31.08.2019

Микробиологические и коррозионные повреждения материалов и изделий вооружения. Биоповреждения и защита непродовольственных товаров


Читайте также:
  1. Боррелии, общая характеристика. Патогенез, иммунитет при возвратном тифе. Микробиологическая диагностика. Возбудитель боррелиоза Лайма.
  2. Возбудитель коклюша, общая характеристика. Дифференциация с возбудителем паракоклюша. Патогенез, иммунитет. Микробиологическая диагностика. Специфическая профилактика коклюша.
  3. Гонококки, общая характеристика. Механизмы патогенеза и иммунитет. Микробиологическая диагностика острой и хронической гонореи.
  4. Микробиологическая диагностика и биологическая активность почв
  5. Микробиология и ее значение в медицине. Микробиологическая лаборатория. Методы изучения микроорганизмов. Морфология бактерий.
  6. Стрептококки, классификация. Общая характеристика. Факторы патогенности. Антигенная структура. Патогенез, иммунитет, микробиологическая диагностика стрептококковых инфекций.

Коррозия представляет собой процесс в результате которого разрушается поверхность металла, бетона и других материалов. Коррозия в водной среде представляет собой электрохимический процесс. При этом природные и сточные воды, содержащие достаточно много растворенных солей, выполняют роль коррозионных агентов.

Сущность электрохимической коррозии состоит в образовании разности потенциалов на отдельных участках границы металл – электролит, что приводит к возникновению электрохимических пар (анодных и катодных участков), между которыми протекает коррозионный ток. При этом на анодных участках разрушается металл в результате перехода ионов металла в раствор:

Fe – 2e - = Fe 2+

На катоде в результате присоединения избыточных электронов металла идут реакции восстановления протона (водородная деполяризация):

2Н + + 2е - = Н 2

или кислорода (кислородная поляризация):

½ О 2 + 2 е - + Н 2 О = 2ОН -

Эти реакции способствуют ускорению коррозии. Замедляется процесс коррозии при повышении рН.

Величина электродного потенциала, возникающего на поверхности железа, контактирующего с водой, в значительной степени зависит от концентрации кислорода. В результате даже небольшого различия в степени аэрации на поверхности металла возникают электрохимические пары, называемые парами дифференциальной аэрации. Разница в электродных потенциалах таких пар очень невелика, однако коррозия, вызываемая ими, не меньше, а для железа даже больше, чем от обычных электрохимических пар.

Биологическая, или микробная, коррозия – процесс разрушения материалов под влиянием грунта или электролитов, ускоренный микроорганизмами. Роль микроорганизмов в процессах коррозии сводится к ускорению деполяризации катода путем ферментативного переноса электронов, выделению коррозионных продуктов обмена и образованию пар дифференциальной аэрации.

Многие виды бактерий – активные коррозионные агенты. Микроорганизмы обрастаний часто вызывают или усиливают коррозию металлов. Если микроорганизмы выделяют вещества, способные вызывать или усиливать коррозию металла, например кислоты, то разрушение его может происходить на некотором удалении от места массового развития микроорганизмов. Продукты выделения микроорганизмов, например диоксид углерода, могут вызывать коррозию бетона. При транспортировке сточных вод по трубам создаются условия для развития анаэробов, например бактерий, восстанавливающих сульфаты, что сопровождается образованием таких коррозионных агентов, как сероводород. Некоторые виды плесневых грибов (Penicillium, Aspergillus) и актиномииетов вызывают коррозию натурального каучука.

Коррозия в аэробных условиях

Коррозия в аэробных условиях возникает при наличии достаточного количества кислорода в воздушном пространстве или в воде (в растворенном виде). Аэробной коррозии подвержены железобетонные и металлические трубопроводы и сооружения из металла и бетона.

Основные агенты микробной коррозии в данных условиях – серобактерии, тионовые и нитрифицирующие бактерии, железобактерии.

В результате жизнедеятельности тионовых бактерий в качестве конечного продукта метаболизма выделяется серная кислота

S 2- + 2O 2 = SO 4 2-

S 0 + H 2 O + 1,5O 2 = H 2 SO 4

S 2 O 3 2- + H 2 O + 2O 2 = 2SO 4 2- + 2H +

SO 3 2- + 0,5O 2 = SO 4 2- ,

создающая агрессивную среду, которая служит причиной коррозии металла.

Коррозионность среды при понижении рН объясняется увеличением концентрации ионов Н + , поддерживающих катодную реакцию.

Однако роль тионовых бактерий в коррозии металла не ограничивается созданием агрессивной среды. Тиобациллы вида Thiobacillus ferrooxidans способны окислять Fe(II) до Fe (III) по реакции:

4Fe 2+ + 4H + + O 2 = 4Fe 3+ + 2H 2 O.

Образующееся трехвалентное железо выступает как активный окислитель, способный принимать электроны с поверхности металла

Fe 3+ + e - = Fe 2+

и играть роль деполяризатора. Образующееся Fe 2+ снова окисляется тиобациллами. Такой циклический процесс способен постоянно поддерживать коррозию металла.

С деятельностью тионовых бактерий связано и разрушение бетонных сооружений. Развиваясь на бетонной поверхности, тионовые бактерии снижают рН контактирующей с бетоном воды путем выделения кислоты. В кислой среде защитная пленка карбоната кальция разрушается. Это создает возможность диффузии воды вглубь бетона и растворения его компонентов. Кроме того, продукты жизнедеятельности тионовых бактерий – сульфаты – участвуют в образовании в бетоне так называемой «цементной бациллы» - гидросульфоалюмината кальция 3CaO∙Al 2 O 3 ∙3CaSO 4 ∙31H 2 O. Это соединение способно расширяться в 2 – 2,5 раза, что приводит к разрушению бетона.

Под действием тионовых бактерий разрушаются не только металлы и бетон, но и сплавы, содержащие серу, а также резина, поскольку в ней после вулканизации содержится сера.

Нитрифицирующие бактерии могут быть причиной коррозии пористых материалов на основе цемента. Окисляя аммиак, они продуцируют азотную кислоту

NH 4 + + 2O 2 = NO 2 - + 2H 2 O

2NO 2 - + O 2 = 2NO 3 - ,

которая реагирует с СаСО 3 бетона, переводя его в хорошо растворимую форму Ca(NO 3) 2 . В данном случае коррозия бетона проявляется в образовании альвеол или шелушении поверхности бетона.

С деятельностью железобактерий связывают микробную аэробную коррозию водопроводных труб. Поселяясь в трубах, они образуют на их стенках слизистые скопления, обладающие высокой механической прочностью и поэтому не смываемые током воды. Прочность этих скоплений обусловлена волокнистой структурой оболочек железобактерий.

Коррозия начинается с появления на внутренней поверхности трубы желтых или темно-коричневых налетов, или каверн, состоящих из гидроксида трехвалентного железа. Каверны возникают, как правило, на неровностях труб. Участки труб под кавернами оказываются изолированными от воды и доступ кислорода к ним затруднен. Напротив, участки омываемые водой, аэрируются хорошо. Таким образом, развитие железобактерий приводит к образованию на поверхности труб зон с различной степенью аэрации. На участках труб покрытых кавернами и свободными от них устанавливаются различные значения электродных потенциалов, что приводит к возникновению коррозионного тока. Участки под кавернами функционируют как аноды. Хорошо аэрируемые участки являются катодами.

Деятельность железобактерий приводит к окислению Fe(II) в Fe(III) и к его гидролизу

Fe 3+ + 3H 2 O = Fe(OH) 3 + 3H + .

Образование Fe(OH) 3 сопровождается снижением рН, т.е. созданием коррозионной среды. Кроме того, в результате интенсивного потребления железобактериями кислорода и роста отложений Fe(OH) 3 анаэробные условия на анодных участках усугубляются, что ведет к увеличению разности потенциалов между катодом и анодом, а следовательно, к ускорению процесса коррозии.

Коррозия в анаэробных условиях

Коррозию в анаэробных условиях вызывают сульфатредуцирующие бактерии рода Desulfovibrio , развивающиеся при рН 6,8 – 8 при наличии в среде сульфатов, источников электронов и питания. Будучи строгими анаэробами, эти бактерии часто обнаруживаются в средах, богатых кислородом, где они обитают в ассоциации с аэробными (часто слизеобразующими) бактериями, создающими необходимые условия для анаэробиоза. Молекулярный водород, образующийся на катодных участках, используется данными бактериями для восстановления сульфатов

SO 4 2- + 5H 2 = H 2 S + 4H 2 O.

Выделяющийся сероводород способен связывать двухвалентное железо и восстанавливать Fe(OH) 3 с образованием плотного осадка FeS.

Таким образом, сульфатредуцирующие бактерии способствуют процессу коррозии, ускоряя деполяризацию катода и выделяя коррозионный продукт – сероводород.

Способы защиты от микробиологической коррозии

Специальных средств защиты от микробиологической коррозии не существует. Защитные битумные или полимерные покрытия, а также защитные пленки обеспечивают изоляцию металлической поверхности от воды, а следовательно, и от микробного воздействия. В некоторых случаях используются бактерицидные или бактериостатические вещества. Например, эффективным бактериостатом для сульфатредуцирующих бактерий служит кислород, поэтому усиление аэрации способствует замедлению коррозии, вызванной сульфатредуцирующими бактериями. Как мера предотвращения коррозии этого типа может быть использовано подщелачивание среды (когда это возможно), так как рост и развитие сульфатредуцирующих бактерий полностью подавляются при рН>9.


| | | | | | 7 |

Коррозии подвергаются не только металлы, но и материалы ор­ганического и синтетического происхождения. В этом случае го­ворят о микробиологической коррозии, или биокоррозии, разрушающей многие виды промышленных изделий в результате воздействия микроорганизмов. Наболее интенсивно воздействие микро­организмов в условиях тропического климата, т. е. повышенной температуры и влажности. Однако в ряде районов нашей страны (Черноморское побережье Кавказа, Прибалтика) климатические факторы способствуют развитию микробиологической коррозии таких материалов, как дерево, ткани, кожа, картон, бумага и др., хотя и не в такой степени, как в тропиках. Подсчитано, что из общих потерь от коррозии в мировом масштабе на долю биокор­розии приходится 15-20%. Реальные потери, вероятно, значи­тельно больше.

Главное действующее начало микробиологической коррозии - плесневые грибы, а для некоторых материалов и бактерии. Основ­ной фактор жизнедеятельности плесневых грибов - наличие во­ды. Пониженная температура сдерживает их развитие, однако при наличии воды некоторые виды грибов хорошо растут даже при температуре, близкой к 0°С. Споры плесневых грибов распростра­нены в атмосфере, но особенно много их в поверхностных слоях почвы. Плесень сравнительно легко приспосабливается к различ­ным физическим и химическим условиям среды.

Источником питания плесени служат материалы, содержащие углерод и азот, но известны плесени, ассимилирующие фенол и каучук. Оптимальная температура для развития всех видов пле­сени находится в пределах 26-30 °С. При повышении или пони­жении температуры их развитие, замедляется. Споровые формы плесневых грибов выносят температуру 100 °С и выше.

Под воздействием плесени материалы органического происхож­дения разрушаются, а продукты их распада могут вызывать хими­ческую коррозию и металлов. Это особенно опасно для электро­технических изделий (провода с хлопчатобумажной или шелковой оплеткой). В результате микробиологической коррозии резко сни­жается электрическая прочность изоляции и могут возникнуть пробои и короткие замыкания. Известны случаи, когда в резуль­тате микробиологической коррозии полностью нарушалось функ­ционирование механических приборов, например зеркального галь­ванометра.

Меры защиты от биокоррозии. Наилучшей защитой при хране­нии и эксплуатации изделий служит создание условий, препятст­вующих развитию плесени. Условия эксплуатации изделий меди­цинской техники малоблагоприятны для возникновения плесени, так как изделия во время эксплуатации неоднократно стерили­зуют или подвергают влажной санитарной обработке. В связи с этим благоприятные условия для развития плесени могут появ­ляться главным образом при хранении изделий в складских помещениях. Однако при нормальной температуре хранения и при ульт­рафиолетовом облучении изделие будет надежно защищено от плесени.

Особенно важно проветривать складские помещения. Если изде­лия влажны, то поток воздуха, даже имеющего большую относи­тельную влажность по сравнению с воздухом помещения, служит защитным фактором. Поток воздуха препятствует оседанию спор на поверхности предметов. Исходя из этого, в условиях хранения, которые записаны в ТУ на изделия медицинской техники, не предусматривается, как правило, специальных мер борьбы с биокоррозией, кроме хранения в сухих, отапливаемых помещениях. В большинстве районов СССР соблюдение указанных выше усло­вий надежно предохраняет изделия от плесневения.

Биокоррозия представляет собой естественную реакцию окружающей среды на материалы, которые создает или использует человек. Внедряя искусственно созданные материалы, человек включает их в общий круговорот веществ, происходящий в биосфере, где все, что находится на земле, проходит свой путь от рождения до разложения.

Если бы этот процесс отсутствовал, то произошло бы «захламление» окружающей среды, которое привело бы к гибели не только человека, но и всего живого на земле. Решая вопрос биозащиты, как правило, за счет введения веществ, обеспечивающих экологический иммунитет материалу или изделию на период эксплуатации, человек внедряется в законы природы и не всегда с пользой для себя и биосферы. Примером может служить полиэтиленовая тара (кульки, емкости и т.д.), разложение которой в земле может произойти не ранее чем через 100 лет. Как мы видим вокруг, это уже создает опасность «захламления».

Микробиологическое разрушение материалов и конструкций возникает в результате воздействия различных бактерий, грибов, лишайников.

Повсеместное распространение микроорганизмов обусловлено их разнообразием и способностью приспосабливаться к изменяющимся условиям среды и источникам питания.

Воздействие микроорганизмов может быть прямым, когда материал является источником питания, и косвенным, если на материал действуют продукты их жизнедеятельности – органические кислоты.

Повышение влажности, температуры и загрязнение поверхности способствуют росту и развитию микроорганизмов на всевозможных материалах, вызывая их частичное или полное разрушение. Биоповреждению подвергаются полимерные материалы, лакокрасочные покрытия, древесина, природные и искусственные каменные материалы, стекло и металлы. При воздействии микроорганизмов на полимеры, вследствие разрастания и заполнения микропустот в структуре, а также влияния продуктов жизнедеятельности, изменяются цвет, структура, а при небольшой толщине нарушается герметичность и прочность изделий и покрытий. Более 60% используемых в строительстве полимерных материалов не обладают достаточной биостойкостью. В первую очередь это относится к таким распространенным, как материалы на основе полиэтилена, поливинилхлорида. Биостойкость полимерных материалов снижается в процессе их старения, поэтому эти два явления взаимосвязаны и стимулируют друг друга.

При повреждении лакокрасочного покрытия на основе полимерных связующих размножение микроорганизмом может происходить как на поверхности пленки, так и внутри нее. Последнее приводит к вздутию, отслоению и полному разрушению защитного слоя. Биостойкость покрытия зависит от состава подложки, свойств входящих компонентов, режимов сушки, условий и длительности эксплуатации. Биостойкость уменьшается в зависимости от применяемого пленкообразующего вещества (связующего) в следующем порядке: эпоксидные, полиуретановые, пентафталиевые, битумные, глифталиевые. Подвергаются воздействию микроорганизмов составы, содержащие олифу, костный клей, козеин, желатин, карбоксиметилцеллюлозу, поливинилацетат (ПВА), акриловые смолы. Поэтому недостаточно стойки применяемые водоэмульсионные и масляные краски.


Одним из важнейших условий получения стойких материалов и покрытий является введение в их состав компонентов, которые не являются источником питания. Это такие минеральные наполнители, несодержащие углерода, как каолин, плавиковый шпат, слюда, ускорители и отвердители – известь, окись магния. Для защиты заведомо нестойких полимеров, при их получении или в процессе производства из них изделий или красочных составов необходимо вводить биоцидные добавки – соединения на основе цинка, меди, олова или кремнийорганические.

Наиболее опасны микроорганизмы для материалов, полученных на основе растительного сырья. Это изделия из древесины и ее отходов (ДВП, ДСП), льнокостры, соломы, камыша и т.д. Разрушаются деревянные полы, перегородки, элементы конструкций кровли. Процесс активизируется с повышением влажности, температуры и отсутствием вентиляции. При строительстве деревянных домов важно определить рациональную область используемых защитных средств. Например, лаги, детали погребков, нижние обвязки или полы по грунту в надворных постройках, их защита должна проводиться пропиткой эффективными антисептиками, безвредными для животных и человека. Биоогнезащите комплексными составами подвергают, как правило, несущие конструкции и только огнезащите – внутренние двери, элементы лестничных клеток и чердаков.

Для таких неорганических природных и искусственных материалов как каменные, керамические, бетон на неорганических вяжущих (гипс, известь, цемент), биоразрушения в основном связаны с действием продуктов жизнедеятельности микроорганизмов – органических и неорганических кислот; и в меньшей степени, в случае особых силикатных бактерий, использованием их как источник энергии. Микроорганизмы, находясь на поверхности строительных конструкций, изделий через продукты своей жизнедеятельности взаимодействуют с материалом, образуя легкорастворимые или не обеспечивающие прочность соединения. Биоповреждения бетона, относительно пористого материала, начинаются с поверхности и идут вглубь. Вопрос защиты бетонных и железобетонных конструкций, как и любых других, необходимо рассматривать в комплексе с санитарно-гигиеническими условиями их эксплуатации. Поэтому стены животноводческих помещений, цехов мясомолочной, пищевой промышленности должны быть облицованы легкомоющимися материалами. Наиболее надежную защиту от биокоррозии могут обеспечивать вводимые в состав материала биоцидные добавки, покрытие поверхности биоцидными пленкообразующими составами или пропитка поверхностного слоя биоцидными составами. При этом необходимо учитывать способность микроорганизмом приспосабливаться к применяемым средствам. Примером могут служить ситаллы, представляющие собой частично закристаллизованые стекла, используемые в качестве кислотостойкого плиточного, облицовочного материала. В их состав входят такие компоненты биоцидного свойства как фосфаты, свинец, бор и другие. Однако, несмотря на их присутствие, эти материалы подвержены биоразрушению. Только введение соединений кобальта и меди до 1% по массе позволили полностью защитить этот материал.

При воздействии микроорганизмов повреждаются также изделия из обычного стекла и оптические системы. При действии бактерий и грибов резко снижаются их оптические свойства.

По отношению к металлам, из которых выполняют несущие алюминиевые и стальные конструкции, кровельные и отделочные материалы, микробиологическая коррозия может развиваться и усиливаться в результате двух основных процессов. Первый – создание агрессивной по отношению к металлу среды на его поверхности, в результате накопления таких продуктов жизнедеятельности как кислоты, сульфиды, аммиак. Второй – непосредственное участие микроорганизмов в одной или нескольких окислительно-восстановительных реакциях, вызывающих электрохимическую коррозию металла. Наиболее надежной защитой обладают лакокрасочные составы с биоцидными добавками, долговечность которых в значительной степени определяется тщательностью очистки поверхности изделий и конструкций.

  • Защита войск и населения от отравляющих и аварийно опасных химических веществ
  • Защита временем при контакте с локальной вибрацией, превышающей ПДУ
  • ЗАЩИТА МЕДИЦИНСКИХ ИЗДЕЛИЙ ПРИ ХРАНЕНИИ И ТРАНСПОРТИРОВКЕ
  • Защита прав юридических лиц и индивидуальных предпринимателей при проведении государственного контроля (надзора).
  • Коррозии подвергаются не только металлы, но и материалы ор­ганического и синтетического происхождения. В этом случае го­ворят о микробиологической коррозии, или биокоррозии, разрушающей многие виды промышленных изделий в результате воздействия микроорганизмов. Наболее интенсивно воздействие микро­организмов в условиях тропического климата, т. е. повышенной температуры и влажности. Однако в ряде районов нашей страны (Черноморское побережье Кавказа, Прибалтика) климатические факторы способствуют развитию микробиологической коррозии таких материалов, как дерево, ткани, кожа, картон, бумага и др., хотя и не в такой степени, как в тропиках. Подсчитано, что из общих потерь от коррозии в мировом масштабе на долю биокор­розии приходится 15-20%. Реальные потери, вероятно, значи­тельно больше.

    Главное действующее начало микробиологической коррозии - плесневые грибы, а для некоторых материалов и бактерии. Основ­ной фактор жизнедеятельности плесневых грибов - наличие во­ды. Пониженная температура сдерживает их развитие, однако при наличии воды некоторые виды грибов хорошо растут даже при температуре, близкой к 0°С. Споры плесневых грибов распростра­нены в атмосфере, но особенно много их в поверхностных слоях почвы. Плесень сравнительно легко приспосабливается к различ­ным физическим и химическим условиям среды.

    Источником питания плесени служат материалы, содержащие углерод и азот, но известны плесени, ассимилирующие фенол и каучук. Оптимальная температура для развития всех видов пле­сени находится в пределах 26-30 °С. При повышении или пони­жении температуры их развитие, замедляется. Споровые формы плесневых грибов выносят температуру 100 °С и выше.

    Под воздействием плесени материалы органического происхож­дения разрушаются, а продукты их распада могут вызывать хими­ческую коррозию и металлов. Это особенно опасно для электро­технических изделий (провода с хлопчатобумажной или шелковой оплеткой). В результате микробиологической коррозии резко сни­жается электрическая прочность изоляции и могут возникнуть пробои и короткие замыкания. Известны случаи, когда в резуль­тате микробиологической коррозии полностью нарушалось функ­ционирование механических приборов, например зеркального галь­ванометра.

    Меры защиты от биокоррозии. Наилучшей защитой при хране­нии и эксплуатации изделий служит создание условий, препятст­вующих развитию плесени. Условия эксплуатации изделий меди­цинской техники малоблагоприятны для возникновения плесени, так как изделия во время эксплуатации неоднократно стерили­зуют или подвергают влажной санитарной обработке. В связи с этим благоприятные условия для развития плесени могут появ­ляться главным образом при хранении изделий в складских помещениях. Однако при нормальной температуре хранения и при ульт­рафиолетовом облучении изделие будет надежно защищено от плесени.

    Особенно важно проветривать складские помещения. Если изде­лия влажны, то поток воздуха, даже имеющего большую относи­тельную влажность по сравнению с воздухом помещения, служит защитным фактором. Поток воздуха препятствует оседанию спор на поверхности предметов. Исходя из этого, в условиях хранения, которые записаны в ТУ на изделия медицинской техники, не предусматривается, как правило, специальных мер борьбы с биокоррозией, кроме хранения в сухих, отапливаемых помещениях. В большинстве районов СССР соблюдение указанных выше усло­вий надежно предохраняет изделия от плесневения.

    Изучению влияния различных климатических факторов на коррозию, биологические повреждения и старение материалов посвящено большое количество работ, в которых установлены их основные закономерности.

    Согласно Международному стандарту ИСО 8044-1986 термин «коррозия» означает процесс. Этот процесс заключается в физико-химической реакции между материалом и окружающей средой и приводит к изменениям свойств материала. Результатом является «коррозионный эффект», примерами которого являются порча материала, загрязнение окружающей среды продуктами коррозии и нарушения функций системы, физико-химическими составными частями которой являются и материал и окружающая среда .

    Установлено, что существенную роль в протекании процессов коррозии, а также старения играет состав атмосферного воздуха (количество содержащихся в нем загрязнений). Так, сернистый ангидрид, попадающий в атмосферу при сжигании серосодержащего топлива (угля), резко увеличивает скорость коррозии таких металлов, как железо, цинк, алюминий, медь. Начиная с некоторой критической концентрации SO2 в атмосфере скорость этого процесса возрастает прямо пропорционально содержанию газа в воздухе. Однако, после достижения определенного предела, дальнейшее повышение концентрации SO2 в воздухе не приводит к заметному возрастанию скорости коррозии. Скорость растет и в том случае, когда в атмосфере сернистый газ отсутствует, но поверхность металла была им предварительно обработана.

    Хлориды и соединения азота образуют при взаимодействии с находящейся на поверхности металла водой растворы электролитов, что способствует протеканию процессов коррозии. Ионы хлора препятствуют также образованию пассивирующих пленок на металле. Кроме того, хлористый натрий собирает влагу из относительно сухой атмосферы, увеличивая толщину пленки адсорбированной на поверхности металла воды, что сопровождается увеличением скорости коррозии. Например, при влажности атмосферы 75% толщина пленки воды, адсорбированной на чистой поверхности железа, составляет 6...7 молекулярных слоев, а на обработанной хлористым натрием - 12...14 слоев. Основным источником поступления хлоридов в атмосферу являются моря, и их концентрация в воздухе во многом зависит от удаленности от берега моря, содержание солей в морской воде, силы и направления ветра, препятствий на путях движения воздуха и количества осадков. Поэтому скорость коррозии в приморских районах выше, чем в удаленных от моря местностях.

    Рассмотренные выше атмосферные загрязнения сорбируются не только на металлах, но и на неметаллах. Они способны диффундировать в объем материала и изменять его свойства, вступая в реакции с реакционно-способными группами макромолекул. Вопросы старения полимеров в агрессивных средах подробно рассмотрены в ряде монографий. Конструкционные особенности стрелково-пушечного вооружения какого-либо специфического влияния на процессы старения полимеров в агрессивных средах не оказывают, поэтому для них характерны все общие закономерности, описанные в этих работах; Так, известно, что легко гидролизующиеся связи типа С-О или C-N подвергаются гидролитическому распаду в водных растворах кислот и щелочей, поэтому растворение сернистого ангидрида, сероводорода, окислов азота или аммиака в адсорбированной на поверхности полимерных деталей стрелково-пушечного вооружения пленке воды вызывает химическое старение материала .

    Известно, что хлор, сернистый газ, аммиак являются биоцидными веществами, однако их концентрация в атмосферном воздухе слишком мала для того, чтобы оказывать заметное антимикробное действие.

    Рассмотрение конструктивных особенностей основных образцов стрелково-пушечного вооружения приводит к выводу, что озонное старение и растрескивание резинотехнических изделий не играет заметной роли в возникновении неисправностей вооружения, но озонное старение других полимерных материалов учитывать необходимо. Озон обладает биоцидными свойствами, однако в реальных условиях хранения и эксплуатации вооружения и военной техники заметного влияния на ее биоповреждаемость не оказывает: концентрация озона в атмосфере и время его воздействия на микроорганизмы недостаточны для получения заметного дезинфицирующего эффекта.

    Напротив температура оказывает существенное влияние на процессы коррозии, старения и биоповреждений материалов стрелково-пушечного вооружения. В первую очередь это связано с температурной зависимостью химических реакций: известно, что при повышении температуры скорость всех реакций увеличивается. Это выполняется и для электрохимических реакций, и для реакций деструкции и сшивания макромолекул полимерных материалов. При повышении температуры ускоряются также процессы транспорта: миграции компонентов неметаллических материалов из объема на поверхность детали, диффузии молекул воды и агрессивных веществ через лакокрасочное покрытие, полимерную пленку, в которую может быть упакован образец стрелково-пушечного вооружения, или в объем материала и так далее.

    Если повышение температуры однозначно ускоряет процесс старения полимерного материала в результате увеличения скорости, как транспортных процессов, так и химических реакций макромолекул, то температурная зависимость процесса коррозии имеет более сложный характер. Это связано с тем, что при повышении температуры в результате опять-таки увеличения скорости десорбции молекул воды с поверхности металла уменьшается длительность контакта электролита с металлом.

    Влияние продолжительности пребывания на материалах пленки влаги на коррозию, старение и биоповреждения материалов рассмотрены в ряде работ. Показано, что, например, количество металла, превратившегося в продукты коррозии, зависит от длительности пребывания пленки электролита на его поверхности: чем дольше не высыхает пленка на поверхности металла и чем чаще она возобновляется, тем дольше протекает процесс коррозии и, тем самым, при прочих равных условиях большему коррозионному разрушению подвергается металл. Было также установлено, что в атмосферах, не загрязненных значительным количеством специфических коррозионно-активных веществ, процесс коррозии начинался лишь тогда, когда на поверхности металла присутствовала пленка влаги толщиной 10...20 молекулярных слоев, приобретающая свойства электролита. Известно, что количество газа, адсорбируемое определенным количеством данного адсорбента, зависит от условий протекания процесса, в первую очередь от давления газа и температуры. На рисунке 5 представлена типичная изотерма адсорбции из газовой фазы.

    Рисунок 2. Типичные изотермы: 1 - мономолекулярной; 2 - полимолекулярной адсорбции

    Повышение давления газа увеличивает адсорбируемое количество его, но на разных участках адсорбционной изотермы это влияние сказывается неодинаково. Особенно сильно оно проявляется в области низких давлений (участок I изотермы на рисунке 2), где адсорбируемое количество газа прямо пропорционально его давлению. При дальнейшем повышении давления количество адсорбируемого газа тоже увеличивается, но в постепенно уменьшающейся степени (участок II изотермы), и далее кривая, выражающая эту зависимость, стремится к прямой, параллельной оси абсцисс (участок III). Это соответствует постепенному насыщению поверхности адсорбента. Когда насыщение достигнуто, дальнейшее повышение давления практически не влияет на количество адсорбируемого газа. Изображенная на рисунке 2 изотерма сорбции описывает явление мономолекулярной сорбции, когда предельное количество адсорбированного газа отвечает покрытию поверхности адсорбента только мономолекулярным слоем газа.

    В этом случае количество адсорбированного газа, а можно определить по уравнению Лэнгмюра:

    где p - равновесное давление газа над сорбентом; к и b - константы.

    Если, как, например, при адсорбции паров воды на поверхности металлов, происходит полимолекулярная адсорбция, т.е. на поверхности сорбируется не один, а несколько слоев газа, то график изотермы сорбции имеет S-образную форму (кривая (2) на рисунке 2) и описывается уравнением Брунауэра - Эммета - Теллера:

    где а - количество адсорбированного вещества; ат - количество адсорбированного вещества в сплошном молекулярном слое; р - равновесное давление пара сорбата над сорбентом; р0 - давление насыщенного пара при той же температуре; с - константа.

    Из уравнений (1) и (2) следует, что количество воды, адсорбировавшейся на деталях вооружения, при прочих равных условиях определяется содержанием водяного пара в воздухе, т.е. его абсолютной влажностью. Используя уравнение (2) можно оценить при какой влажности воздуха (при заданной температуре) толщина пленки адсорбированной на металлах влаги превысит необходимую для начала коррозионного процесса толщину в 10...20 молекулярных слоев.

    Повышение температуры, как правило, вызывает, уменьшение количества адсорбированного газа при постоянном давлении, а понижение температуры увеличивает его. Этот вывод можно сделать также из анализа уравнения (2). Действительно, зависимость давления насыщенного пара р0 от температуры Т описывается выражением:

    где Lucn - мольная теплота испарения вещества; R - универсальная газовая постоянная; D - константа, характерная для каждого вещества и связанная с изменением энтропии при испарении.

    С ростом температуры величина lnр0 и, следовательно, р0 растут, а р/р0 при постоянном значении р падает. Соответственно уменьшается и величина а. Кроме того, понижение температуры может приводить к тому, что парциальное давление паров воды в воздухе становится больше давления насыщенного пара при данной температуре, что приведет к конденсации воды на поверхности изделий. Таким образом, количество адсорбированной на материалах стрелково-пушечного вооружения воды зависит от абсолютной влажности воздуха и его температуры.

    Влияние адсорбированной воды на старение полимерных материалов связано как с физическим (набухание полимера вымыванием водорастворимых компонентов), так и химическим ее действием (разрушением легко гидролизующихся связей). Для применяемых при изготовлении образцов стрелково-пушечного вооружения полимеров деструкция под воздействием воды происходит только при высокой (свыше 180 °С) температуре, при реальных условиях хранения (эксплуатации) изделий ухудшение свойств материала связано с его набуханием. Изменение влажности воздуха вызывает периодическое набухание и высыхание полимерных материалов, что, в свою очередь, приводит к возникновению градиента концентрации воды по объему деталей, и, как следствие, возникновению внутренних механических напряжений, изменяющихся во времени. Наличие таких напряжений ведет к образованию микротрещин и пор в материалах.

    Солнечное излучение не оказывает непосредственного воздействия на материалы стрелково-пушечного вооружения, хранящегося в штатной укупорке в неотапливаемом хранилище. Однако прямое солнечное излучение может существенно увеличить температуру поверхности, на которую оно попадает. Температура может превысить 100 0С. Если эта поверхность является крышей хранилища, то температура внутри него может достичь 70-80 0С и даже выше. Соответственно заметно повысится и температура находящегося в этом хранилище вооружения.

    Биоповреждение (биологическое повреждение) - это любое изменение (нарушение) структурных и функциональных характеристик объекта, вызываемое биологическим фактором. Под биологическим фактором подразумевают организмы или их сообщества, воздействие которых на объект техники нарушает его исправное или работоспособное состояние. Наиболее агрессивны по отношению к материалам и изделиям микроорганизмы (микроорганизмы-деструкторы, биодеструкторы): микроскопические грибы, бактерии, дрожжи. Являясь составной частью окружающей среды, биодеструкторы в силу специфики своей жизнедеятельности способны быстро адаптироваться к самым различным материалам и постоянно изменяющимся условиям. Практически все используемые в изделиях техники материалы подвержены повреждающему воздействию микроорганизмов - микробиологическому повреждению.

    Достаточно полно исследованы микробиологические повреждения горюче-смазочных материалов, в том числе масел и смазок. Установлено, что ряд видов микроорганизмов, обладая способностью ферментативного окисления жидких углеводородов, используют их в качестве источника питания. Ассимилируя такие углеводороды и воздействуя на них продуктами жизнедеятельности, микроорганизмы-деструкторы приводят к разложению и потере рабочих свойств материала. Нефтяные топлива и продукты из них подвержены микробиологическому повреждению как при хранении и транспортировании, так и в эксплуатационных условиях.

    По данным работы все моторные, дизельные, вазелиновые, веретенные, авиационные, почти все трансмиссионные и изоляционные масла и пластичные смазки неустойчивы к грибам и бактериям. При воздействии этих микроорганизмов большинство показателей свойств масел и смазок (вязкость, кислотное число, стойкость к окислению и др.) существенно изменяет свои значения. Возникает коррозия узлов и деталей, контактирующих с поврежденными маслами и смазками.

    Многие авторы отмечают большую зависимость микробиологической стойкости горюче-смазочных материалов даже одного и того же типа от исходного сырья и технологии изготовления. Так, масла различного назначения из анастасиевской нефти (Россия) наиболее устойчивы, а трансформаторное масло из этой нефти считают «абсолютно устойчивым» к микроорганизмам. Такие отличия обусловлены особенностями группового и индивидуального углеводородного состава конкретного материала. Установлено также, что многие соединения серы, имеющиеся в сернистой нефти, значительно снижают микробиологическую стойкость изготовленных из нее масел. В то же время имеющиеся в смолистых фракциях нефти азотосодержащие соединения оказываются активными биоцидами - веществами, убивающими микроорганизмы.

    Среди многочисленных способствующих микробиологическим повреждениям горюче-смазочных материалов внешних условий определяющими являются наличие в материале воды, минеральных примесей (загрязнений) и оптимальной для развития микроорганизмов температуры.

    Масла и смазки наиболее часто повреждаются грибами Aspergillus niger, Penicillium variabile, Penicillium chrysogenum, Penicillium verrucosum, Scopu-lariopsis brevicaulis, бактериями Bacillus subtilis, Bacillus pumilus, Bacillus licheniformis.

    Большое число работ посвящено вопросам воздействия микроорганизмов на металлы и их сплавы (биокоррозии). В результате жизнедеятельности микроорганизмов на поверхности металла формируется агрессивная специфическая среда, образуются электрохимические концентрационные элементы, а в окружающей среде (растворе) и (или) на поверхности возникают агрессивные химические соединения, снижающие коррозионную стойкость. Грибы и бактерии способны инициировать и интенсифицировать практически все известные виды коррозии.

    Многие бактерии могут инициировать коррозию даже обычно коррозионностойких металлов и сплавов, таких, например, как медь, свинец и другие. Грибная коррозия наиболее часто проявляется на технических изделиях (оборудование, приборы, сложные узлы и агрегаты), в которых металлические детали контактируют с материалами, способствующими развитию грибов. Наиболее часто стимулируют коррозию: Aspergillus niger, As. flavus, Penicillium cyclopium и др. Они выделяют большое количество органических кислот - щавелевую, фумаровую, яблочную, лимонную, винную, молочную. Действие этих кислот на конструкционные материалы стрелково-пушечного вооружения идет по реакциям:

    mМе° > mМеn+ + nе, (4)

    mМеп+ + nnH20>Меm(АH-)n + nН3О+, (5)

    nН3О+ + nе > nН2О + n/2Н2^ . (6)

    Ферменты, выделяемые грибами, - это мощный фактор биоповреждений металлов. Более 50% повреждений техники, эксплуатирующейся в природных условиях, связаны в той или иной степени с воздействием МО.

    В процессах коррозии алюминиевых и стальных сплавов принимают активное участие грибы родов Aureobasidium, Alternaria, Stemphylium.

    Испытания стальной, алюминиевой и медной проволоки под воздействием микроскопических грибов показали, что менее стойкими являются стальные образцы. Наиболее агрессивны культуры Aspergillus niger, Aspergillus amstelodami и Penicillium cyclopium. В то же время культуры Chactomium globosum и Stachybetris atra заметных изменений не вызвали. Разрушение медной проволоки отмечено лишь под воздействием Penecillium cyclopium.

    Многие лакокрасочные покрытия, полимерные материалы и резинотехнические изделия подвержены отрицательному воздействию микроорганизмов. Их потребление в качестве источника питания и повреждение микроорганизмами связывают главным образом с воздействием веществ, продуцируемых микроскопическими грибами и бактериями в процессе жизнедеятельности. Изменение свойств материалов наступает в результате различных реакций - окисления, восстановления, декарбоксилирования, этерификации, гидролиза и других.

    Решающее значение для микробиологической стойкости лакокрасочных покрытий имеет состав пленкообразующего полимера и физические свойства полученной из него пленки покрытия (набухаемость, твердость, пористость, гидрофобность и другие). Используемые в качестве пигментов вещества в зависимости от наличия в них биоцидных свойств могут существенно влиять на стойкость лакокрасочных покрытий к микроорганизмам. Авторы показали, что оксиды железа в составе лакокрасочных покрытий стимулируют рост микроорганизмов, диоксид титана - инертен, а оксид цинка замедляет его. Из наполнителей лакокрасочных покрытий асбест и тальк увеличивают, а карбонат кальция уменьшает интенсивность роста микроорганизмов. Низкая грибостойкость некоторых лакокрасочных покрытий связана с наличием в их составе в качестве наполнителя гигроскопичного оксида магния, который поглощает влагу, набухает и способствует интенсивному развитию микроорганизмов.

    Многие исследователи подчеркивают большое влияние на микробиологическую стойкость лакокрасочных покрытий таких внешних факторов, как солнечная радиация, колебания температуры и влажности воздуха, загрязнение поверхности пылью и солями, воздействие различных газов и др. Эти факторы способствуют процессам старения лакокрасочных покрытий и подготавливают питательную среду для микроорганизмов. Микробиологическим повреждениям лакокрасочных покрытий благоприятствуют также нарушения технологий нанесения покрытий и требований по уходу за ними в эксплуатации. При исследовании эпоксидных эмалей (ЭП-525, ЭП-567), нанесенных по грунту АК-070, выявлено, что основными факторами, снижающими физико-механические и защитные свойства лакокрасочных покрытий, являются влажность воздуха, температура и метаболиты грибов во взаимодействии. Наибольшее снижение прочностных характеристик наблюдается в первые 15...30 суток в период активного роста грибов.

    Основными агентами микробиологических повреждений лакокрасочных покрытий являются плесневые грибы. Бактериальные поражения встречаются реже. Грибы, повреждающие лакокрасочных покрытий, наиболее часто принадлежат родам Aspergillus, Penicillium, Fusarium, Trichoderma, Alternaria, Cephalosporium, Pullularia, а бактерии - родам Pseudomonas, Flavobacterium.

    Микробиологические повреждения полимеров, применяемых в конструкциях машин и оборудования, встречаются довольно часто. Подсчитано, что на детали из пластмасс приходится около 25% от общего числа повреждений, вызываемых микроорганизмами. Более того, свыше 60% используемых в технике полимерных материалов не обладают достаточной микробиологической стойкостью. Чаще всего микробиологические повреждения возникают под воздействием микроскопических грибов, изменяющих цвет и структуру полимера, а в тонких пленках нарушается герметичность и снижается прочность.

    К наиболее характерным микроорганизмам-деструкторам полимеров относятся следующие виды грибов: Aspergillus wamori, Aspergillus niger, Aspergillus oryzae, Trichoderma sp., Aspergillus amstelodami, Aspergillus flavus, Chaeto-mim globosum, Trichoderma lignorum, Cephalosporum aeremonium, Penicillium sp., Rhizopus nigricans, Fusarium roseum.

    Микробиологическая стойкость резинотехнических изделий во многом зависит от их состава. О низкой стойкости к воздействию микроорганизмов основного компонента - каучука сообщается в работах. Росту микроорганизмов способствуют также и другие компоненты (стеарин, дибутилфталат). Грибостойкость также связана с технологией изготовления резинотехнических изделий, в частности зависит от процесса вулканизации.

    Многие исследователи связывают интенсивность роста микроорганизмов на резинотехнические изделия с процессами их старения под воздействием внешних факторов (свет, температура, давление, озон, влага). Под их воздействием происходит разрыв макромолекулярных цепей, изменение состава отдельных звеньев и разрушение поверхностного слоя резины. Все это создает благоприятные условия для развития микроорганизмов.

    Исследования процессов микробиологических повреждений оптического стекла показывают, что даже незначительные повреждения поверхности стекол приводит к существенному снижению и даже потере работоспособности оптических приборов, используемых в образцах стрелково-пушечного вооружения.

    Отмечается большая роль в возникновении микробиологических повреждений стекла таких стимулирующих факторов, как загрязнения при изготовлении и эксплуатации оптических приборов, контакты с небиостойкими деталями (прокладки, смазка), с поврежденных участков которых биодеструкторы переносятся на поверхность стекла.

    С пораженных оптических деталей в различных климатических районах идентифицирован весьма разнообразный видовой состав микроскопических грибов: Aspergillus niger, Aspergillus versicolor, Aspergillus oryzae, Aspergillus flavus, Penicillium luteum, Penicillium spinulasum, Penicillium commune, Penicil-Hum citrinum, Penicillium frequentens, Muscor sp. и др., всего 23 вида.

    Зависимость проблемы коррозионных и микробиологических повреждений подчеркивается многими специалистами.

    Надежная работа подземных трубопроводов, ядерных электростанций, авиационной и ракетной техники, электронного оборудования, морских нефтедобывающих платформ и многих других технически сложных объектов зависит от эффективной противокоррозионной защиты и применения современных коррозионно-стойких материалов.

    Сегодня в мире существует лишь 30 % металлофонда, произведенного за всю историю человечества. Остальные миллиарды тонн исчезли, в основном по причине коррозии. Экономисты в разных странах постоянно делают попытки оценить ущерб от коррозии для народного хозяйства. Основными составляющими затрат на защиту от коррозии являются собственно затраты на противокоррозионную защиту, стоимость замены поврежденных коррозией узлов, убытки от отказа оборудования по коррозионным причинам и возможных аварий.

    Общие годовые затраты на борьбу с коррозией в развитых странах оцениваются в 2-4 % от валового национального продукта (рисунок 3) и достигают в год сотен миллионов долларов (рисунок 4).


    Рисунок 3. Годовые затраты на борьбу с коррозией в разных странах (по данным Werkstoffe und Korrosion)

    Убыток, наносимый коррозией народному хозяйству США, оценивается в 300 млрд. долларов в год или 1200 долл. в год на душу населения.

    В настоящее время объем металлофонда стран СНГ превысил 2 млрд. т и составляет четверть всего металлофонда в мире. Прямые потери от коррозии ежегодно составляют, по оценкам специалистов, около 18 млн.т.

    Согласно данным симпозиума по биоповреждениям материалов потери от биокоррозии составляют 15-20% от общих коррозионных потерь, а IV Международный симпозиум микробиологов приписывает микроорганизмам 75% всех потерь от коррозии. Общие потери (прямые и косвенные), в том числе от биокоррозии (отказы, неисправности, ремонты, профилактические работы, а также уменьшение долговечности, надежности и сроков службы изделия), не менее чем в два раза больше прямых потерь металла.

    Мировой ущерб от биоповреждений в 50-х годах оценивался в 2% от объема промышленной продукции, а в 70-х он превысил 5%. От коррозии стальных труб в США, вызываемой сульфатвосстанавливающими бактериями, ущерб оценивается в 2 млрд. долларов в год.


    Рисунок 4. Структура затрат на противокоррозионную защиту

    эксплуатация ракетный артиллерийский вооружение

    Коррозионные и микробиологические повреждения материалов приводят к нежелательным последствиям не только в жизни общества, но и в Вооруженных Силах, поскольку повышение надежности работы образцов вооружения и военной техники, в том числе и стрелково-пушечное вооружение, во многом зависит от мероприятий, осуществляемых по их защите. Из отечественных и зарубежных источников известно, что более 30% отказов вооружения прямо или косвенно обусловлено износом деталей, вызванных как механическим износом, так и процессами коррозии.

    Анализ имеющихся данных о техническом состоянии хранящихся в различных климатических районах изделий стрелково-пушечного вооружения показал, что под воздействием внешних факторов возникают многочисленные повреждения и неисправности задолго до истечения гарантийных сроков хранения. Причиной их появления являются коррозионные и микробиологические повреждения материалов и средств защиты.

    Серьезные проблемы возникают и при нахождении изделий стрелково-пушечного вооружения в странах с тропическим климатом. Так, изделия 2А72, отправленные в составе объектов 688 в ОАЭ, имея основное защитное покрытие - химическое фосфатирование и ускоренное хроматирование с пропиткой клеем БФ-4 с нигрозином марки А не выдержали воздействия климатических условий. Проведенные на АК «Туламашзавод» испытания на грибоустойчивость согласно ГОСТ 9.048-75 показали, что данный вид защитного покрытия не выдерживает воздействия микроорганизмов в условиях тропического климата.

    Долгое время было принято считать, что образцы вооружения и военной техники, в том числе стрелково-пушечное вооружение, после их производства на предприятии-изготовителе практически не подвергаются процессам коррозии и биоповреждений.

    Однако в последнее время установлен целый ряд случаев, когда в ходе проведенного перед отправкой заказчику контроля качества консервации и технического состоянии изделий были выявлены значительные недостатки и отклонения от требований руководящих документов. Так, в ходе осмотра изделий 6П26 на Тульском оружейном заводе было выявлено, что причиной возникновения практически всех повреждений и неисправностей послужило воздействие на материалы вооружения процессов коррозии и биоповреждений.