1982 году Европейская Конференция Администраций Почт и Электросвязи (СЕРТ) создала группу под названием Groupe Special Mobile, целью которой была разработка единого европейского стандарта цифровой сотовой связи. Но только лишь через восемь лет были предложены спецификации стандарта. Просчитав перспективы развития сотовой связи в Европе и во всем мире, было принято решение выделить для нового стандарта и диапазон 1800 МГц. Этот стандарт получил название GSM - Global System for Mobile Communications. GSM 1800 МГц также носит название DCS-1800 (Digital Cellular System 1800). Стандарт GSM является цифровым стандартом сотовой связи. В нём реализовано временное разделение каналов (TDMA - множественный доступ с разделением по времени, шифрование сообщений, блочное кодирование, а также модуляция GMSK) (Gaussian Minimum Shift Keying). Райс Л. Эксперименты с локальными сетями: Пер. с англ. - М.: Мир,1999. - 268с.

Пескова, С.А. Сети и телекоммуникации - М., Изд-во Академия, 2007. С-143 В конце 90-х годов из-за развития Интернета многие пользователи сотовой связи захотели использовать свои телефоны как модемы, а существующих скоростей для этого было недостаточно. Чтобы поспеть за спросом своих клиентов в доступе к сети Интернет, инженеры изобретают WAP-протокол. WAP - это сокращенное название от Wireless Application Protocol, что переводится как протокол беспроводного доступа к приложениям. В принципе WAP - это упрощенная версия стандартного Интернет протокола HTTP, адаптированная под ограниченные ресурсы мобильных телефонов. Но этот протокол не дает возможность просматривать стандартные Интернет - страницы, они должны быть написаны на языке WML. Поэтому абоненты сотовых сетей получили весьма ограниченный доступ к Интернет-ресурсам. Еще одно неудобство состояло в том, что для доступа к WAP-сайтам использовался тот же канал связи, что и для передачи голоса, то есть пока вы загружаете или просматриваете страничку, канал связи занят, и с лицевого счета списываются те же деньги, что и во время разговора.

Производителям оборудования сотовой связи срочно пришлось искать способы увеличения скорости передачи данных. В результате этих изысканий на свет появилась технология HSCSD (High-Speed Circuit Switched Data), обеспечивающая скорость - до 43 килобит в секунду. С появлением GPRS вновь стали использовать WAP-протокол, так как доступ к небольшим по объему WAP-страницам становится во много раз дешевле, чем во времена CSD и HSCSD. Теперь многие операторы связи за небольшую ежемесячную абонентскую плату предоставляют неограниченный доступ к WAP-ресурсамсети.

С появлением GPRS сети сотовой связи перестали именоваться сетями второго поколения - 2G. Так произошло слияние сотового телефона, компьютера и сети Интернет. Разработчики и операторы предлагают нам все больше новых дополнительных услуг. Используя возможности GPRS, был создан новый формат передачи сообщений, который был назван MMS (Multimedia Messaging Service - Сервис Мультимедийных Сообщений). Он позволяет отправлять с сотового телефона не только текст, но и различную мультимедиа информацию, например, звукозаписи, фотографии и даже видеоклипы. Причем MMS-сообщение может быть передано как на другой телефон, поддерживающий этот формат, так и на электронную почту. С увеличением мощности процессоров телефонов, появляется возможность загружать и запускать на нем различные программы. Основным языком для их написания является язык Java2ME. Владельцам большинства современных телефонов теперь не составляет труда подключиться к сайту разработчиков Java2ME приложений и закачать на свой телефон, например, новую игру или другую необходимую программу. Также никого не удивит возможность подключения телефона к персональному компьютеру, для того чтобы, используя специальное программное обеспечение, чаще всего поставляемое вместе с трубкой, сохранить или отредактировать на ПК адресную книгу или органайзер; находясь в дороге, используя связку мобильный телефон + ноутбук, выйти в полноценный Интернет и просмотреть свою электронную почту. Однако наши потребности постоянно растут, объем передаваемой информации растет практически ежедневно. И все больше требований выдвигается к сотовым телефонам, вследствие чего ресурсов нынешних технологий становится недостаточно для удовлетворения наших возрастающих запросов.

Именно для решения этих запросов и предназначены, достаточно недавно созданные сети третьего поколения 3G, в которых передача данных доминирует над голосовыми услугами.3G - это не стандарт связи, а общее название всех высокоскоростных сетей сотовой связи, которые вырастут и уже вырастают из ныне существующих. Огромные скорости передачи данных позволяют передавать прямо на телефон высококачественное видеоизображение, осуществлять постоянное соединение с Интернет и локальными сетями. Применение новых, усовершенствованных, систем защиты позволяет уже сегодня использовать телефон для проведения различных финансовых операций - мобильный телефон вполне способен заменить кредитную карту.

Вполне естественно, что сети третьего поколения не станут финальным этапом развития сотовой связи - как говориться, прогресс неумолим. Ныне проходящая интеграция различных видов связи (сотовой, спутниковой, телевизионной и т.д.), появление гибридных устройств, включающих в себя сотовый телефон, КПК, видеокамеру, безусловно, приведет к появлению сетей 4G, 5G. И о том, чем закончится это эволюционное развитие, сегодня вряд ли смогут рассказать даже писатели-фантасты.

На мировом уровне сейчас используется около 2 миллиардов единиц мобильных телефонов, из них больше двух третей подключены к стандарту GSM. Вторым по популярности идёт CDMA, остальные же представляют специфические стандарты, применяемые в основном в Азии. Сейчас в развитых странах сложилась ситуация "пресыщения", когда спрос перестаёт расти.

2. Основные направления в развитии телекоммуникаций

2.1 Перспективы развития цифрового телевидения

Стандартное российское телевидение уже давно устарело. Оно вещает в стандарте Secam и обеспечивает 25 кадров в секунду при черезстрочной развёртке изображения. Количество точек в этом формате составляет 720Ч576. Другие страны вещают в различных версиях форматов PAL, отличающихся от Secam только способом кодирования цвет.

Самые развитые в технической области телевидения страны считаются: Япония, Мексика, Канада, Южная Корея, Тайвань, США и даже Гондурас. Они вещают в современном стандарте NTSC 3.58. Стандарт NTSC 3.58 даёт 29.97 кадров в секунду, при этом количество вертикальных строк уменьшается с 576 до 480.

Пять-десять лет назад начали вести разработку нового телевизионного стандарта HDTV. Перевод аббревиатуры HDTV означает High Definition Television на русский язык - телевидение высокой четкости.

Разрешение обычного телевизора, 720Ч480 или 345 600 пикселей. Разработчики формата HDTV достигли разрешения 1920Ч1080 или 2 миллиона пикселей. При этом изображение не просто передается покадрово, а кадры как бы частично накладываются друг на друга, что ещё более усиливает эффект четкости изображения. И есть все основания утверждать, что через год-два большинство каналов будет транслироваться в форматеHD. Кабельное телевидение пока не транслирует HD сигнал, но очевидно, что конкуренция со стороны компаний спутникового телевидения заставит кабельщиков прийти к HDTV.

HD телевизионные приёмники делятся на два вида. Это так называемые HDTV Upgradeable и HDTV Built-in. HD телевизоры Built-in имеют встроенный Through-the-air ресивер. Это позволяет принимать на обычную комнатную или наружную антенну передачи в формате HD.

Все HD телевизоры, за редким исключением, имеют PIP (Picture-in-Picture) - устройство, позволяющее одновременно смотреть два или несколько телеканалов. Поэтому те, кто может приобрести HDTV с Built-in ресивером, могут, имея спутниковую тарелку и HDTV ресивер, смотреть одновременно в формате HD и программы спутникового телевидения и программы VHF - каналов. Райс Л. Эксперименты с локальными сетями: Пер. с англ. - М.: Мир,1999. С-45.

В наше время практически в каждом доме есть DVD-плеер. Но к сожалению, даже на HD-телевизорах ещё нет возможности получить HD качество изображения при просмотре видео DVD. Однако, DVD-плеер, имеющий функцию Progressive Scan, позволяет получить разрешение 1280Ч1080=1.382.400 пикселей, что является очень высоким и почти приближающимся к HD, в то время как при отсутствии Progressive Scan зритель получает всего лишь 960Ч720=691.200 пикселей. Такие диски называются HDCD. На один диск DVD вмещается 2 - 4 часа видео в формате Mpeg 2 с размером кадра 720Ч576 для PAL и 720Ч480 для NTSC и с 6-канальным звуком качества 64 Кбит/с на канал (это очень мало). Формат же HD предусматривает скорость видеопотока Mpeg 2 со скоростью 28.8 Мбит/с, что в 3-4 раза больше чем у DVD. Такого большого носителя информации сегодня ещё нет. Совсем недавно выпустили лазерные диски под названием Blue-Ray, на которых вмещается около 24 Гбайт. Эти диски, в отличие от обычных, считываются синим лазером, отсюда и соответствующее название. Российские производители уже представили на выставке информационных технологий в Брюсселе CeiBT новейший оптический диск на основе ферромагнетика, вмещающий в себя 1Тбайт (это 1000 Гбайт, т.е. это около 212 DVD дисков), размеры которого всего лишь 13 см в диаметре и 2 мм в толщину.

2.2 Текущее состояние и перспективы развития кабельных систем

Самыми распространенными направляющими системами на сегодняшний день остаются симметричные кабели. Основной особенностью симметричных кабелей является наличие цепей, которые состоят из двух проводников, имеющие одинаковые конструктивные и электрические свойства. Кабели используют для того, чтобы передавать электромагнитную энергию в диапазоне частот 0-1 ГГц. Симметричные кабели связи стали использовать в сфере абонентского доступа. Это стало актуальным в связи с тем, что пользователям телефонных и компьютерных сетей требуется недорогой высокоскоростной доступ к сети Интернет. Операторы связи стали использовать оборудование на основе xDSL-технологии, чтобы предоставить клиентам широкий спектр услуг. Технологии xDSL дают возможность увеличить скорость обмена данными по кабелям городской телефонной сети до 56 Мбит/с. Но обычный телефонный кабель для этого не подходит, так как не позволяет добиться 100 % уплотнения. Это происходит, потому что существуют пары в кабеле, не отвечающие требованиям современных цифровых систем передачи по параметрам взаимной помехозащищенности.

Кабель марки ТП на сегодняшнее время является самым употребляемым. После 1995 г. в строительстве кабельных систем связи произошли существенные изменения. Теперь при строительстве перестали применять кабели с жилами 0,32 мм. Основной объем кабелей приходится на производство кабелей с жилами 0,4/0,5/0,7 мм. Это связано с тем, что при строительстве в городах ведется точечная застройка и длина абонентских линий увеличивается. Изолированные жилы в кабеле обычно скручены в пары или четверки с шагом не более100 мм, причем в четверке две жилы, расположенные по диагонали, образуют рабочую пару. Число пар от 5 до 2400 определяется в зависимости от марки кабеля.

Кабели для сельской телефонной сети предназначены для линий межстанционной сети и абонентской связи. Они используются в системах передачи с временным разделением каналов с импульсно-кодовой модуляцией и обеспечивающих скорость 2,048 Мбит/с при постоянном напряжении дистанционного питания до 500 В. В России производят следующие марки кабелей: КСПП, КСППБ, КСПЗП, КСПЗПБ. Токопроводящие медные жилы диаметром 0,9 и 1,2 мм изолированы полиэтиленом толщиной соответственно 0,7 и 0,8 мм с допуском 0,1 мм. Четыре изолированные жилы скручиваются в четверку с шагом 150 и 170 мм. Две жилы, расположенные по диагонали, образуют рабочую пару.

Низкочастотные междугородные симметричные кабели применяются на относительно коротких соединительных линиях, а также для устройства кабельных вводов и вставок в воздушные линии, в том числе с цепями, уплотняемыми в спектре до 150 кГц, а также для устройства соединительных линий АТС и между АТС и МТС.

Симметричные низкочастотные кабели имеют токопроводящие жилы диаметром 0,9 и 1,2 мм, диаметр поверх изоляции 1,9 и 2,4 мм. Четыре жилы скручены в четверку вокруг полиэтиленового корделя - заполнителя с шагом не более 300 мм. Низкочастотные кабели в зависимости от марки предназначены для прокладки в телефонных канализациях, коллекторах, тоннелях, шахтах, по мостам и в мягких устойчивых грунтах без повышенного электромагнитного влияния и опасности повреждения грызунами или непосредственно в грунтах всех категорий, не агрессивных к стальной броне и не подвержены мерзлотным деформациям.

Междугородные высокочастотные кабели (ВЧ) предназначены для эксплуатации на магистральных линиях, во внутризоновых первичных сетях и соединительных линиях городских телефонных сетей (ГТС). В настоящее время эти ВЧ кабели используются как в аналоговых системах передачи типа К-60, так и в цифровых системах передачи со скоростью 8448 кбит/с и 34 368 кбит/с, или в аналоговых системах передачи в частотном диапазоне до 5 МГц, работающих при переменном напряжении дистанционного питания до 960 в или постоянном напряжении до 1000 В. Токопроводящие жилы кабелей изготавливаются из медной проволоки диаметром 1,2 мм, обмотанной цветной полистирольной нитью (корделем) диаметром 0,8 мм и полистирольной лентой толщиной 0,045 мм, наложенной с перекрытием в сторону, противоположную направлению обмотки нитью. Четыре жилы с изоляцией различного цвета скручивают в четверку с заполнением в центре круглой полистирольной нитью и обматывают цветной хлопчатобумажной или синтетической пряжей или лентой. Шаги скрутки изолированных жил в четверку различные и не превышают 300 мм.

На сегодняшний день городские телефонные кабели типа ТПП, ТППэп, ТПппЗП, ТППэп-НДГ по объему производства остаются на одной из лидирующих позиций на рынке кабельной продукции, хотя просматривается тенденция к уменьшению спроса на них, так как по своим свойствам продукция не соответствует требованиям современного рынка информационных технологий. Поэтому доля использования медного кабеля в сетях связи будет уменьшаться за счет использования волоконно-оптических и беспроводных технологий.

Применение оптического и медного кабеля постепенно устанавливается в определенной пропорции: оптические - на магистральных участках, медные - ближе к абонентам. По мнению специалистов, такая тенденция останется в течение 10-15 лет.

2.3 Спутниковая связь РФ

В рамках новой Федеральной космической программы России до 2015 года ГПКС осуществляет строительство и запуск новых космических аппаратов. Система базируется на трех спутниках серии Экспресс-РВ. Срок службы системы 15 лет. Спутники кроме телекоммуникацонного обслуживания помогут обеспечить передачу сервисной информации (карта, погода, дифференциальные поправки, ГЛОНАСС и GPS). Новый состав спутников обеспечивает взаимное резервирование космических аппаратов на всей орбитальной дуге. Это гарантирует развитие и функционирование систем спутниковой связи и телерадиовещания в интересах государственных пользователей на всей территории нашей страны. Мур, М. Телекоммуникации М. Мур, Т. Притски, К. Риггс, П. Сауфвик. - СПб: БХВ-Петербург, 2005С-78

Развитие сети спутниковой связи характеризуется частотным ресурсом российской спутниковой группировки. К ней относятся самые значимые для российского рынка спутники. Группа имеет международную регистрацию под названием "Спутниковые сети "Экспресс". Частотный ресурс спутников связи "Горизонт" (и их аналога - первой серии космических аппаратов (КА)"Экспресс") в расчет не принят, так как данные спутники работают за пределами гарантированного срока службы.

К 2007 году ГПКС полностью перевело все транслируемые телерадиопрограммы с аналоговых на цифровые технологии. Через спутники ГПКС программы телерадиовещания распространяются на пять вещательных зон, с учетом временного сдвига. Пакет общероссийских программ доступен на всей территории России, а международные версии программ - и в странах Азиатско-Тихоокеанского и Атлантического регионов.

В соответствии с государственной программой развития цифрового телерадиовещания до 2015 г. в России ГПКС вводит в эксплуатацию новый центр компрессии сигналов телерадиопрограмм. Трансляция потока осуществляется в стандарте DVB-S2 и по стандарту MPEG-4 part 10. В настоящее время формирование и подъем на спутники пакетов общероссийских телерадиопрограмм осуществляется в стандарте MPEG-2/DVB-S. При таком стандарте в транспондере размещены всего 8 программ стандартного качества. Стандарт MPEG-4 в сочетании с DVB-S2 дает возможность передавать до 20 программ стандартного качества или 10 программ телевидения высокого качества в одном транспондере. Внедрение стандарта MPEG-4 создаст условия для перехода к телевизионным программам нового качества - телевидению высокой четкости (ТВЧ). Это в последствии даст возможность непосредственного телевизионного вещания со спутника, на мобильные терминалы конечных пользователей, в том числе и в интерактивном режиме.

Спутники, создаваемые ГПКС, будут обладать транспондерами с повышенной энергетикой для развития телевидения. Они должны помочь решению различных задач по построению сетей телерадиовещания, включая эволюцию мобильного телевидения. В конфигурацию новых космических аппаратов заложены по три перенацеливаемых антенны: одна - C-диапазона, две другие - Ku-диапазона. Благодаря улучшению энергетических характеристик новых спутников на 3-5 дБ, по сравнению с эксплуатируемыми космическими аппаратами "Экспресс-АМ", появится возможность применять наземные антенны около метра в диаметре. Все это позволит ГКПС оперативно реагировать на быстро изняющиеся потребности рынка и выйти на неосвоенные регионы.

Операторы наземных сетей спутниковой связи делятся на три основные категории: операторы интерактивных VSAT-сетей; операторы сетей типа "точка - точка"; операторы крупных корпоративных сетей. Развитие операторов интерактивных VSAT - сетей началось в 2003 г. благодаря применению новых VSAT-технологий типа DVB-RCS.

Операторы сетей типа "точка-точка" сформировались в 1990-х годах. Эти компании зачастую создавались крупными операторами, которые контролировали наземные сети общего пользования. Но самыми динамично развивающимися являются операторы интерактивных VSAT-сетей, в собственности которых находятся центральные станции этих сетей (HUB). С 2003 г. по 2008 г. в России построено не менее 20 центральных станций. Мультисервисные услуги базируются на перспективной технологии IPTV. Основным фактором ее развития послужило наличие большого числа центральных станций интерактивных сетей VSAT и то, что данную услугу можно предоставлять по низкоскоростным каналам связи, которых в России подавляющее большинство.

Таким образом, развитие сети спутниковой связи в России базируется на расширении спутниковой группировки и на совершенствовании методов обработки сигнала не только на центральных наземных станциях, но и непосредственно на космических аппаратах. Таким образом спутниковая как фиксированная, так и мобильная спутниковая мультисервисная связь может занять существенную долю рынка инфотелекоммуникационных услуг.

2.4 Интернет

Наиболее популярное направление развития Всемирной паутины - создание семантической паутины. Семантическая паутина - это надстройка над Всемирной паутиной, которая делает информацию, размещённую в сети, понятной для компьютеров. Семантическая паутина - это такая концепция, при которой каждое человеческое слово описано языком, понятным компьютеру. Благодаря Семантической паутине для любых приложений доступна структурированная информация. Программы пользуются ресурсами независимо от платформы и от языков программирования. Программы смогут обрабатывать информацию, а также делать выводы и принимать решения. При широком внедрении и грамотном использовании это может вызвать переворот в Интернете. В семантической паутине используется формат RDF (англ. Resource Description Framework), основанный на синтаксисе XML и использует идентификаторы URI для обозначения ресурсов. Он используется для того чтобы, описываемый ресурс стал понятен компьютеру. Также внедрили новый язык запросов для скорейшего доступа к данным RDF - это RDFS (англ. RDF Schema) и SPARQL (англ. Protocol And RDF Query Language) (читается "спамркл").

В настоящее время Всемирная паутина развивается по двум направлениям: семантическая и социальная паутина. Семантическая паутина улучшает связность и адекватное понимание информации во Всемирной паутине по средством введения новейших форматов метаданных. Социальная паутина упорядочивает информацию поставляемую самими пользователями Паутины.

Одним из выдающихся открытий в сфере связи стала Интернет-телефония. Началом ее зарождения считается 15 февраля 1995 года. В этот день фирма VocalTec запустила в продажу свой первый soft-phone - программу, для обмена звуковыми сообщениями по сети IP. В октябре 1996 года Microsoft запустил первую версию NetMeeting. А уже в 1997 году телефонные соединения через Интернет стали вполне привычными для людей, находящихся в разных точках планеты.

Чем же отличается обычная междугородная и международная телефонная связь от интернет-телефонии? Во время разговора абонент занимает целый канал связи, не смотря на то, говорит он или молчит. Так происходит при передаче голоса по телефону обычным аналоговым способом.

Во время цифрового способа информацию можно передавать отдельными "пакетами". Благодаря этому один канал связи можно использовать для рассылки информации одновременно от многих абонентов. Такое временное "пакетное уплотнение" позволяет намного эффективнее использовать существующие каналы связи, "сжимать" их. На одном конце канала связи информация делится на пакеты, каждый из которых, подобно письму, снабжается своим индивидуальным адресом. По каналу связи пакеты многих абонентов передаются "вперемежку". На другом конце канала связи пакеты с одним адресом снова объединяются и направляются своему адресату. Такой пакетный принцип широко используется в сети Интернет.

Подключив к персональному компьютеру микрофон и наушники, пользователь при помощи Интернет-телефонии может позвонить любому абоненту, у которого подключен городской телефон. Оплата в этом случае будет взиматься только за пользование Интернетом. Прежде чем пользоваться Интернет-телефонией абоненту нужно установить специальную программу на свой компьютер.

Воспользоваться Интернет-телефонией можно даже не имея персонального компьютера. Достаточно подключить обычный городской телефон с тональным набором. При наборе номера каждая набранная цифра уходит в линию в виде переменных токов разной частоты. Таким тоновым режимом снабжен практически любой современный телефонный аппарат. Чтобы воспользоваться Интернет-телефонией при помощи телефонного аппарата необходимо приобрести кредитную карточку, и позвонить на центральный компьютер-сервер по номеру указанному на карточке. После того автомат сервера дает голосовые команды: кнопками телефонного аппарата набрать серийный номер и ключ карточки, а также код страны и телефонный номер своего собеседника. При разговоре сервер превращает аналоговый сигнал в цифровой, отправляет его в другой город, в находящийся там сервер, который снова преобразует цифровой сигнал в аналоговый и отправляет его нужному абоненту. При этом абоненты разговаривают как по обычному телефону.

В 2003 году была запущена программа Skype. Она очень проста в установке и использовании, при этом совершенно бесплатная. Программа позволяет не только разговаривать, но и видеть собеседников, находящихся у своих компьютеров в разных концах света. Для того чтобы при разговоре имелось видеоизображение собеседников, компьютер каждого из них должен быть снабжен web-камерой. Этот тип связи позволяет практически мгновенно связаться двум людям, находящимся в любых точках нашей планеты. При этом, несмотря на различные расстояния, у абонентов создается ощущение личного общения.

2.5 Сотовая связь в России

Первая в России сотовая сеть появилась в 1991 г., когда свою работу в аналоговом стандарте NMT-450i начала компания "Дельта Телеком".

За это время в нашей стране поработали различные фирмы, использовавшие все стандарты сотовой связи. Самым используемым продуктом, которые продавали эти сети, был голосовой трафик - об SMS, о дополнительных информационно-развлекательных сервисах задумывались мало, а для скоростной передачи данных не было ни скоростных протоколов, ни желания покупать соответствующее оборудование.

Из-за августовского кризиса 1998 г. операторы потеряли много клиентов, что пошатнуло экономику сотовых компаний. Чтобы спастись от разорения все сотовые операторы начали разработку проектов для потребителей с невысоким уровнем доходов. Первым среди них оказался "ВымпелКом", который осенью 1999 г. предложил не дорогой пакет услуг под названием "Би+".

В 2000 г. МТС и "ВымпелКом" первыми стали использовать в своих сетях WAP-сервис. С помощью WAP-сервиса абоненты могли загружать данные со специальных WAP-сайтов, размещенных в Интернете, воспользовавшись своим сотовым телефоном. Информация была такой же как на WEB-сайтах, но адаптирована для маленьких экранов сотовых телефонов. В период с 2000 по 2005 г. г. можно выделить две тенденции развития. Во-первых, по всей территории России стали развиваться GSM-компании.

Во-вторых, сотовые операторы стали активно бороться за корпоративных абонентов. Операторы организовали специальные отделы, которые привлекали крупных пользователей скидками, дополнительными льготами по оплате, индивидуальным набором услуг, а так же сервисами передачи данных по технологии GPRS. Оператор "СкайЛинк" был основан в июле 2003 г. для консолидации региональных операторов NMT-450 и реализации проекта по созданию единой федеральной сети сотовой связи стандарта IMT-MC-450 (технология CDMA2000 1X). "СкайЛинк" использует скоростную технологию передачи данных EV-DO (в среднем в 9-10 раз более быстрой, чем GPRS). Благодаря этому корпоративные клиенты, у которых есть реальная потребность в организации и использовании мобильного офиса без проводов, становятся его клиентами.

Сегодня мобильной связью охвачено огромное количество абонентов - по мнению аналитиков "Евросети", определяющих данный показатель по количеству продаж мобильных терминалов, это около 70% населения страны, а по данным IKS-Consulting и J`son&Partners, которые в качестве основы для анализа используют количество проданных SIM-карт, - все 100%. Однако свое дальнейшее развитие операторы видят в строительстве сетей следующего поколения (3G) - именно они призваны обеспечить более высокую, чем это может EDGE, скорость передачи данных. Будущее, по мнению аналитиков, именно за дополнительными сервисами (видеозвонки и передача "тяжелого" контента - фильмов, результатов видеонаблюдения, качественного звука в формате mp3 и т.д.), поскольку передача голоса, как доминирующая услуга, постепенно начинает терять вес - зарабатывать в этом сегменте операторам все сложнее.

"ВымпелКом" и другие сотовые операторы "большой тройки" в 2007 г получили лицензии на услуги сотовой связи 3G, включая Москву и Московскую область. Однако к развертыванию этих сетей в Москве операторы не могут приступить до согласования с Министерством обороны вопроса о высвобождении или совместном использовании радиочастот диапазона 2,1 ГГц, которые, в том числе, задействованы в системах ПВО.

Порядок выдачи разрешений на использование радиочастот требует совершенствования, считают эксперты, готовящие изменения в "стратегию-2020". "Сегодня из-за рассогласованности в работе регуляторов на получение разрешения на использование радиочастот оператору требуется в среднем один год. В то же время монтаж одной базовой станции <. > в среднем осуществляется за два месяца". Чтобы решить эту проблему, эксперты предлагают передать проведение экспертизы ЭМС и назначение номиналов частот в Минкомсвязи.

"Для следования мировым тенденциям развития отрасли необходимо проводить политику технологической нейтральности в вопросах использования радиочастотного спектра", - пишут эксперты и предлагают поправить соответствующим образом закон "О связи". Они предлагают также внести поправки в закон "О связи", чтобы полученная на торгах лицензия уже давала право на использование радиочастот, расширить основания для проведения аукционов. В апреле 2011 г. правительство утвердило план мероприятий по сокращению избыточного госрегулирования в отрасли связи. По нему в I квартале 2012 г. в таблицу распределения полос частот в России должны быть внесены изменения, которые разделят полосы совместного использования на полосы преимущественно гражданского и правительственного использования. В связи с этим предстоят большие баталии с военным ведомством, говорит близкий к ГКРЧ источник. По его словам, военные уже заявили, что хотят получить 90% из этих полос, но Минкомсвязи будет настаивать, чтобы полосы, используемые Минобороны для связи, а не для прямых военных нужд, например радиолокации, переводились в гражданский диапазон.

Подобные документы

    Технические и технологические тенденции развития электросвязи. Функциональные требования к архитектуре и концептуальная модель интеллектуальных сетей (IN), характеристика ее уровней. Состояние и перспективы развития сотовой связи, обзор ее стандартов.

    реферат , добавлен 11.08.2011

    Формирование современной инфраструктуры связи и телекоммуникаций в Российской Федерации. Направления развития цифрового, кабельного и мобильного телевидения. Наземные и спутниковые сети цифрового телерадиовещания. СЦТВ с микроволновым распределением.

    контрольная работа , добавлен 09.05.2014

    Изучение основного назначения симметричных кабелей, которые используются для передачи электромагнитной энергии в диапазоне частот 0-1 ГГц. Перспективы развития цифровых радиорелейных линий. Основные направления применения радиолиний. Технологии xDSL.

    реферат , добавлен 26.01.2011

    Изучение функционирования систем связи, которые можно разделить на: радиорелейные, тропосферные, спутниковые, волоконно-оптические. Изучение истории возникновения, сфер применения систем связи. Спутниковые ретрансляторы, магистральная спутниковая связь.

    реферат , добавлен 09.06.2010

    Понятие и структура коммуникаций. Способы перемещения информации. Динамика развития средств коммуникаций за последние годы: интернет, радио, телевидение, спутниковая и сотовая связь. Состояние и перспективы развития коммуникаций Оренбургской области.

    курсовая работа , добавлен 08.12.2014

    История развития спутниковой связи. Абонентские VSAT терминалы. Орбиты спутниковых ретрансляторов. Расчет затрат по запуску спутника и установке необходимого оборудования. Центральная управляющая станция. Глобальная спутниковая система связи Globalstar.

    курсовая работа , добавлен 23.03.2015

    Устройство жидкокристаллических, проекционных и плазменных телевизоров. Перспективы развития цифрового телевидения в России. Высокая четкость трансляций и интерактивное телевидение. Экономическая эффективность проекта внедрения цифрового телевидения.

    курсовая работа , добавлен 04.01.2012

    Классификации и наземные установки спутниковых систем. Расчет высокочастотной части ИСЗ - Земля. Основные проблемы в производстве и эксплуатации систем приема спутникового телевидения. Перспективы развития систем спутникового телевизионного вещания.

    дипломная работа , добавлен 18.05.2016

    Понятие сотовой связи, особенности ее современного развития. Типологическое районирование по уровню развития сотовой связи, динамика распространения на территории России. География развития и тенденции развития рынка сотовой связи в Российской Федерации.

    курсовая работа , добавлен 18.07.2011

    Перспектива развития волоконно-оптических систем передачи в области стационарных систем фиксированной связи. Расчет цифровой ВОСП: выбор топологии и структурной схемы, расчет скорости передачи, подбор кабеля, трассы прокладки и регенерационного участка.