26.09.2019

Химическая коррозия. Электрохимическая коррозия – почему разрушаются металлы


Химическая коррозия - это вид коррозионного разрушения металла, связанный с взаимодействием металла и коррозионной среды, при котором одновременно окисляется металл и происходит восстановление коррозионной среды. Химическая не связана с образованием, а также воздействием электрического тока.

Движущей силой (первопричиной) химической коррозии является термодинамическая неустойчивость металлов. Они могут самопроизвольно переходить в более устойчивое состояние в результате процесса:

Металл + Окислительный компонент среды = Продукт реакции

При этом термодинамический потенциал системы уменьшается.

По знаку изменения термодинамического потенциала можно определить возможность самопроизвольного протекания химической коррозии. Критерием обычно служит изобарно-изотермический потенциал G. При самопроизвольном протекании химического процесса наблюдается убыль изобарно-изотермического потенциала. Поэтому, если:

Δ G Т < 0, то процесс химической коррозии возможен;

Δ G Т > 0, то процесс химической коррозии невозможен;

Δ G Т = 0, то система находится в равновесии.

К химической коррозии относятся :

Газовая коррозия - коррозионное разрушение под воздействием газов при высоких температурах;

Коррозия в жидкостях-неэлектролитах.

Газовая коррозия

Газовая коррозия - наиболее распространенный вид химической коррозии. При высоких температурах поверхность металла под воздействием газов разрушается. Это явление наблюдается в основном в металлургии (оборудование для горячей прокатки, ковки, штамповки, детали двигателей внутреннего сгорания и др.)

Самый распространенный случай химической коррозии – взаимодействие металла с кислородом. Процесс протекает по реакции:

Ме + 1/2О 2 - МеО

Направление этой реакции (окисления) определяется парциальным давлением кислорода в смеси газов (pО2) и давлением диссоциации паров оксида при определенной температуре (рМеО).

Эта химическая реакция может протекать тремя путями:

1) pО 2 = рМеО, реакция равновесная;

2) pО 2 > рМеО, реакция сдвинута в сторону образования оксида;

3) pО 2 < рМеО, оксид диссоциирует на чистый металл и оксид, реакция протекает в обратном направлении.

Зная парциальное давление кислорода газовой смеси и давление диссоциации оксида можно определить интервал температур, при которых термодинамически возможно протекание данной реакции.

Скорость протекания газовой коррозии определяется несколькими факторами: температуры окружающей среды, природы металла или состава сплава, характера газовой среды, времени контакта с газовой средой, от свойств продуктов коррозии.

Процесс химической коррозии во многом зависит от характера и свойств образовавшейся на поверхности оксидной пленки.

Процесс появления на поверхности оксидной пленки можно условно разделить на две стадии:

На поверхности металла, которая непосредственно контактирует с атмосферой, адсорбируются молекулы кислорода;

Металл взаимодействует с газом с образованием химического соединения.

На первой стадии между поверхностными атомами и кислородом возникает ионная связь: атом кислорода забирает у металла два электрона. При этом возникает очень сильная связь, намного сильнее, чем связь кислорода с металлом в окисле. Возможно это явление наблюдается из-за действия на кислород поля, создаваемого атомами металла. После полного насыщения поверхности окислителем, что происходит почти мгновенно, при низких температурах за счет ванн-дер-вальсовых сил может наблюдаться и физическая адсорбция молекул окислителя.

В результате образуется очень тонкая мономолекулярная защитная пленка, которая со временем утолщается, затрудняя подход кислорода.

На второй стадии, из-за химического взаимодействия, окислительный компонент среды отнимает у металла валентные электроны и с ним же реагирует, образуя продукт коррозии.

Если образовавшаяся оксидная пленка будет обладать хорошими защитными свойствами - она будет тормозить дальнейшее развитие процесса химической коррозии. Кроме того, оксидная пленка очень сильно влияет на жаростойкость металла.

Существует три вида пленок, которые могут образоваться:

Тонкие (невидимые невооруженным глазом);

Средние (дают цвета побежалости);

Толстые (хорошо видны).

Чтобы оксидная пленка была защитной, она должна отвечать некоторым требованиям: не иметь пор, быть сплошной, хорошо сцепляться с поверхностью, быть химически инертной по отношении к окружающей ее среде, иметь высокую твердость, быть износостойкой.

Если пленка рыхлая и пористая, кроме того имеет еще плохое сцепление с поверхностью - она не будет обладать защитными свойствами.

Существует условие сплошности, которое формулируется так: молекулярный объем оксидной пленки должен быть больше атомного объема металла .

Сплошность - способность окисла покрывать сплошным слоем всю поверхность металла.

Если это условие соблюдается, то пленка сплошная и, соответственно, защитная.

Но есть металлы, для которых условие сплошности не является показателем. К ним относятся все щелочные, щелочно-земельные (кроме бериллия), даже магний, который важен в техническом плане.

Для определения толщины образовавшейся на поверхности оксидной пленки, изучения ее защитных свойств применяют множество методов. Защитную способность пленки могут определять во время ее формирования, по скорости окисления металла и характеру изменения скорости во времени. Если окисел уже сформировался, целесообразно исследовать толщину и защитные его свойства, нанося на поверхность какой-нибудь подходящий для этого случая реагент (например раствор Cu(NO3)2, который применяется для железа). По времени проникновения реагента к поверхности можно определить толщину пленки.

Даже уже образовавшаяся сплошная пленка не прекращает своего взаимодействия с металлом и окислительной средой.

Влияние внешних и внутренних факторов на скорость протекания химической коррозии.

На скорость химической коррозии очень сильное влияние оказывает температура. При ее повышении процессы окисления идут намного быстрее. При этом уменьшение термодинамической возможности протекания реакции не имеет никакого значения.

Особенно сильно влияет переменный нагрев и охлаждение. В защитной пленке вследствие появления термических напряжений образуются трещины. Сквозь трещины окислительный компонент среды имеет непосредственный доступ к поверхности. Формируется новая оксидная пленка, а старая - постепенно отслаивается.

Большую роль в процессе коррозии играет состав газовой среды. Но это индивидуально для каждого металла и изменяется с колебаниям температур. Например, медь очень быстро корродирует в атмосфере кислорода, но устойчива в среде, содержащей SO 2 . Никель же наоборот, интенсивно корродирует при контакте с атмосферой SO 2 , но устойчив в средах O 2 , CO 2 и H 2 O. Хром относительно устойчив во всех четырех средах.

Если давление диссоциации окисла выше давления окисляющего компонента - окисление металла прекращается, он становится термодинамически устойчивым.

Скорость окисления зависит от состава сплава. Возьмем, к примеру, железо. Добавки серы, марганца, фосфора и никеля не влияют на его окисление. Кремний, хром, алюминий - замедляют процесс. А бериллий, кобальт, титан и медь очень сильно тормозят окисление. При высоких температурах интенсифицировать процесс могут вольфрам, молибден, а также ванадий. Это объясняется летучестью или легкоплавкостью их окислов.

Наблюдая за скоростью окисления железа при различных температурах, отметим что с увеличением температуры самое медленное окисление наблюдается при аустенитной структуре. Она является наиболее жаростойкой, по сравнению с другими.

На скорость протекания химической коррозии влияет и характер обработки поверхности. Если поверхность гладкая, то она окисляется немного медленнее, чем бугристая поверхность с дефектами.

Химическая коррозия в жидкостях-неэлектролитах

Жидкости-неэлектролиты - это жидкие среды, которые не являются проводниками электричества. К ним относятся: органические (бензол, фенол, хлороформ, спирты, керосин, нефть, бензин); неорганического происхождения (жидкий бром, расплавленная сера и т.д.). Чистые неэлектролиты не реагируют с металлами, но с добавлением даже незначительного количества примесей процесс взаимодействия резко ускоряется. Например, если нефть будет содержать серу или серосодержащие соединения (сероводород, меркаптаны) процесс химической коррозии ускоряется. Если вдобавок увеличится температура, в жидкости окажется растворенный кислород - химическая коррозия усилится.

Присутствие в жидкостях-неэлектролитах влаги обеспечивает интенсивное протекание коррозии уже по электрохимическому механизму.

Химическая коррозия в жидкостях-неэлектролитах подразделяется на несколько стадий:

Подход окислителя к поверхности металла;

Хемосорбция реагента на поверхности;

Реакция окислителя с металлом (образование оксидной пленки);

Десорбция оксидов с металлом (может отсутствовать);

Диффузия оксидов в неэлектролит (может отсутствовать).

Для защиты конструкций от химической коррозии в жидкостях-неэлектролитах на ее поверхность наносят покрытия, устойчивые в данной среде.

Электрохимическая коррозия - самый распространенный вид коррозии. Электрохимическая возникает при контакте металла с окружающей электролитически проводящей средой. При этом восстановление окислительного компонента коррозионной среды протекает не одновременно с ионизацией атомов металла и от электродного потенциала металла зависят их скорости. Первопричиной электрохимической коррозии является термодинамическая неустойчивость металлов в окружающих их средах. Ржавление трубопровода, обивки днища морского суда, различных металлоконструкций в атмосфере - это, и многое другое, примеры электрохимической коррозии.

К электрохимической коррозии относятся такие виды местных разрушений, как питтинги , межкристаллитная коррозия , щелевая . Кроме того процессы электрохимической коррозии происходят в грунте , атмосфере , море .

Механизм электрохимической коррозии может протекать по двум вариантам:

1) Гомогенный механизм электрохимической коррозии:

Поверхностный слой мет. рассматривается как гомогенный и однородный;

Причиной растворения металла является термодинамическая возможность протекания катодного или же анодного актов;

К и А участки мигрируют по поверхности во времени;

Скорость протекания электрохимической коррозии зависит от кинетического фактора (времени);

Однородную поверхность можно рассматривать как предельный случай, который может быть реализован и в жидких металлах.

2) Гетерогенный механизм электрохимической коррозии:

У твердых металлов поверхность негомогенная, т.к. разные атомы занимают в сплаве различные положения в кристаллической решетке;

Гетерогенность наблюдается при наличии в сплаве инородных включений.

Электрохимическая коррозия имеет некоторые особенности: делится на два одновременно протекающих процесса (катодный и анодный), которые кинетически зависимы друг от друга; на некоторых участках поверхности электрохимическая коррозия может принять локальный характер; растворение основного мет. происходит именно на анодах.

Поверхность любого металла состоит из множества короткозамкнутых через сам металл микроэлектродов. Контактируя с коррозионной средой образующиеся гальванические элементы способствуют электрохимическому его разрушению.

Причины возникновения местных гальванических элементов могут быть самые разные:

1) неоднородность сплава

Неоднородность мет. фазы, обусловленная неоднородностью сплава и наличием микро- и макровключений;

Неравномерность окисных пленок на поверхности за счет наличия макро- и микропор, а также неравномерного образования вторичных продуктов коррозии;

Наличие на поверхности границ зерен кристаллов, выхода дислокации на поверхность, анизотропность кристаллов.

2) неоднородность среды

Область с ограниченным доступом окислителя будет анодом по отношению к области со свободным доступом, что ускоряет электрохимическую коррозию.

3) неоднородность физических условий

Облучение (облученный участок - анод);

Воздействие внешних токов (место входа блуждающего тока - катод, место выхода - анод);

Температура (по отношению к холодным участкам, нагретые являются анодами) и т. д.

При работе гальванического элемента одновременно протекает два электродных процесса:

Анодный - ионы металла переходят в раствор

Fe → Fe 2+ + 2e

Происходит реакция окисления.

Катодный - избыточные электроны ассимилируются молекулами или атомами электролита, которые при этом восстанавливаются. На катоде проходит реакция восстановления.

O 2 + 2H 2 O + 4e → 4OH - (кислородная деполяризация в нейтральных, щелочных средах)

O 2 + 4H + + 4e → 2H 2 O (кислородная деполяризация в кислых средах)

2 H + + 2e → H 2 (при водородной деполяризации).

Торможение анодного процесса приводит к торможению и катодного.

Коррозия металла происходит именно на аноде.

При соприкосновении двух электропроводящих фаз (например, мет. - среда), когда одна из них заряжена положительно, а другая отрицательно, между ними возникает разность потенциала. Это явление связано с возникновением двойного электрического слоя (ДЭС). Заряженные частицы располагаются несимметрично на границе раздела фаз.

Скачек потенциалов в процессе электрохимической коррозии может происходить из-за двух причин:

При достаточно большой энергии гидратации ионы металла могут отрываться и переходить в раствор, оставляя на поверхности эквивалентное число электронов, которые определяют ее отрицательный заряд. Отрицательно заряженная поверхность притягивает к себе катионы мет. из раствора. Так на границе раздела фаз возникает двойной электрический слой.

На поверхности металла разряжаются катионы электролита. Это приводит к тому, что поверхность мет. приобретает положительный заряд, который с анионами раствора образует двойной электрический слой.

Иногда возникает ситуация, когда поверхность не заряжена и, соответственно, отсутствует ДЭС. Потенциал, при котором это явление наблюдается называется потенциалом нулевого заряда (φ N). У каждого металла потенциал нулевого заряда свой.

Величина электродных потенциалов оказывает очень большое влияние на характер коррозионного процесса.

Скачок потенциала между двух фаз не может быть измерен, но при помощи компенсационного метода можно измерить электродвижущую силу элемента (ЭДС), который состоит из электрода сравнения (его потенциал условно принят за ноль) и исследуемого электрода. В качестве электрода сравнения берется стандартный водородный электрод. ЭДС гальванического элемента (стандартный водородный электрод и исследуемый элемент) называют электродным потенциалом. Электродами сравнения могут также выступать хлорсеребряный, каломельный, насыщенный медно-сульфатный.

Международной конвенцией в Стокгольме 1953г. решено при записях электрод сравнения всегда ставить слева. При этом ЭДС рассчитывать, как разность потенциалов правого и левого электродов.

E = Vп - Vл

Если положительный заряд внутри системы движется слева направо - ЭДС элемента считается положительной, при этом

E max =-(ΔG T)/mnF,

где F - число Фарадея. Если положительные заряды будут двигаться в противоположном направлении, то уравнение будет иметь вид:

E max =+(ΔG T)/mnF.

При коррозии в электролитах самыми распространенными и значимыми являются адсорбционные (адсорбция катионов или анионов на границе раздела фаз) и электродные потенциалы (переход катионов из металла в электролит или наоборот).

Электродный потенциал, при котором металл находится в состоянии равновесия с собственными ионами называется равновесный (обратимый). Он зависит от природы металлической фазы, растворителя, температуры электролита, активности ионов мет.

Равновесный потенциал подчиняется уравнению Нернста:

E=E ο + (RT/nF) Lnα Me n+

где, E ο - стандартный потенциал мет.; R - молярная газовая постоянная; n - степень окисления иона мет.; Т - температура; F - число Фарадея;α Me n+ - активность ионов мет.

При установленном равновесном потенциале электрохимическая коррозия не наблюдается.

Если по электроду проходит электрический ток - равновесное состояние его нарушается. Потенциал электрода изменяется в зависимости от направления и силы тока. Изменение разности потенц., приводящее к уменьшению силы тока, принято называть поляризацией. Уменьшение поляризуемости электродов называют деполяризацией.

Скорость электрохимической коррозии тем меньше, чем больше поляризация. Поляризация характеризуется величиной перенапряжения.

Поляризация бывает трех типов:

Электрохимическая (при замедлении анодного или катодного процессов);

Концентрационная (наблюдается, когда скорость подхода деполяризатора к поверхности и отвода продуктов коррозии мала);

Фазовая (связана с образованием на поверхности новой фазы).

Электрохимическая коррозия наблюдается также при контакте двух разнородных металлов. В электролите они образуют гальванопару. Более электроотрицательный из них будет анодом. Анод в процессе будет постепенно растворяться. При этом идет замедление или даже полное прекращение электрохимической коррозии на катоде (более электроположительном). Например, при контакте в морской воде дюралюминия с никелем интенсивно растворятся будет именно дюралюминий.

Материалы из металлов под химическим или электрохимическим воздействием окружающей среды подвергаются разрушению, которое называется коррозией. Коррозия металлов вызывается , в результате которых металлы переходят в окисленную форму и теряют свои свойства, что приводит в негодность металлические материалы.

Можно выделить 3 признака, характеризующих коррозию:

  • Коррозия – это с химической точки зрения процесс окислительно-восстановительный.
  • Коррозия – это самопроизвольный процесс, возникающий по причине неустойчивости термодинамической системы металл – компоненты окружающей среды.
  • Коррозия – это процесс, который развивается в основном на поверхности металла. Однако, не исключено, что коррозия может проникнуть и вглубь металла.

Виды коррозии металлов

Наиболее часто встречаются следующие виды коррозии металлов :

  1. Равномерная – охватывает всю поверхность равномерно
  2. Неравномерная
  3. Избирательная
  4. Местная пятнами – корродируют отдельные участки поверхности
  5. Язвенная (или питтинг)
  6. Точечная
  7. Межкристаллитная – распространяется вдоль границ кристалла металла
  8. Растрескивающая
  9. Подповерхностная
Основные виды коррозии

С точки зрения механизма коррозионного процесса можно выделить два основных типа коррозии: химическую и электрохимическую.

Химическая коррозия металлов

Химическая коррозия металлов — это результат протекания таких химических реакций, в которых после разрушения металлической связи, атомы металла и атомы, входящие в состав окислителей, образуют . Электрический ток между отдельными участками поверхности металла в этом случае не возникает. Такой тип коррозии присущ средам, которые не способны проводить электрический ток – это газы, жидкие неэлектролиты.

Химическая коррозия металлов бывает газовой и жидкостной.

Газовая коррозия металлов – это результат действия агрессивных газовых или паровых сред на металл при высоких температурах, при отсутствии конденсации влаги на поверхности металла. Это, например, кислород, диоксид серы, сероводород, пары воды, галогены. Такая коррозия в одних случаях может привести к полному разрушению металла (если металл активный), а в других случаях на его поверхности может образоваться защитная пленка (например, алюминий, хром, цирконий).

Жидкостная коррозия металлов – может протекать в таких неэлектролитах, как нефть, смазочные масла, керосин и др. Этот тип коррозии при наличии даже небольшого количества влаги, может легко приобрести электрохимический характер.

При химической коррозии скорость разрушения металла пропорциональна и той скорости с которой окислитель проникает сквозь пленку оксида металла, покрывающую его поверхность. Оксидные пленки металлов могут проявлять или не проявлять защитные свойства, что определяется сплошностью.

Сплошность такой пленки оценивают величине фактора Пиллинга-Бэдвордса: (α = V ок /V Ме) по отношению объема образовавшегося оксида или другого какого-либо соединения к объему израсходованного на образование этого оксида металла

α = V ок /V Ме = М ок ·ρ Ме /(n·A Me ·ρ ок) ,

где V ок — объем образовавшегося оксида

V Ме — объем металла, израсходованный на образование оксида

М ок – молярная масса образовавшегося оксида

ρ Ме – плотность металла

n – число атомов металла

A Me — атомная масса металла

ρ ок — плотность образовавшегося оксида

Оксидные пленки, у которых α < 1 , не являются сплошными и сквозь них кислород легко проникает к поверхности металла. Такие пленки не защищают металл от коррозии. Они образуются при окислении кислородом щелочных и щелочно-земельных металлов (исключая бериллий).

Оксидные пленки, у которых 1 < α < 2,5 являются сплошными и способны защитить металл от коррозии.

При значениях α > 2,5 условие сплошности уже не соблюдается , вследствие чего такие пленки не защищают металл от разрушения.

Ниже представлены значения α для некоторых оксидов металлов

металл оксид α металл оксид α
K K 2 O 0,45 Zn ZnO 1,55
Na Na 2 O 0,55 Ag Ag 2 O 1,58
Li Li 2 O 0,59 Zr ZrO 2 1.60
Ca CaO 0,63 Ni NiO 1,65
Sr SrO 0,66 Be BeO 1,67
Ba BaO 0,73 Cu Cu 2 O 1,67
Mg MgO 0,79 Cu CuO 1,74
Pb PbO 1,15 Ti Ti 2 O 3 1,76
Cd CdO 1,21 Cr Cr 2 O 3 2,07
Al Al 2 ­O 2 1,28 Fe Fe 2 O 3 2,14
Sn SnO 2 1,33 W WO 3 3,35
Ni NiO 1,52

Электрохимическая коррозия металлов

Электрохимическая коррозия металлов – это процесс разрушения металлов в среде различных , который сопровождается возникновением внутри системы электрического тока.

При таком типе коррозии атом удаляется из кристаллической решетки результате двух сопряженных процессов:

  • Анодного – металл в виде ионов переходит в раствор.
  • Катодного – образовавшиеся при анодном процессе электроны, связываются деполяризатором (вещество — окислитель).

Сам процесс отвода электронов с катодных участков называется деполяризацией, а вещества способствующие отводу – деполяризаторами.

Наибольшее распространение имеет коррозия металлов с водородной и кислородной деполяризацией .

Водородная деполяризация осуществляется на катоде при электрохимической коррозии в кислой среде

2H + +2e — = H 2 разряд водородных ионов

2H 3 O + +2e — = H 2 + 2H 2 O

Кислородная деполяризация осуществляется на катоде при электрохимической коррозии в нейтральной среде

O 2 + 4H + +4e — = H 2 O восстановление растворенного кислорода

O 2 + 2H 2 O + 4e — = 4OH —

Все металлы, по их отношению к электрохимической коррозии , можно разбить на 4 группы, которые определяются величинами их :

  1. Активные металлы (высокая термодинамическая нестабильность) – это все металлы, находящиеся в интервале щелочные металлы — кадмий (Е 0 = -0,4 В). Их коррозия возможна даже в нейтральных водных средах, в которых отсутствуют кислород или другие окислители.
  2. Металлы средней активности (термодинамическая нестабильность) – располагаются между кадмием и водородом (Е 0 = 0,0 В). В нейтральных средах, в отсутствии кислорода, не корродируют, но подвергаются коррозии в кислых средах.
  3. Малоактивные металлы (промежуточная термодинамическая стабильность) – находятся между водородом и родием (Е 0 = +0,8 В). Они устойчивы к коррозии в нейтральных и кислых средах, в которых отсутствует кислород или другие окислители.
  4. Благородные металлы (высокая термодинамическая стабильность) – золото, платина, иридий, палладий. Могут подвергаться коррозии лишь в кислых средах при наличии в них сильных окислителей.

Электрохимическая коррозия может протекать в различных средах. В зависимости от характера среды выделяют следующие виды электрохимической коррозии:

  • Коррозия в растворах электролитов — в растворах кислот, оснований, солей, в природной воде.
  • Атмосферная коррозия – в атмосферных условиях и в среде любого влажного газа. Это самый распространенный вид коррозии.

Например, при взаимодействии железа с компонентами окружающей среды, некоторые его участки служат анодом, где происходит окисление железа, а другие – катодом, где происходит восстановление кислорода:

А: Fe – 2e — = Fe 2+

K: O 2 + 4H + + 4e — = 2H 2 O

Катодом является та поверхность, где больше приток кислорода.

  • Почвенная коррозия – в зависимости от состава почв, а также ее аэрации, коррозия может протекать более или менее интенсивно. Кислые почвы наиболее агрессивны, а песчаные – наименее.
  • Аэрационная коррозия — возникает при неравномерном доступе воздуха к различным частям материала.
  • Морская коррозия – протекает в морской воде, в связи с наличием в ней растворенных солей, газов и органических веществ.
  • Биокоррозия – возникает в результате жизнедеятельности бактерий и других организмов, вырабатывающих такие газы как CO 2 , H 2 S и др., способствующие коррозии металла.
  • Электрокоррозия – происходит под действием блуждающих токов на подземных сооружениях, в результате работ электрических железных дорог, трамвайных линий и других агрегатов.

Методы защиты от коррозии металла

Основной способ защиты от коррозии металла – это создание защитных покрытий – металлических, неметаллических или химических.

Металлические покрытия.

Металлическое покрытие наносится на металл, который нужно защитить от коррозии, слоем другого металла, устойчивого к коррозии в тех же условиях. Если металлическое покрытие изготовлено из металла с более отрицательным потенциалом (более активный) , чем защищаемый, то оно называется анодным покрытием . Если металлическое покрытие изготовлено из металла с более положительным потенциалом (менее активный), чем защищаемый, то оно называется катодным покрытием .

Например, при нанесении слоя цинка на железо, при нарушении целостности покрытия, цинк выступает в качестве анода и будет разрушаться, а железо защищено до тех пор, пока не израсходуется весь цинк. Цинковое покрытие является в данном случае анодным .

Катодным покрытием для защиты железа, может, например, быть медь или никель. При нарушении целостности такого покрытия, разрушается защищаемый металл.

Неметаллические покрытия.

Такие покрытия могут быть неорганические (цементный раствор, стекловидная масса) и органические (высокомолекулярные соединения, лаки, краски, битум).

Химические покрытия.

В этом случае защищаемый металл подвергают химической обработке с целью образования на поверхности пленки его соединения, устойчивой к коррозии. Сюда относятся:

оксидирование – получение устойчивых оксидных пленок (Al 2 O 3 , ZnO и др.);

фосфатирование – получение защитной пленки фосфатов (Fe 3 (PO 4) 2 , Mn 3 (PO 4) 2);

азотирование – поверхность металла (стали) насыщают азотом;

воронение стали – поверхность металла взаимодействует с органическими веществами;

цементация – получение на поверхности металла его соединения с углеродом.

Изменение состава технического металла также способствует повышению стойкости металла к коррозии. В этом случае в металл вводят такие соединения, которые увеличивают его коррозионную стойкость.

Изменение состава коррозионной среды (введение ингибиторов коррозии или удаление примесей из окружающей среды) тоже является средством защиты металла от коррозии.

Электрохимическая защита основывается на присоединении защищаемого сооружения катоду внешнего источника постоянного тока, в результате чего оно становится катодом. Анодом служит металлический лом, который разрушаясь, защищает сооружение от коррозии.

Протекторная защита – один из видов электрохимической защиты – заключается в следующем.

К защищаемому сооружению присоединяют пластины более активного металла, который называется протектором . Протектор – металл с более отрицательным потенциалом – является анодом, а защищаемое сооружение – катодом. Соединение протектора и защищаемого сооружения проводником тока, приводит к разрушению протектора.

Категории ,

На скорость химической (газовой) коррозии металлов и сплавов влияют внешние и внутренние факторы.

К внешним факторам относятся состав и давление газовой среды, скорость её движения, температура, режим нагрева.

Состав газовой среды . При высоких температурах металлы взаимодействуют с кислородом, парами воды, оксидом углерода (lV), оксидом серы (lV) по схеме

2М + О 2 = 2МО,

М + СО 2 = МО + СО,

М + Н 2 О = МО + Н 2 ,

3М + SО 2 = 2МО + МS.

Скорости этих химических реакций и защитные свойства образующихся плёнок различны, следовательно, скорости коррозии металлов в указанных средах также различны.

Из экспериментальных данных известно, что при 900 0 С ско-рость окисления Fe, Co, Ni возрастает в ряду

Н 2 О (П) ® СО 2 ® О 2 ® SО 2

В отличие от этих металлов Cu практически не корродирует в атмосфере SO 2 .

В приведенных выше газах скорость газовой коррозии металлов увеличивается в ряду

Cr ® Ni ® Co ® Fe

Вольфрам при 900 0 С наибольшую скорость коррозии имеет в атмосфере О 2 , а наименьшую ─ в СО 2 .

Загрязнение воздуха СО 2 , SО 2 , парами Н 2 О вызывает повышение скорости коррозии малоуглеродистой стали. Это связывают с увеличением несовершенств в оксидной плёнке.

При нагревании стали в атмосфере, содержащей О 2 , СО 2 , Н 2 О, помимо окисления, может происходить обезуглероживание (декарбонизация)

Fe 3 C + 1/2O 2 = 3Fe + CO,

Fe 3 C + CO 2 = 3Fe + 2CO,

Fe 3 C + H 2 O = 3Fe + CO + H 2 .

Наводороживание стали происходит при высоких температурах адсорбированными на её поверхности атомами водорода. При комнатной температуре молекулы Н 2 не диссоциируют, поэтому наводороживания стали не происходит. Наводороживание вызывает резкое уменьшение пластичности, понижает длительную прочность металлов. Склонен к наводороживанию титан.

Температура . Повышение температуры вызывает увеличение константы скорости химической реакции, а также рост скорости диффузии реагентов в плёнке продуктов коррозии. Это приводит к увеличению скорости газовой коррозии металлов и сплавов ─ Fe, Cu, и др.

Температура может оказывать влияние на состав образующихся плёнок и закон их роста (таблица 1).

Большое влияние на скорость окисления оказывает режим нагрева. Колебания температуры при нагреве и особенно попеременный нагрев и охлаждение вызывают разрушение плёнки вследствие возникновения больших внутренних напряжений, в результате чего скорость окисления металлов увеличивается.

Таблица 1 ─ Влияние температуры на состав и закон роста оксид-

ных плёнок



Давление газа . С повышением парциального давления кислорода скорость коррозии металлов возрастает.

Для некоторых металлов и сплавов при постоянной достаточно высокой температуре с увеличением парциального давления кислорода скорость окисления сначала растёт, а затем при достижении некоторого критического значения Ро 2 ─ резко уменьшается (рисунок 7) и в широком диапазоне давлений остаётся достаточно низкой.


Р О 2 КР Р О 2

Рисунок 7 - Влияние парциального давления кислорода на

скорость газовой коррозии

Явление уменьшения скорости газовой коррозии при повышении парциального давления кислорода называют высокотемпературной пассивацией. Пассивное состояние металла связывают с образованием на его поверхности совершенной плёнки.

Высокотемпературную пассивацию имеют хромистые стали, медь, титан, цинк и другие металлы и сплавы.

При значительном увеличении парциального давления кислорода выше критического, у целого ряда нержавеющих сталей, например, 08Х13 (Х13), 30Х13 (Х13), 12Х17 (Х17), 08Х18Н10Т (Х18Н10Т) происходит нарушение пассивного состояния («перепассивация»), что приводит к увеличению скорости окисления.

Увеличение скорости коррозии при высоких температурах может вызвать повышение скорости движения газовой среды.

К внутренним факторам, влияющим на скорость химической коррозии металлов относятся: природа, химический и фазовый состав сплава, механические напряжения и деформация, характер обработки поверхности.

Состав и структура сплава . Скорость окисления сталей при высоких температурах с повышением содержания углерода понижается. Уменьшается обезуглероживание сталей. Это связано с интенсификацией процесса образования оксида углерода (II). Сера и фосфор практически не влияют на скорость окисления стали.

На скорость коррозии стали, в кислородсодержащей среде влияют легирующие элементы. Хром (Cr), алюминий (Al) и кремний (Si) сильно замедляют процесс окисления стали. Это связано с обра-зованием плёнок с высокими защитными свойствами. При содержании приблизительно 30 % Cr, до 10 % Al, до 5 % Si, стали имеют высокую жаростойкость. Меньшее повышение жаростойкости дает легирование стали титаном (Ti), медью (Cu), кобальтом (Со) и бериллием (Be).

Элементы, образующие легкоплавкие или летучие оксиды, например, ванадий (V), молибден (Мо), вольфрам (W) ускоряют оки-сление стали.

Высокой жаростойкостью обладают сплавы никеля (Ni) c хромом (Сr) - нихромы. Типичные нихромы содержат 80 % Ni и 20 % Cr или 65 % Ni, 20 % Cr и 15 % Fe.

Скорость окисления меди (Cu) понижается при её легировании Al, Be, оловом (Sn) и цинком (Zn).

На скорость коррозии влияет также структура сплава . Установлено, что наиболее жаростойкой является сталь с аустенитной (однофазной) структурой. Хромоникелевые стали с двухфазной аустенитно-ферритной структурой менее устойчивы к окислению. С увеличением содержания ферритной составляющей скорость окисления стали повышается. Например, хромоникелевая аустенитная сталь 12Х18Н9Т (Х18Н9Т) имеет более высокую жаростойкость, чем двухфазная сталь Х12Н5Т с более высоким содержанием хрома. Это связывают с тем, что на двухфазных сталях образуются менее совершенные плёнки, чем на однофазных.

Жаростойкость чугуна зависит от формы графитовых выделений. При шаровидной форме графита жаростойкость чугуна выше.

Деформация металлов в процессе нагрева может вызвать нарушение сплошности плёнок и связанное с этим увеличение скорости окисления. Повышенная шероховатость поверхности металла способствует образованию защитных плёнок с дефектами, что ведет к увеличению скорости коррозии.

Коррозией называют процесс самопроизвольного разрушения поверхности материалов вследствие взаимодействия с окружающей средой. Ее причиной является термодинамическая неустойчивость химических элементов к определенным веществам. Формально коррозии подвержены полимеры, дерево, керамика, резина, но к ним чаще применяют термин «старение». Наиболее серьезный ущерб наносит ржавление металлов, для защиты которых разрабатываются высокотехнологичные контрмеры. Но об этом мы поговорим позже. Учеными различается коррозия металлов химическая и электрохимическая.

Химическая коррозия

Она возникает обычно при воздействии на металлическую структуру сухих газов, жидкостей или растворов, не проводящих электрический ток. Суть этого типа коррозии - прямое взаимодействие металла с агрессивной средой. Элементы химически корродируют во время термической обработки или в результате длительной эксплуатации при достаточно высоких температурах. Это касается лопаток газовых турбин, арматуры плавильных печей, деталей двигателей внутреннего сгорания и так далее. В результате на поверхности образуются определенные соединения: оксиды, нитриды, сульфиды.

Она является следствием контакта металла с жидкой средой, способной проводить электрический ток. Вследствие окисления материал претерпевает структурные изменения, приводящие к образованию ржавчины (нерастворимого продукта), либо частицы металла переходят в раствор ионов.

Электрохимическая коррозия: примеры

Ее разделяют на:

  • Атмосферную, которая возникает при наличии на поверхности металла жидкостной пленки, в которой газы, содержащиеся в атмосфере (например, О 2 , СО 2 , SO 2), способны растворяться с образованием электролитных систем.
  • Жидкостную, которая протекает в токопроводящей жидкой среде.
  • Грунтовую, что протекает под воздействием грунтовых вод.

Причины

Поскольку обычно любой металл, который используется для промышленных нужд, не является идеально чистым и содержит включения различного характера, то электрохимическая коррозия металлов возникает вследствие образования на поверхности железа большого количества короткозамкнутых локальных гальванических элементов.

Появление их может быть связано не только с наличием различных (особенно металлических) примесей (контактная коррозия), но и с неоднородностью поверхности, дефектами кристаллической решетки, механическими повреждениями и тому подобное.

Механизм взаимодействия

Процесс электрохимической коррозии зависит от химического состава материалов и особенностей внешней среды. Если так называемый технический металл покрыт влажной пленкой, то в каждом из указанных гальванических микроэлементов, которые образуются на поверхности, протекают две независимые реакции. Более активный компонент коррозионной пары отдает электроны (к примеру, цинк в паре Zn-Fe) и переходит в жидкую среду в качестве гидратированных ионов (то есть корродирует) по следующей реакции (анодный процесс):

М + nH 2 O = M z + * nH 2 O + ze.

Эта часть поверхности является отрицательным полюсом локального микроэлемента, где металл электрохимически растворяется.

На менее активном участке поверхности, которая является положительным полюсом микроэлемента (железо в паре Zn-Fe), электроны связываются за счет протекания реакции восстановления (катодный процесс) по схеме:

Таким образом, наличие окислителей в водяной пленке, которые способны связывать электроны, обеспечивает возможность дальнейшего хода анодного процесса. Соответственно, электрохимическая коррозия может развиваться только при условии одновременного протекания как анодного, так и катодного процессов. Вследствие торможения одного из них скорость окисления уменьшается.

Процесс поляризации

Оба вышеуказанных процесса вызывают поляризацию соответствующих полюсов (электродов) микроэлемента. Какие здесь есть особенности? Обычно электрохимическая коррозия металлов более существенно замедляется поляризацией катода. Поэтому она будет усиливаться под влиянием факторов, которые предотвращают эту реакцию и сопровождаются так называемой деполяризацией положительного электрода.

Во многих коррозионных процессах катодная деполяризация осуществляется разрядом ионов водорода либо восстановлением молекул воды и соответствует формулам:

  • В кислой среде: 2Н + + 2е = Н 2 .
  • В щелочной: 2Н 2 О + 2е = Н 2 + 2ОН - .

Диапазон потенциалов

Потенциал, который соответствует этим процессам, в зависимости от природы агрессивной среды, может изменяться от -0,83 до 0 В. Для нейтрального водного раствора при температурах, близких к стандартной, он равен примерно -0,41 В. Следовательно, ионы водорода, содержащиеся в воде и в нейтральных водных системах, могут окислять только металлы с потенциалом, меньшим, чем -0,41 В (расположенные в ряду напряжений до кадмия). Учитывая то, что некоторые из элементов защищены оксидной пленкой, число металлов, подверженных окислению в нейтральных средах ионами водорода, незначительное.

Если влажная пленка содержит растворенный кислород воздуха, то он способен, в зависимости от характера среды, связывать электроны эффектом кислородной деполяризации. В этом случае схема электрохимической коррозии выглядит следующим образом:

  • О 2 + 4е + 2Н 2 О = 4ОН - или
  • О 2 + 4е + 4Н + = 2Н 2 О.

Потенциалы указанных электродных реакций при температурах, близких к стандартной, изменяются от 0,4 В (щелочная среда) до 1,23 В (кислая среда). В нейтральных средах потенциал процесса восстановления кислорода при указанных условиях соответствует значению 0,8 В. Значит, растворенный кислород способен окислять металлы с потенциалом меньше 0,8 В (расположенные в ряду напряжений до серебра).

Важнейшие окислители

Виды электрохимической коррозии характеризуются окислительными элементами, важнейшими из которых являются ионы водорода и кислород. При этом пленка, содержащая растворенный кислород, в коррозионном отношении значительно опаснее, чем влага, где кислорода нет, и которая способна окислять металлы исключительно ионами водорода, так как в последнем случае количество видов материалов, способных корродировать, значительно меньше.

Например, в стали и в чугуне присутствуют примеси углерода преимущественно в виде карбида железа Fe 3 C. В этом случае механизм электрохимической коррозии с водородной деполяризацией для указанных металлов выглядит следующим образом:

  • (-) Fe - 2e + nH 2 O = Fe 2+ · nH 2 O (может образовываться ржавчина);
  • (+) 2Н + + 2е = Н 2 (в подкисленной среде);
  • (+) 2Н 2 О + 2е = Н 2 + 2ОН - (в нейтральной и щелочной среде).

Механизм коррозии железа, в котором содержатся примеси меди, в случае кислородной деполяризации катода описывается уравнениями:

  • (-) Fe - 2e + nH 2 O = Fe 2+ ·nH 2 O;
  • (+) 0,5О 2 + Н 2 О + 2е = 2ОН - (в подкисленной среде);
  • (+) 0,5О 2 + 2Н + + 2е = Н 2 О (в нейтральной и щелочной среде).

Электрохимическая коррозия протекает с разной скоростью. Этот показатель зависит от:

  • разности потенциалов между полюсами гальванического микроэлемента;
  • состава и свойств электролитной среды (рН, наличие ингибиторов и стимуляторов коррозии);
  • концентрации (интенсивности подачи) окислителя;
  • температуры.

Методы защиты

Электрохимическая защита металлов от коррозии достигается следующими способами:

  • Созданием антикоррозионных сплавов (легированием).
  • Увеличением чистоты индивидуального металла.
  • Нанесением на поверхность различных защитных покрытий.

Эти покрытия в свою очередь бывают:

  • Неметаллическими (краски, лаки, смазочные материалы, эмали).
  • Металлическими (анодные и катодные покрытия).
  • Образованными специальной обработкой поверхностей (пассивация железа в концентрированных серной или азотной кислотах; железа, никеля, кобальта, магния в растворах щелочей; образование оксидной пленки, например, на алюминии).

Металлическое защитное покрытие

Наиболее интересной и перспективной является электрохимическая защита от коррозии другим видом металла. По характеру защитного воздействия металлизированные покрытия подразделяют на анодные и катодные. Остановимся на этом моменте более подробно.

Анодным называется покрытие, образованное более активным (менее благородным) металлом, чем тот, что защищают. То есть осуществляется защита элементом, который стоит в ряду напряжений до основного материала (например, покрытие железа цинком или кадмием). При местных разрушениях защитного слоя корродировать будет менее благородный металл-покрытие. В зоне царапин и трещин образовывается локальный гальванический элемент, катодом в котором является ограждаемый металл, а анодом - покрытие, которое окисляется. Целостность такой защитной пленки значения не имеет. Однако чем она толще, тем медленнее будет развиваться электрохимическая коррозия, дольше будет длиться полезный эффект.

Катодным называется покрытие металлом с большим потенциалом, который в ряду напряжений стоит после защищаемого материала (например, напыление низколегированных сталей медью, оловом, никелем, серебром). Покрытие должно быть сплошным, так как при его повреждении образовываются локальные гальванические элементы, в которых основной металл будет анодом, а защитный слой - катодом.

Как уберечь металл от окисления

Электрохимическая защита от коррозии подразделяется на два типа: протекторную и катодную. Протекторная аналогична анодному покрытию. К материалу, который нужно защитить, присоединяют большую пластину более активного сплава. Образуется гальванический элемент, основной металл в котором служит катодом, а протектор - анодом (он корродирует). Обычно для этого типа защиты применяют цинк, алюминий или сплавы на основе магния. Протектор постепенно растворяется, поэтому его нужно периодически заменять.

Много неприятностей в коммунальном хозяйстве и в промышленности в целом доставляет электрохимическая коррозия трубопроводов. В борьбе с ней наиболее подходит метод катодной поляризации. Для этого металлическая конструкция, которая защищается от разрушительных процессов окисления, подключается к отрицательному полюсу какого-либо внешнего источника постоянного тока (она после этого становится катодом, при этом возрастает скорость выделения водорода, а скорость коррозии снижается), а к положительному полюсу присоединяют малоценный металл.

Электрохимические методы защиты эффективны в токопроводящей среде (яркий пример - морская вода). Поэтому протекторы часто используют, чтобы защитить подводные части морских судов.

Обработка агрессивной среды

Этот метод является эффективным, когда электрохимическая коррозия железа протекает в небольшом объеме токопроводящей жидкости. Справиться с разрушительными процессами в этом случае можно двумя способами:

  • Удалением из жидкости кислорода (деаэрация) в результате продувки инертным газом.
  • Введением в среду ингибиторов - так называемых замедлителей коррозии. Например, в случае если поверхность разрушается в результате окисления кислородом, добавляют органические вещества, молекулы которых содержат определенные аминокислоты (имино-, тио- и другие группы). Они хорошо адсорбируются на поверхности металла и существенно снижают скорость электрохимических реакций, приводящих к разрушениям поверхностного контактного слоя.

Вывод

Безусловно, коррозия химическая и электрохимическая приносит значительный ущерб и в промышленности, и в быту. Если бы металл не корродировал, срок службы многих предметов, деталей, агрегатов, механизмов значительно увеличился бы. Сейчас ученые активно разрабатывают альтернативные материалы, способные заменить металл, не уступающие по эксплуатационным характеристикам, однако полностью отказаться от его применения в ближайшей перспективе, наверное, невозможно. В этом случае на передний план выходят передовые методы защиты металлических поверхностей от коррозии.