31.08.2019

Биоповреждения и защита непродовольственных товаров. Микробиологические и коррозионные повреждения материалов и изделий вооружения


Микробиологическая коррозия, или просто биокоррозия, – это процесс коррозионного разрушения металла в условиях воздействия микроорганизмов, к которым относят прокарчоты (бактерии) и зукарчоты (грибы, простейшие).

Биокоррозию следует рассматривать как самостоятельный вид коррозии, хотя она часто протекает совместно с атмосферной, почвенной, в водных растворах или в неэлектролитах, при этом она инициирует и интенсифицирует их.

Микроорганизмы могут непосредственно разрушать материал конструкций, но чаще они стимулируют процессы электрохимической коррозии.

Биоповреждениям подвержены подземные сооружения, оборудование нефтяной промышленности, трубопроводы при контакте с почвой и водными средами, элементы конструкций машин, их лакокрасочные покрытия и т.д. Коррозионные эффекты при участии микроорганизмов аналогичны другим видам коррозии.

Биокоррозию подразделяют на бактериальную, протекающую в водных средах при наличии особого вида бактерий (в почве, воде, продукте), и микологическую (грибную), протекающую в атмосферных условиях, при контакте с почвой, при увлажнении поверхности, при наличии загрязнений, спор, мицелия и продуктов жизнедеятельности грибов. Коррозия возможна при совместном и попеременном действии указанных микроорганизмов, актиномицетов, дрожжей.

Микроорганизмы могут воздействовать на металлы с высокой коррозионной стойкостью: кислотоупорные стали, алюминивые сплавы и др.

Бактериальная коррозия может происходить при 6…40 °С, рН = 1…10 в присутствии органических и неорганических веществ, включающих такие эле-менты, как углерод, сера, азот, фосфор, калий, железо, водород, кислород и др.

Разрушение металла происходит по следующим причинам: непосредственно – микроорганизмы потребляют материалы конструкций в качестве источников питания; косвенно – продукты жизнедеятельности бактерий создают на поверхности металла различные электрохимические концентрационные элементы, в растворе или на поверхности металла образуются агрессивные химические соединения, изменяются электрохимические потенциалы среды в связи с изменением концентрации кислорода в растворе.



Бактерии быстро размножаются и легко приспосабливаются к изменяющимся физическим, химическим и биологическим условиям среды. Они могут адаптивно образовывать ферменты (оксидоредуктазы и гидролазы), необходимые для трансформации питательных сред.

Микроорганизмы, использующие в качестве источника энергии неорга-нические вещества, выделены в особую группу. К ним относятся следующие:

водородные, окисляющие водород с образованием воды;

нитрифицирующие, окисляющие аммиак до азотной кислоты (Nitrosomonas, Nitrobacter);

тионовые, окисляющие сероводород до элементарной серы, или элементарную серу до серной кислоты (Thiobacillus thiooxidans), или сернокислое железо до окисного (Th. Ferroxidans);

железобактерии, окисляющие закисное железо до окисного (Gallionella) в нейтральных средах;

метанообразующие, стимулирующие природный синтез метана из углекислоты и водорода в анаэробных условиях;

сульфатвосстанавливающие (СВБ), жизнедеятельность которых происхо-дит за счет процесса восстановления сульфатов до сероводорода и которые являются основными разрушителями нефти, нефтепродуктов и металлов;

нитратвосстанавливающие, вызывающие в почве процесс денитрофикации – восстановление окисленных форм азота (Thiobaсillus denitrificans).

Обычно в коррозионном процессе участвуют бактерии многих видов, проявляющие свою активность, как правило, в ассоциациях, могущих изменяться под действием различных факторов.

Окислительно-восстановительные процессы в биохимии характеризует показатель rH 2 – отрицательный логарифм давления молекулярного водорода, выражающий степень аэробности. При перенасыщении среды кислородом rH 2 = 41, если среда насыщена водородом, то rH 2 = 0. Равновесие окислительно-восстановительных процессов характеризуется rH 2 = 28. Анаэробы существуют при rH 2 = 8…10; аэробы - rH 2 = 10…30; факультативные анаэробы - rH 2 = 0…30.

Анаэробные условия могут быть созданы деятельностью аэробных бактерий, в природе те или эти существуют совместно. В почве наиболее интенсивная коррозия наблюдается в болотистых местах (рН = 6,8…7,8), насыщенных органическими остатками с пониженным содержанием кислорода. Поверхность конструкций, имеющих значительную протяженность (трубопро-воды), становится анодной по отношению к участкам, контактирующим с более аэрированной почвой, и коррозия ускоряется. В анодных зонах возможно окисление гидрозакиси железа железобактериями.

Электрохимическая коррозия металлов происходит при деполяризации ло-кальных элементов. Установлено, что гидрогенозоактивный штамм сульфатвос-станавливающих бактерий является эффективным катодным деполяризатором при анаэробной коррозии алюминиевых сплавов. На поверхности алюминиевых сплавов образуются вздутия, в которых были обнаружены микроорганизмы в виде бактерий Ps. aerquqinose, a также гриб Cladosprium, создающие анаэроб-ные условия и продуцирующие продукты питания для СВБ. Анаэробная зона под вздутием становится анодом, а зона по краям вздутия – катодом (рис. 5.8).

Рис. 5.8. Схема бактериальной коррозии

алюминия Ps. Aerquqinose и СВБ

Аналогично действие СВБ в отношении сталей:

4Fe 4Fe 2+ + 8e (1) – анодная реакция;

8Н 2 О 8Н + + 8ОН - (2) - анодная реакция;

8Н + + 8е 8Н - (3) - катодная реакция;

SO 4 2- +8Н S 2- +4H 2 O (4) - катодная реакция СВБ;

Fe 2+ + S 2- FeS (5) – продукты коррозии;

3Fe 2+ + 6ОН - 3Fe(ОН 2) - (6) – продукты коррозии;

4Fe 2+ + SO 4 2- +4 Н 2 О FeS + 3Fe(ОН) 2 + 2ОН - (7) – суммарно.

Выпадающий при развитии бактерий сульфид железа также способствует усилению процесса коррозии.

Изучение катодной поляризации стали в бактериальной среде, восстанавливающей сульфаты, показало, что могут существовать два механизма деполяризации: ферментативный и деполяризация катода твердым сульфидом железа.

Исследование кинетики коррозии стали Ст3 в средах, содержащих СВБ и сероводород, также показало, что процесс коррозии стимулируется анодной реакцией при воздействии продуктов жизнедеятельности бактерий. Адгезионная пленка сульфида железа разрыхляется продуктами метаболизма СВБ и таким образом ускоряет процесс коррозии.

Высокая коррозионная активность СВБ связана с интенсификацией катодного процесса, обусловленного потреблением атомарного водорода по важнейшей для микроорганизмов реакции (4). Сульфид-ионы, образующиеся по этой реакции, могут ускорять развитие коррозии. Скорость коррозии существенно возрастает в присутствии элементарной серы, последняя выполняет роль, аналогичную растворенному кислороду в аэрируемых электролитах (рис. 5.9).

Рис. 5.9. Схема бактериальной коррозии стали в присутствии СВБ:

а - катодная реакция; б – анодная реакция

Механизм реакции меняется при переходе от одной фазы развития бактерий к другой. В период развития бактерий происходит деполяризация анодных и катодных процессов. С понижением бактериологического воздейст-вия поляризация вновь увеличивается, и образующийся сульфид железа тормо-зит анодный процесс. Значение рН при этом сдвигается от 7…7,2 до 7,8…8. Дальнейшее превращение сульфидов FeS 1,2,3,4 в Fe 3 S 4 сопровождается большими внутренними напряжениями, приводящими к разрушению пленки сульфидов и обнажению поверхности металла.

Метановые бактерии воздействуют на металл как деполяризаторы по схеме:

деполяризация микробами

СО 2 + 8Н + СН 4 + 2Н 2 О;

продукт коррозии

4Fe 2+ + 8(ОН) - 4Fe(ОН) 2 .

Железо может окисляться гетеротрофами (Serratis mariescens, Salmonela typhimurium) в присутствии нитратов. Гетеротрофы используют водород и восстанавливают нитраты, стимулируя коррозию.

Железобактерии окисляют железо до трехвалентного, участки труб под осадком Fe(OH) 3 в присутствии кислорода становятся анодными, и процесс локальной коррозии ускоряется.

Наибольшее коррозионное повреждение оборудования и сооружений, контактирующих со сточными водами, вызывают тионовые бактерии. Наиболее интенсивной коррозии подвергаются легированные стали типа 12X13Г18Д, 12Х18Н10Т.

В подземной коррозии труб и повреждениях изоляционных покрытий основное участие принимают бактерии. В почве, вблизи поверхности трубопровода, защищенного различными полимерными покрытиями, обнаружены Pleomorphic rods, Pseudomonas acruqinosa, Microccus parabfinae и др.

Исследования показали, что биокоррозия возникает в результате воздействия СВБ. Состав нефтепродуктов, наличие влаги, рН, температура в емкостях способствуют развитию этих микроорганизмов.

Микологическая (грибная) коррозия – это разрушение металлов и покрытий при воздействии агрессивных сред, формирующихся в результате жизнедеятельности микроскопических (несовершенных, плесневых) грибов.

В отличие от бактерий мицелиальные грибы непосредственно коррозию не вызывают. Поражения возникают в процессе жизнедеятельности гриба на нестойких материалах (углеводородном топливе, лакокрасочных материалах органических загрязнениях и др.). Грибному разрушению подвержены металлы, полимерные материалы, лакокрасочные покрытия, нефтепродукты и др.

Порчу топлив вызывает Cladosporium resinae, повреждение полимеров Penicillium, Asperqillus и др. Гриб Cl. resinae является причиной разрушения хранилищ нефтепродуктов. Установлено, что развитие гриба начинается в водной фазе по границе раздела водной фазы и продукта. Содержание воды в нефтепродуктах в концентрации 1:10 4 достаточно для заселения микроорганизмов. Вода в нефтепродуктах накапливается за счет конденсации при их хранении и транспортировке, негерметичности емкостей и др.

Биоповреждения материалов стимулируют коррозию металлов и тем самым снижают прочностные, электроизоляционные и другие свойства металлов.

Если для развития сульфатвосстанавливающих, метанообразующих и железобактерий необходимы специальные условия, то для микрогрибов достаточно незначительного загрязнения и временного повышения влажности воздуха, и на поверхности конструкции образуется колония.

Повреждения грибами имеют характерные признаки и особенности. Грибы не содержат хлорофилла и по способу питания относятся к гетеротрофам, т.е., как и гетеротрофные бактерии, потребляют углерод из готовых органических соединений. Размножение грибов происходит разрастанием гиф и спор.

Основной фактор, способствующий развитию грибов, - вода, которая составляет главную часть клеточного тела гриба. Большое влияние на прорастание спор оказывает температура, интервал жизнедеятельности грибов - 0…+ 45 °С. Некоторые грибы способны развиваться и при более высокой температуре (термофилы) или более низких (психрофилы) температурах.

Особую опасность представляют грибы – продуценты кислот. Они могут стимулировать процессы коррозии. К сильным кислотообразующим грибам относят грибы рода Asperqillus и др.

Развитие микологической коррозии схематично можно подразделить на четыре стадии:

прорастание спор (конидий) или вегетативных элементов гриба с учетом адаптивных возможностей культуры, стимулирующей на первых этапах преимущественно контактный обмен;

развитие мицелия с последующим формированием визуально наблюдаемых колоний гриба; локальное накопление, проявление активности вторичных метаболитов, в частности органических кислот;

развитие коррозионных процессов, разрушающее действие гидролаз и оксидоредуктаз на полимеры, появление градиентов концентрации акцепторов электронов (кислорода);

обильное спорообразование грибов, коррозионные повреждения (локальные или сплошные) резко выражены, на металлах возникает катодная (анодная) деполяризация.

Виды грибов, наиболее часто стимулирующих коррозию: Asperqillus niqer, A. amstelodamii, A. fumiqatus, trichoderma lignorum, Cladosporium herbarum и др.

Несовершенные грибы (аэробные гетеротрофы) стимулируют коррозию металлов следующим образом:

действием органических кислот, продуцируемых грибами по реакциям

действием окисленных ферментов с выделением перекиси водорода, а затем атомарного кислорода при ее разложении

NH 2 O 2 n H 2 O + nO,

MMe + nO Me m O n .

Продукты коррозии, в свою очередь, стимулируют процесс разложения перекиси водорода. Ферменты, выделяемые грибами, - мощный фактор биоповреждений металлоконструкций. К таким ферментам относятся оксидоредуктазы и эстеразы.

Более 50 % коррозионных повреждений техники, эксплуатирующейся в природных условиях, связаны в той или иной степени с воздействием микроорганизмов. Стимулирование электрохимической коррозии происходит из-за появления концентрационных элементов на поверхности конструкций в результате накопления продуктов жизнедеятельности микроорганизмов, повышающих агрессивность среды. При этом происходят разрушение пассивных пленок на металле и деполяризация катодного и (или) анодного процессов. Изменение ЭДС коррозионных элементов приводит к локализации процесса коррозии. Стимулированию локальной коррозии также способствуют неравномерность распределения колоний микроорганизмов, образование сероводорода, сульфидов, ионов гидроксония, гидрат-ионов и так далее в условиях, казалось бы исключающих появление этих соединений.

Постоянная изменчивость микроорганизмов, миграция катодных и анодных фаз, сочетание аэробных и анаэробных процессов приводят к появлению значительных коррозионных эффектов и создают предпосылки к возникновению отказов.

Металлы и металлопокрытия подвержены воздействию микрогрибов, причем обрастанию в различной степени подвержены почти все металлы. Продукты коррозии обнаружены на поверхностях углеродистых и низколегированных сталей, алюминиевых сплавов и латуней, металлопокрытий, избирательно – на высоколегированных сталях.

Отмечены сезонные колебания микрофлоры: зимой доминируют железобактерии, летом – СВБ. В процессах биокоррозии принимают участие также микрогрибы (Cl. resinae), микроводоросли, вступающие в ассоциацию с бактериями.

Повреждения носят локальный характер, глубина их иногда достигает критических величин, приводящих к нарушению герметичности или прочности конструкций.


6. ХАРАКТЕРИСТИКА КОРРОЗИОННОЙ АГРЕССИВНОСТИ

  • Защита войск и населения от отравляющих и аварийно опасных химических веществ
  • Защита временем при контакте с локальной вибрацией, превышающей ПДУ
  • ЗАЩИТА МЕДИЦИНСКИХ ИЗДЕЛИЙ ПРИ ХРАНЕНИИ И ТРАНСПОРТИРОВКЕ
  • Защита прав юридических лиц и индивидуальных предпринимателей при проведении государственного контроля (надзора).
  • Коррозии подвергаются не только металлы, но и материалы ор­ганического и синтетического происхождения. В этом случае го­ворят о микробиологической коррозии, или биокоррозии, разрушающей многие виды промышленных изделий в результате воздействия микроорганизмов. Наболее интенсивно воздействие микро­организмов в условиях тропического климата, т. е. повышенной температуры и влажности. Однако в ряде районов нашей страны (Черноморское побережье Кавказа, Прибалтика) климатические факторы способствуют развитию микробиологической коррозии таких материалов, как дерево, ткани, кожа, картон, бумага и др., хотя и не в такой степени, как в тропиках. Подсчитано, что из общих потерь от коррозии в мировом масштабе на долю биокор­розии приходится 15-20%. Реальные потери, вероятно, значи­тельно больше.

    Главное действующее начало микробиологической коррозии - плесневые грибы, а для некоторых материалов и бактерии. Основ­ной фактор жизнедеятельности плесневых грибов - наличие во­ды. Пониженная температура сдерживает их развитие, однако при наличии воды некоторые виды грибов хорошо растут даже при температуре, близкой к 0°С. Споры плесневых грибов распростра­нены в атмосфере, но особенно много их в поверхностных слоях почвы. Плесень сравнительно легко приспосабливается к различ­ным физическим и химическим условиям среды.

    Источником питания плесени служат материалы, содержащие углерод и азот, но известны плесени, ассимилирующие фенол и каучук. Оптимальная температура для развития всех видов пле­сени находится в пределах 26-30 °С. При повышении или пони­жении температуры их развитие, замедляется. Споровые формы плесневых грибов выносят температуру 100 °С и выше.

    Под воздействием плесени материалы органического происхож­дения разрушаются, а продукты их распада могут вызывать хими­ческую коррозию и металлов. Это особенно опасно для электро­технических изделий (провода с хлопчатобумажной или шелковой оплеткой). В результате микробиологической коррозии резко сни­жается электрическая прочность изоляции и могут возникнуть пробои и короткие замыкания. Известны случаи, когда в резуль­тате микробиологической коррозии полностью нарушалось функ­ционирование механических приборов, например зеркального галь­ванометра.

    Меры защиты от биокоррозии. Наилучшей защитой при хране­нии и эксплуатации изделий служит создание условий, препятст­вующих развитию плесени. Условия эксплуатации изделий меди­цинской техники малоблагоприятны для возникновения плесени, так как изделия во время эксплуатации неоднократно стерили­зуют или подвергают влажной санитарной обработке. В связи с этим благоприятные условия для развития плесени могут появ­ляться главным образом при хранении изделий в складских помещениях. Однако при нормальной температуре хранения и при ульт­рафиолетовом облучении изделие будет надежно защищено от плесени.

    Особенно важно проветривать складские помещения. Если изде­лия влажны, то поток воздуха, даже имеющего большую относи­тельную влажность по сравнению с воздухом помещения, служит защитным фактором. Поток воздуха препятствует оседанию спор на поверхности предметов. Исходя из этого, в условиях хранения, которые записаны в ТУ на изделия медицинской техники, не предусматривается, как правило, специальных мер борьбы с биокоррозией, кроме хранения в сухих, отапливаемых помещениях. В большинстве районов СССР соблюдение указанных выше усло­вий надежно предохраняет изделия от плесневения.

    Читайте также:
    1. Боррелии, общая характеристика. Патогенез, иммунитет при возвратном тифе. Микробиологическая диагностика. Возбудитель боррелиоза Лайма.
    2. Возбудитель коклюша, общая характеристика. Дифференциация с возбудителем паракоклюша. Патогенез, иммунитет. Микробиологическая диагностика. Специфическая профилактика коклюша.
    3. Гонококки, общая характеристика. Механизмы патогенеза и иммунитет. Микробиологическая диагностика острой и хронической гонореи.
    4. Микробиологическая диагностика и биологическая активность почв
    5. Микробиология и ее значение в медицине. Микробиологическая лаборатория. Методы изучения микроорганизмов. Морфология бактерий.
    6. Стрептококки, классификация. Общая характеристика. Факторы патогенности. Антигенная структура. Патогенез, иммунитет, микробиологическая диагностика стрептококковых инфекций.

    Коррозия представляет собой процесс в результате которого разрушается поверхность металла, бетона и других материалов. Коррозия в водной среде представляет собой электрохимический процесс. При этом природные и сточные воды, содержащие достаточно много растворенных солей, выполняют роль коррозионных агентов.

    Сущность электрохимической коррозии состоит в образовании разности потенциалов на отдельных участках границы металл – электролит, что приводит к возникновению электрохимических пар (анодных и катодных участков), между которыми протекает коррозионный ток. При этом на анодных участках разрушается металл в результате перехода ионов металла в раствор:

    Fe – 2e - = Fe 2+

    На катоде в результате присоединения избыточных электронов металла идут реакции восстановления протона (водородная деполяризация):

    2Н + + 2е - = Н 2

    или кислорода (кислородная поляризация):

    ½ О 2 + 2 е - + Н 2 О = 2ОН -

    Эти реакции способствуют ускорению коррозии. Замедляется процесс коррозии при повышении рН.

    Величина электродного потенциала, возникающего на поверхности железа, контактирующего с водой, в значительной степени зависит от концентрации кислорода. В результате даже небольшого различия в степени аэрации на поверхности металла возникают электрохимические пары, называемые парами дифференциальной аэрации. Разница в электродных потенциалах таких пар очень невелика, однако коррозия, вызываемая ими, не меньше, а для железа даже больше, чем от обычных электрохимических пар.

    Биологическая, или микробная, коррозия – процесс разрушения материалов под влиянием грунта или электролитов, ускоренный микроорганизмами. Роль микроорганизмов в процессах коррозии сводится к ускорению деполяризации катода путем ферментативного переноса электронов, выделению коррозионных продуктов обмена и образованию пар дифференциальной аэрации.

    Многие виды бактерий – активные коррозионные агенты. Микроорганизмы обрастаний часто вызывают или усиливают коррозию металлов. Если микроорганизмы выделяют вещества, способные вызывать или усиливать коррозию металла, например кислоты, то разрушение его может происходить на некотором удалении от места массового развития микроорганизмов. Продукты выделения микроорганизмов, например диоксид углерода, могут вызывать коррозию бетона. При транспортировке сточных вод по трубам создаются условия для развития анаэробов, например бактерий, восстанавливающих сульфаты, что сопровождается образованием таких коррозионных агентов, как сероводород. Некоторые виды плесневых грибов (Penicillium, Aspergillus) и актиномииетов вызывают коррозию натурального каучука.

    Коррозия в аэробных условиях

    Коррозия в аэробных условиях возникает при наличии достаточного количества кислорода в воздушном пространстве или в воде (в растворенном виде). Аэробной коррозии подвержены железобетонные и металлические трубопроводы и сооружения из металла и бетона.

    Основные агенты микробной коррозии в данных условиях – серобактерии, тионовые и нитрифицирующие бактерии, железобактерии.

    В результате жизнедеятельности тионовых бактерий в качестве конечного продукта метаболизма выделяется серная кислота

    S 2- + 2O 2 = SO 4 2-

    S 0 + H 2 O + 1,5O 2 = H 2 SO 4

    S 2 O 3 2- + H 2 O + 2O 2 = 2SO 4 2- + 2H +

    SO 3 2- + 0,5O 2 = SO 4 2- ,

    создающая агрессивную среду, которая служит причиной коррозии металла.

    Коррозионность среды при понижении рН объясняется увеличением концентрации ионов Н + , поддерживающих катодную реакцию.

    Однако роль тионовых бактерий в коррозии металла не ограничивается созданием агрессивной среды. Тиобациллы вида Thiobacillus ferrooxidans способны окислять Fe(II) до Fe (III) по реакции:

    4Fe 2+ + 4H + + O 2 = 4Fe 3+ + 2H 2 O.

    Образующееся трехвалентное железо выступает как активный окислитель, способный принимать электроны с поверхности металла

    Fe 3+ + e - = Fe 2+

    и играть роль деполяризатора. Образующееся Fe 2+ снова окисляется тиобациллами. Такой циклический процесс способен постоянно поддерживать коррозию металла.

    С деятельностью тионовых бактерий связано и разрушение бетонных сооружений. Развиваясь на бетонной поверхности, тионовые бактерии снижают рН контактирующей с бетоном воды путем выделения кислоты. В кислой среде защитная пленка карбоната кальция разрушается. Это создает возможность диффузии воды вглубь бетона и растворения его компонентов. Кроме того, продукты жизнедеятельности тионовых бактерий – сульфаты – участвуют в образовании в бетоне так называемой «цементной бациллы» - гидросульфоалюмината кальция 3CaO∙Al 2 O 3 ∙3CaSO 4 ∙31H 2 O. Это соединение способно расширяться в 2 – 2,5 раза, что приводит к разрушению бетона.

    Под действием тионовых бактерий разрушаются не только металлы и бетон, но и сплавы, содержащие серу, а также резина, поскольку в ней после вулканизации содержится сера.

    Нитрифицирующие бактерии могут быть причиной коррозии пористых материалов на основе цемента. Окисляя аммиак, они продуцируют азотную кислоту

    NH 4 + + 2O 2 = NO 2 - + 2H 2 O

    2NO 2 - + O 2 = 2NO 3 - ,

    которая реагирует с СаСО 3 бетона, переводя его в хорошо растворимую форму Ca(NO 3) 2 . В данном случае коррозия бетона проявляется в образовании альвеол или шелушении поверхности бетона.

    С деятельностью железобактерий связывают микробную аэробную коррозию водопроводных труб. Поселяясь в трубах, они образуют на их стенках слизистые скопления, обладающие высокой механической прочностью и поэтому не смываемые током воды. Прочность этих скоплений обусловлена волокнистой структурой оболочек железобактерий.

    Коррозия начинается с появления на внутренней поверхности трубы желтых или темно-коричневых налетов, или каверн, состоящих из гидроксида трехвалентного железа. Каверны возникают, как правило, на неровностях труб. Участки труб под кавернами оказываются изолированными от воды и доступ кислорода к ним затруднен. Напротив, участки омываемые водой, аэрируются хорошо. Таким образом, развитие железобактерий приводит к образованию на поверхности труб зон с различной степенью аэрации. На участках труб покрытых кавернами и свободными от них устанавливаются различные значения электродных потенциалов, что приводит к возникновению коррозионного тока. Участки под кавернами функционируют как аноды. Хорошо аэрируемые участки являются катодами.

    Деятельность железобактерий приводит к окислению Fe(II) в Fe(III) и к его гидролизу

    Fe 3+ + 3H 2 O = Fe(OH) 3 + 3H + .

    Образование Fe(OH) 3 сопровождается снижением рН, т.е. созданием коррозионной среды. Кроме того, в результате интенсивного потребления железобактериями кислорода и роста отложений Fe(OH) 3 анаэробные условия на анодных участках усугубляются, что ведет к увеличению разности потенциалов между катодом и анодом, а следовательно, к ускорению процесса коррозии.

    Коррозия в анаэробных условиях

    Коррозию в анаэробных условиях вызывают сульфатредуцирующие бактерии рода Desulfovibrio , развивающиеся при рН 6,8 – 8 при наличии в среде сульфатов, источников электронов и питания. Будучи строгими анаэробами, эти бактерии часто обнаруживаются в средах, богатых кислородом, где они обитают в ассоциации с аэробными (часто слизеобразующими) бактериями, создающими необходимые условия для анаэробиоза. Молекулярный водород, образующийся на катодных участках, используется данными бактериями для восстановления сульфатов

    SO 4 2- + 5H 2 = H 2 S + 4H 2 O.

    Выделяющийся сероводород способен связывать двухвалентное железо и восстанавливать Fe(OH) 3 с образованием плотного осадка FeS.

    Таким образом, сульфатредуцирующие бактерии способствуют процессу коррозии, ускоряя деполяризацию катода и выделяя коррозионный продукт – сероводород.

    Способы защиты от микробиологической коррозии

    Специальных средств защиты от микробиологической коррозии не существует. Защитные битумные или полимерные покрытия, а также защитные пленки обеспечивают изоляцию металлической поверхности от воды, а следовательно, и от микробного воздействия. В некоторых случаях используются бактерицидные или бактериостатические вещества. Например, эффективным бактериостатом для сульфатредуцирующих бактерий служит кислород, поэтому усиление аэрации способствует замедлению коррозии, вызванной сульфатредуцирующими бактериями. Как мера предотвращения коррозии этого типа может быть использовано подщелачивание среды (когда это возможно), так как рост и развитие сульфатредуцирующих бактерий полностью подавляются при рН>9.


    | | | | | | 7 |

    Биологическое поражение оптических стекол вызывается в ос­новном разрастанием мицелия плесневых грибов. Подавляющее большинство отечественных оптических стекол подвержено обрастанию, хотя поверхность оптических стекол полирована и не имеет органических веществ, способствующих развитию грибов.

    В годы Второй мировой войны в странах влажного тропическо­го климата на поверхности многих оптических деталей часто от­мечали интенсивное разрастание плесневых грибов. Однако даже в умеренном климате обнаруживают слой мицелия грибов на по­верхности линз и призм приборов, хранящихся на складе.

    Основными биоповреждающими агентами оптических деталей являются мицелиальные грибы, особенно опасные в условиях по­вышенной влажности воздуха и температуры, хотя при этом от­мечались отдельные массовые повреждения оптических деталей плесневыми грибами и в условиях умеренного климата.

    Установлено, что оптимальными условиями для развития плес­невых грибов на поверхности оптических стекол являются повы­шенная относительная влажность воздуха (свыше 90 %), темпера­тура (28 ± 2) °С, наличие в окружающей среде органических и не­органических частиц и другие факторы. Обрастание плесневыми грибами оптических деталей может происходить за счет питатель­ных веществ, содержащихся в самих спорах, а также за счет про­дуктов выщелачивания стекла, даже при отсутствии каких-либо органических частиц на его поверхности. Так, при испытании на биостойкость образцов из полированного кварца после их тща­тельной промывки наблюдалось довольно интенсивное разраста­ние комплекса мицелиальных грибов со спороношением.

    Биоразрушение оптических стекол может происходить в ре­зультате воздействия на них выделяемых микроорганизмами орга­нических кислот, окислительных ферментов, а также перекиси водорода, которая при разложении выделяет атомарный кисло­род, способствующий окислению субстрата.

    На поверхности оптических деталей плесневые грибы не только развиваются, но и разрушают поверхностные слои стекла. После сня­тия мицелия грибов во многих случаях обнаруживаются повторяю­щие его рисунок канавки, образованные выделениями продуктов жизнедеятельности. Стекло может быть настолько разрушено, что дефект возможно устранить только с помощью шлифовки и перепо­лировки поверхности, для чего необходимо разбирать весь прибор.

    Как просветляющие покрытия, так и покрытия, защищающие просветляющие слои от воздействия влаги воздуха, нанесенные на поверхность оптических стекол химическими и физическими методами, подвержены обрастанию. Даже при слабом развитии грибов на поверхности оптических деталей коэффициент свето-пропускания уменьшается на 26 %, а коэффициент светорассея­ния увеличивается в 5,2 раза.

    Имеется мнение, что споры плесневых грибов заносятся в при­боры во время их сборки, и, попадая в условия теплого влажного климата, разрастаются. Не исключено, что споры попадают в приборы при эксплуатации в результате их негерметичности. Часто споры попадают в приборы из чехлов, пораженных плесенью.

    Развитие спор грибов зависит от наличия питательной среды, микроскопических загрязнений, пыли, замазок, лаков и смазок, адсорбированных на оптических плоскостях.

    Различными исследователями на оптических деталях обнару­жено более 40 видов плесневых грибов, большинство из которых относится к родам: Aspergillus, Chaetoumium, Penicillium, Rhizopus.

    Плесневые грибы нарушают работу оптических деталей не толь­ко скоплениями спор и разросшимся мицелием, но и попутными явлениями. В период развития плесневые грибы содержат более 90 % воды, кроме того, они сильно гигроскопичны и притягива­ют из атмосферы большое количество влаги, вызывающее силь­ное рассеяние света. В результате выделения грибами кислых про­дуктов обмена (койевой, итаконовой, лимонной, щавелевой и других кислот) происходит коррозия поверхности стекла. Степень такой коррозии зависит, прежде всего, от кислотоустойчивости стекла, длительности действия плесени на стекло и агрессивнос­ти атмосферы. Установлено, что оптические стекла, химически устойчивые к влаге воздуха, поражаются плесневыми грибами в большей степени, чем стекла, неустойчивые к влажной атмосфе­ре. Объясняется это подщелачиванием поверхности стекла в ре­зультате воздействия влаги воздуха. Было также отмечено, что оте­чественные оптические стекла по степени обрастания плесневы­ми грибами могут быть разделены на три группы: неустойчивые, малоустойчивые, устойчивые.

    По наблюдениям специалистов, работающих с оптическими приборами, последние плесневеют в условиях повышенной влаж­ности и температуры значительно сильнее в полевых условиях, чем при испытаниях в тропической камере. Объясняется это тем, что в приборы при их эксплуатации в большей степени проника­ют влага, пыль и загрязнения. Больше всего плесневеют приборы со сменными объективами, поскольку они сильнее пылятся.

    Колебания температуры, атмосферного давления, а также наве­дение на фокус и изменение диоптрий - способствуют возникно­вению разницы в давлении между внутренним пространством при­бора и окружающим прибор воздухом. И хотя эта разница большей частью достигает лишь долей атмосферы, она вызывает токи возду­ха через неплотные контакты и щели в приборе, что приводит к так называемому «дыханию» прибора. Тем самым создается воз­можность проникновения влаги. Изготавливать воздухонепрони­цаемые оптические системы достаточно дорого, хотя на заводе фирмы «Цейсе» в Йене делались попытки создания некоторых пол­ностью герметизированных оптических приборов. Неплотные кон­такты в оптических системах сильно затрудняют эффективное при­менение разных высушивающих препаратов, например, силикагеля или гигроскопической бумаги путем закладки их внутрь прибора. По-видимому, целесообразно для удлинения срока службы в тро­пиках хранить приборы в нерабочее время в эксикаторе над осу­шающими агентами.

    Оптический прибор является сложным объектом исследования устойчивости к обрастаниям, так как состоит из различных мате­риалов. Корпуса таких приборов обычно изготовлены из металла, пластмассы; широко используются эмали, лакокрасочные покры­тия, смазки, замазки, клеи. Для хранения и перевозки употребля­ются кожаные футляры, нитки, войлок, бумага, картон, дере­вянные ящики. Все эти материалы, в том числе и силикатные оп­тические стекла, поражают микроорганизмы.

    Самым эффективным способом защиты от появления грибов является устранение условий, необходимых для их роста: повы­шенных влажности, температуры, а также веществ, служащих для них питанием. Поэтому при сборке приборов требуется соблюде­ние особой чистоты, не допускается применение поражаемых гри­бами материалов. Необходима специальная химическая защита оптических приборов. В период их хранения возможно примене­ние специальной упаковочной бумаги, пропитанной летучими фунгицидами, например, хроматциклогексиламином.

    Также возможно применение антимикробных волокон как средств защиты оптических деталей от биологических обрастаний.

    Для стабильной и надежной защиты оптических поверхностей применяют специальные покрытия, содержащие ртутные соеди­нения и не влияющие на оптические свойства стекла. В настоящее время еще не найдены летучие фунгицидные вещества длитель­ного действия, которые защищали бы от возникновения всех плес­невых налетов. Цель исследований в области микробиологической коррозии оптических систем - изыскание пригодных фунгицидных веществ с наиболее экономичным способом применения в оптических приборах для эффективной и долгосрочной защиты многослойных оптических площадей от образований биологичес­кого налета.


    Заключение

    Исследования повреждаемости сырья, материалов и изделий микроорганизмами, насекомыми и грызунами, способов защиты товаров от биоповреждений играют важную роль в решении про­блемы повышения качества, надежности и долговечности про­дукции как в условиях хранения, так и в процессе производства, транспортировки и при эксплуатации.

    Повреждая тару, упаковку, складские помещения, портя хра­нящиеся в них товары живые организмы наносят значительный ущерб. Только учтенные потери от биоповреждений материалов достигают 3 % от объема их производства. На долю микроорганиз­мов приходится около 40 % от общего числа биологических по­вреждений.

    Широкий круг специалистов - биологи, химики, материало­веды, технологи, товароведы и другие участвуют в решении про­блемы биоповреждений. Подготовка товароведов предполагает все­стороннее изучение факторов, влияющих на формирование и со­хранение качества товаров. Биоповреждения рассматриваются как один из таких факторов.

    В настоящее время координацию работ по исследованию воп­росов, связанных с изучением биоповреждений, в нашей стра­не с 1967 г. проводит Научный совет по биоповреждениям РАН. В международном масштабе такие функции осуществляет Меж­дународное общество по биоповреждениям со штаб-квартирой в Астоновском университете в Англии.


    От англ. lag - отставание, запаздывание.

    Лугаускас А. Ю., Микулъскеке А. И., Шляужене Д. Ю. Каталог микромицетов - биодеструкторов материалов. - М.: Наука, 1987.

    Примечание. 4 1 -трызуны использовали материалы для устройства гнезд.

    Микробиологическая коррозия, или просто биокоррозия, – это процесс коррозионного разрушения металла в условиях воздействия микроорганизмов, к которым относят прокарчоты (бактерии) и зукарчоты (грибы, простейшие).

    Биокоррозию следует рассматривать как самостоятельный вид коррозии, хотя она часто протекает совместно с атмосферной, почвенной, в водных растворах или в неэлектролитах, при этом она инициирует и интенсифицирует их.

    Микроорганизмы могут непосредственно разрушать материал конструкций, но чаще они стимулируют процессы электрохимической коррозии.

    Биоповреждениям подвержены подземные сооружения, оборудование нефтяной промышленности, трубопроводы при контакте с почвой и водными средами, элементы конструкций машин, их лакокрасочные покрытия и т.д. Коррозионные эффекты при участии микроорганизмов аналогичны другим видам коррозии.

    Биокоррозию подразделяют на бактериальную, протекающую в водных средах при наличии особого вида бактерий (в почве, воде, продукте), и микологическую (грибную), протекающую в атмосферных условиях, при контакте с почвой, при увлажнении поверхности, при наличии загрязнений, спор, мицелия и продуктов жизнедеятельности грибов. Коррозия возможна при совместном и попеременном действии указанных микроорганизмов, актиномицетов, дрожжей.

    Микроорганизмы могут воздействовать на металлы с высокой коррозионной стойкостью: кислотоупорные стали, алюминивые сплавы и др.

    Бактериальная коррозия может происходить при 6…40 С, рН = 1…10 в присутствии органических и неорганических веществ, включающих такие эле-менты, как углерод, сера, азот, фосфор, калий, железо, водород, кислород и др.

    Разрушение металла происходит по следующим причинам: непосредственно – микроорганизмы потребляют материалы конструкций в качестве источников питания; косвенно – продукты жизнедеятельности бактерий создают на поверхности металла различные электрохимические концентрационные элементы, в растворе или на поверхности металла образуются агрессивные химические соединения, изменяются электрохимические потенциалы среды в связи с изменением концентрации кислорода в растворе.

    Бактерии быстро размножаются и легко приспосабливаются к изменяющимся физическим, химическим и биологическим условиям среды. Они могут адаптивно образовывать ферменты (оксидоредуктазы и гидролазы), необходимые для трансформации питательных сред.

    Микроорганизмы, использующие в качестве источника энергии неорга-нические вещества, выделены в особую группу. К ним относятся следующие:

    водородные, окисляющие водород с образованием воды;

    нитрифицирующие, окисляющие аммиак до азотной кислоты (Nitrosomonas, Nitrobacter);

    тионовые, окисляющие сероводород до элементарной серы, или элементарную серу до серной кислоты (Thiobacillus thiooxidans), или сернокислое железо до окисного (Th. Ferroxidans);

    железобактерии, окисляющие закисное железо до окисного (Gallionella) в нейтральных средах;

    метанообразующие, стимулирующие природный синтез метана из углекислоты и водорода в анаэробных условиях;

    сульфатвосстанавливающие (СВБ), жизнедеятельность которых происхо-дит за счет процесса восстановления сульфатов до сероводорода и которые являются основными разрушителями нефти, нефтепродуктов и металлов;

    нитратвосстанавливающие, вызывающие в почве процесс денитрофикации – восстановление окисленных форм азота (Thiobaсillus denitrificans).

    Обычно в коррозионном процессе участвуют бактерии многих видов, проявляющие свою активность, как правило, в ассоциациях, могущих изменяться под действием различных факторов.

    Окислительно-восстановительные процессы в биохимии характеризует показатель rH 2 – отрицательный логарифм давления молекулярного водорода, выражающий степень аэробности. При перенасыщении среды кислородом rH 2 = 41, если среда насыщена водородом, то rH 2 = 0. Равновесие окислительно-восстановительных процессов характеризуется rH 2 = 28. Анаэробы существуют при rH 2 = 8…10; аэробы - rH 2 = 10…30; факультативные анаэробы - rH 2 = 0…30.

    Анаэробные условия могут быть созданы деятельностью аэробных бактерий, в природе те или эти существуют совместно. В почве наиболее интенсивная коррозия наблюдается в болотистых местах (рН = 6,8…7,8), насыщенных органическими остатками с пониженным содержанием кислорода. Поверхность конструкций, имеющих значительную протяженность (трубопро-воды), становится анодной по отношению к участкам, контактирующим с более аэрированной почвой, и коррозия ускоряется. В анодных зонах возможно окисление гидрозакиси железа железобактериями.

    Электрохимическая коррозия металлов происходит при деполяризации ло-кальных элементов. Установлено, что гидрогенозоактивный штамм сульфатвос-станавливающих бактерий является эффективным катодным деполяризатором при анаэробной коррозии алюминиевых сплавов. На поверхности алюминиевых сплавов образуются вздутия, в которых были обнаружены микроорганизмы в виде бактерий Ps. aerquqinose, a также гриб Cladosprium, создающие анаэроб-ные условия и продуцирующие продукты питания для СВБ. Анаэробная зона под вздутием становится анодом, а зона по краям вздутия – катодом (рис. 5.8).

    Рис. 5.8. Схема бактериальной коррозии

    алюминия Ps. Aerquqinose и СВБ

    Аналогично действие СВБ в отношении сталей:

    4Fe 4Fe 2+ + 8e (1) – анодная реакция;

    8Н 2 О 8Н + + 8ОН - (2) - анодная реакция;

    8Н + + 8е 8Н - (3) - катодная реакция;

    SO 4 2- +8Н S 2- +4H 2 O (4) - катодная реакция СВБ;

    Fe 2+ + S 2- FeS (5) – продукты коррозии;

    3Fe 2+ + 6ОН - 3Fe(ОН 2) - (6) – продукты коррозии;

    4Fe 2+ + SO 4 2- +4 Н 2 О FeS + 3Fe(ОН) 2 + 2ОН - (7) – суммарно.

    Выпадающий при развитии бактерий сульфид железа также способствует усилению процесса коррозии.

    Изучение катодной поляризации стали в бактериальной среде, восстанавливающей сульфаты, показало, что могут существовать два механизма деполяризации: ферментативный и деполяризация катода твердым сульфидом железа.

    Исследование кинетики коррозии стали Ст3 в средах, содержащих СВБ и сероводород, также показало, что процесс коррозии стимулируется анодной реакцией при воздействии продуктов жизнедеятельности бактерий. Адгезионная пленка сульфида железа разрыхляется продуктами метаболизма СВБ и таким образом ускоряет процесс коррозии.

    Высокая коррозионная активность СВБ связана с интенсификацией катодного процесса, обусловленного потреблением атомарного водорода по важнейшей для микроорганизмов реакции (4). Сульфид-ионы, образующиеся по этой реакции, могут ускорять развитие коррозии. Скорость коррозии существенно возрастает в присутствии элементарной серы, последняя выполняет роль, аналогичную растворенному кислороду в аэрируемых электролитах (рис. 5.9).

    Рис. 5.9. Схема бактериальной коррозии стали в присутствии СВБ:

    а - катодная реакция;б – анодная реакция

    Механизм реакции меняется при переходе от одной фазы развития бактерий к другой. В период развития бактерий происходит деполяризация анодных и катодных процессов. С понижением бактериологического воздейст-вия поляризация вновь увеличивается, и образующийся сульфид железа тормо-зит анодный процесс. Значение рН при этом сдвигается от 7…7,2 до 7,8…8. Дальнейшее превращение сульфидов FeS 1,2,3,4 в Fe 3 S 4 сопровождается большими внутренними напряжениями, приводящими к разрушению пленки сульфидов и обнажению поверхности металла.

    Метановые бактерии воздействуют на металл как деполяризаторы по схеме:

    деполяризация микробами

    СО 2 + 8Н + СН 4 + 2Н 2 О;

    продукт коррозии

    4Fe 2+ + 8(ОН) - 4Fe(ОН) 2 .

    Железо может окисляться гетеротрофами (Serratis mariescens, Salmonela typhimurium) в присутствии нитратов. Гетеротрофы используют водород и восстанавливают нитраты, стимулируя коррозию.

    Железобактерии окисляют железо до трехвалентного, участки труб под осадком Fe(OH) 3 в присутствии кислорода становятся анодными, и процесс локальной коррозии ускоряется.

    Наибольшее коррозионное повреждение оборудования и сооружений, контактирующих со сточными водами, вызывают тионовые бактерии. Наиболее интенсивной коррозии подвергаются легированные стали типа 12X13Г18Д, 12Х18Н10Т.

    В подземной коррозии труб и повреждениях изоляционных покрытий основное участие принимают бактерии. В почве, вблизи поверхности трубопровода, защищенного различными полимерными покрытиями, обнаружены Pleomorphic rods, Pseudomonas acruqinosa, Microccus parabfinae и др.

    Исследования показали, что биокоррозия возникает в результате воздействия СВБ. Состав нефтепродуктов, наличие влаги, рН, температура в емкостях способствуют развитию этих микроорганизмов.

    Микологическая (грибная) коррозия – это разрушение металлов и покрытий при воздействии агрессивных сред, формирующихся в результате жизнедеятельности микроскопических (несовершенных, плесневых) грибов.

    В отличие от бактерий мицелиальные грибы непосредственно коррозию не вызывают. Поражения возникают в процессе жизнедеятельности гриба на нестойких материалах (углеводородном топливе, лакокрасочных материалах органических загрязнениях и др.). Грибному разрушению подвержены металлы, полимерные материалы, лакокрасочные покрытия, нефтепродукты и др.

    Порчу топлив вызывает Cladosporium resinae, повреждение полимеров Penicillium, Asperqillus и др. Гриб Cl. resinae является причиной разрушения хранилищ нефтепродуктов. Установлено, что развитие гриба начинается в водной фазе по границе раздела водной фазы и продукта. Содержание воды в нефтепродуктах в концентрации 1:10 4 достаточно для заселения микроорганизмов. Вода в нефтепродуктах накапливается за счет конденсации при их хранении и транспортировке, негерметичности емкостей и др.

    Биоповреждения материалов стимулируют коррозию металлов и тем самым снижают прочностные, электроизоляционные и другие свойства металлов.

    Если для развития сульфатвосстанавливающих, метанообразующих и железобактерий необходимы специальные условия, то для микрогрибов достаточно незначительного загрязнения и временного повышения влажности воздуха, и на поверхности конструкции образуется колония.

    Повреждения грибами имеют характерные признаки и особенности. Грибы не содержат хлорофилла и по способу питания относятся к гетеротрофам, т.е., как и гетеротрофные бактерии, потребляют углерод из готовых органических соединений. Размножение грибов происходит разрастанием гиф и спор.

    Основной фактор, способствующий развитию грибов, - вода, которая составляет главную часть клеточного тела гриба. Большое влияние на прорастание спор оказывает температура, интервал жизнедеятельности грибов - 0…+ 45 С. Некоторые грибы способны развиваться и при более высокой температуре (термофилы) или более низких (психрофилы) температурах.

    Особую опасность представляют грибы – продуценты кислот. Они могут стимулировать процессы коррозии. К сильным кислотообразующим грибам относят грибы рода Asperqillus и др.

    Развитие микологической коррозии схематично можно подразделить на четыре стадии:

    прорастание спор (конидий) или вегетативных элементов гриба с учетом адаптивных возможностей культуры, стимулирующей на первых этапах преимущественно контактный обмен;

    развитие мицелия с последующим формированием визуально наблюдаемых колоний гриба; локальное накопление, проявление активности вторичных метаболитов, в частности органических кислот;

    развитие коррозионных процессов, разрушающее действие гидролаз и оксидоредуктаз на полимеры, появление градиентов концентрации акцепторов электронов (кислорода);

    обильное спорообразование грибов, коррозионные повреждения (локальные или сплошные) резко выражены, на металлах возникает катодная (анодная) деполяризация.

    Виды грибов, наиболее часто стимулирующих коррозию: Asperqillus niqer, A. amstelodamii, A. fumiqatus, trichoderma lignorum, Cladosporium herbarum и др.

    Несовершенные грибы (аэробные гетеротрофы) стимулируют коррозию металлов следующим образом:

    действием органических кислот, продуцируемых грибами по реакциям

    mMe mMe n+ + ne;

    mMe n+ + n(A n - H +) nH 2 O Me m (A n -) n + nH 3 O + ;

    nH 3 O + + ne nH 2 O + (n/2)H 2 

    Органические кислоты, продуцируемые грибами, повышают агрессивность среды, стимулируя процессы коррозии металлов и деструкцию полимеров, и служат источником углерода для дальнейшего развития микроорганизмов;

    действием щелочной среды, создаваемой грибами

    Аl Al 3+ + 3e,

    Al 3+ + 3OH - AlO 2 - +H 3 O + Аl(OH) 3

    AlO 2 - + Me + MeAlO 2 ,

    H 3 O + + e H 2 O + 1/2H 2 ,

    2 Аl(OH) 3 Al 2 O 3 +3 H 2 O;

    действием окисленных ферментов с выделением перекиси водорода, а затем атомарного кислорода при ее разложении

    nH 2 O 2 n H 2 O + nO,

    mMe + nO Me m O n .

    Продукты коррозии, в свою очередь, стимулируют процесс разложения перекиси водорода. Ферменты, выделяемые грибами, - мощный фактор биоповреждений металлоконструкций. К таким ферментам относятся оксидоредуктазы и эстеразы.

    Более 50 % коррозионных повреждений техники, эксплуатирующейся в природных условиях, связаны в той или иной степени с воздействием микроорганизмов. Стимулирование электрохимической коррозии происходит из-за появления концентрационных элементов на поверхности конструкций в результате накопления продуктов жизнедеятельности микроорганизмов, повышающих агрессивность среды. При этом происходят разрушение пассивных пленок на металле и деполяризация катодного и (или) анодного процессов. Изменение ЭДС коррозионных элементов приводит к локализации процесса коррозии. Стимулированию локальной коррозии также способствуют неравномерность распределения колоний микроорганизмов, образование сероводорода, сульфидов, ионов гидроксония, гидрат-ионов и так далее в условиях, казалось бы исключающих появление этих соединений.

    Постоянная изменчивость микроорганизмов, миграция катодных и анодных фаз, сочетание аэробных и анаэробных процессов приводят к появлению значительных коррозионных эффектов и создают предпосылки к возникновению отказов.

    Металлы и металлопокрытия подвержены воздействию микрогрибов, причем обрастанию в различной степени подвержены почти все металлы. Продукты коррозии обнаружены на поверхностях углеродистых и низколегированных сталей, алюминиевых сплавов и латуней, металлопокрытий, избирательно – на высоколегированных сталях.

    Отмечены сезонные колебания микрофлоры: зимой доминируют железобактерии, летом – СВБ. В процессах биокоррозии принимают участие также микрогрибы (Cl. resinae), микроводоросли, вступающие в ассоциацию с бактериями.

    Повреждения носят локальный характер, глубина их иногда достигает критических величин, приводящих к нарушению герметичности или прочности конструкций.

    6. ХАРАКТЕРИСТИКА КОРРОЗИОННОЙ АГРЕССИВНОСТИ

    СРЕД В ТРУБОПРОВОДНОМ ТРАНСПОРТЕ НЕФТИ И ГАЗА