25.08.2019

Кобальт – это химический элемент. Кобальт в организме человека


По химической активности кобальт уступает железу. Он легко растворяется в кислотах - окислителях и медленно в обычных кислотах:

Co + 2HCl = CoCl 2 + H 2 ╜

В простых соединениях у кобальта наиболее устойчива степень окисления +2, в комплесных √ +3. Водные растворы солей кобальта (II) обычно окрашены в розовый цвет.

Гидроксид кобальта (II)

Образуется при действии щелочей на соли кобальта (II):

CoSO 4 + 2KOH = K 2 SO 4 + Co(OH) 2 ¯

На воздухе розовый осадок Co(OH) 2 постепенно буреет, превращаясь в гидроксид кобальта (III):

4Co(OH) 2 + O 2 + 2H 2 O ╝ 4Co(OH) 3

Сo(OH) 2 - слабое основание, растворимое в сильных кислотах:

Co(OH) 2 + 2HCl ╝ CoCl 2 + 2H 2 O

При прокаливании Co(OH) 2 образует оксид кобальта (II) CoO:

Co(OH) 2 ═ t ═ CoO + H 2 O

Cоединения кобальта склонны к комплексообразованию (координационное число=6):

Co(OH) 2 + 6NH 3 = (OH) 2

Никель и его соединения

Никель легко растворяется в разбавленной азотной кислоте и медленно в соляной и серной кислотах

Ni + 2HCl = NiCl 2 + H 2

Ион Ni 2+ в водных растворах имеет зелёную окраску. Для никеля наиболее характерна степень окисления +2. Оксид и гидроксид никеля проявляют основной характер.

NiO + H 2 SO 4 ═ t ═ NiSO 4 + H 2 O

NiCl 2 + 2NaOH═ t ═ Ni(OH) 2 ¯(зелёный) + 2NaCl

Ni(OH) 2 + H 2 SO 4 = NiSO 4 + 2H 2 O

Соединения двухвалентного никеля могут давать комплексы с аммиаком:

Ni(OH) 2 + 6NH 2 = . С фтором и другими галогенами Ru и Os легко реагируют при нагревании, образуя соединения типа RuF3, RuF4, RuF5, RuF6. Осмий дает подобные же соединения, кроме OsF3. Весьма интересны комплексные соединения Ru с ксеноном Xe (канадский химик Н. Бартлетт, 1962), а также с молекулярным азотом - [(NO)(NH3)4 N2Ru(NH3)4NO]Cl (советский химик Н. М. Синицын, 1962) и Cl2 (канадский химик А. Аллен, 1965).

На компактные Rh и Ir царская водка не действует. При прокаливании в О2 образуются оксиды Rh2O3 и Ir2О3, разлагающиеся при высоких температурах.

Pd легко растворяется при нагревании в HNO3 и концентрированной H2SO4 с образованием нитрата Pd(NO3)2 и сульфата PdSO4. На Pt эти кислоты не действуют. Царская водка растворяет Pd и Pt, причем образуются комплексные кислоты - тетрахлоропалладиевая кислота H2 и гексахлороплатиновая - коричнево-красные кристаллы состава H2·6H2O. Из ее солей наибольшее значение для технологии Платиновых металлов имеет хлороплатинат аммония (NH4)2 - светло-желтые кристаллы, малорастворимые в воде и почти не растворимые в концентрированных растворах NH4Cl. При прокаливании они разлагаются по реакции:

(NH4)2 = Pt + Cl2 + 2NH4Cl

При этом Pt получается в мелкораздробленном виде (т. н. платиновая губка, или губчатая платина).

Билет 24

Лантано́иды (лантани́ды ) - семейство из 14 химических элементов III группы 6-го периода периодической таблицы. Семейство состоит из церия, празеодима, неодима, прометия, самария, европия, гадолиния, тербия, диспрозия, гольмия, эрбия, тулия, иттербия и лютеция. Лантан часто рассматривается вместе с этими элементами для удобства сравнения, хотя к лантаноидам он не относится.

Химические свойства

Лантаноиды химически активны, они образуют прочные оксиды, галогениды, сульфиды, реагируют с водородом, углеродом, азотом, фосфором. Разлагают воду, растворяются в соляной, серной и азотной кислотах. В плавиковой и фосфорной кислотах лантаноиды устойчивы, так как покрываются защитными пленками малорастворимых солей - фторидов и фосфатов.

С рядом органических соединений лантаноиды образуют комплексные соединения. Важное значение для разделения лантаноидов имеют комплексы с лимонной и этилендиаминтетрауксусной кислотой.

Билет 25

Актино́иды (актини́ды) - семейство, состоящее из 14 радиоактивных химических элементов III группы 7-го периода периодической системы с атомными номерами 90-103.

Данная группа состоит из тория, протактиния, урана, нептуния, плутония, америция, кюрия, берклия, калифорния, эйнштейния, фермия, менделевия, нобелия и лоуренсия. Актиний часто для удобства сравнения рассматривается вместе с этими элементами, однако к актиноидам он не относится

Поскольку наиболее долгоживущими элементами являются первые 5f-элементы (Th–Am), их химические свойства изучены лучше, а многообразие проявляемых степеней окисления в значительной мере отличает их от типичных 4f-элементов и тяжелых 5f-элементов.

С водородом актиноиды образуют гидриды переменного состава (ThH 2, Th 4H 15; PaH 2–2,7; AmH 2–2,7), но для урана можно получить и стехиометрический гидрид UH 3. В общем случае гидриды этих элементов термически менее устойчивы, чем гидриды 4f-элементов. С кислородом актиноиды образуют оксиды, соответствующие их наиболее устойчивым степеням окисления (ThO 2, PaO 2, Pa 2O 5, NpO 2 и др.). К исключительно сложным следует отнести систему уран–кислород. Характерными для урана являются оксиды UO 2 – UO 2,25; U 3O 8 и UO 3, из них наиболее устойчив U 3O 8 (UO 2∙2UO 3) – урановая смолка.

Отличительной особенностью кислородсодержащих соединений актиноидов в высших степенях окисления V, VI является наличие катионных группировок и или , , . Эти группировки называются иловыми оксоионами. Например, – уранил, – протактинил. Оксоионы устойчивы и сохраняются без изменения в разнообразных химических реакциях:

Особая устойчивость оксоионов объясняется тем, что связь между атомами актиноида и кислорода формально можно рассматривать как тройную:

Для ионов прочность связи увеличивается в ряду Am < Pu < Np.

С галогенами актиноиды образуют многообразные галогениды ЭГ n, где n = 3, 4, 5, 6. Фториды элементов в высших степенях окисления летучи, что позволило разделить изотопы урана 235U и 238U. Взаимодействие актиноидов с B, Si, C, N, P, S и Se приводит к образованию соединений нестехиометрического состава вследствие возможного присутствия элемента в разных степенях окисления.

Уменьшение радиусов элементов в ряду Th–Lr приводит к ослаблению основных свойств соединений.

Соединения актиноидов склонны к диспропорционированию. Например:

Свойства тяжелых 5f-элементов (Bk, Cf, Es, Md, No, Fm, Lr) изучены мало, поскольку они получены в виде короткоживущих радиоактивных изотопов в очень малых количествах. Однако есть основания полагать, что они подобны лантаноидам.

Актиноиды и их соединения используются в атомной энергетике. Торий используется как легирующая добавка в жаропрочных сталях, катализаторах при синтезе многих соединений, вакуумной электронике. Соли урана применяются как красители для стекла и глазурей, аналитические и фотографические препараты.

В разбавленных соляной и серной кислотах кобальт медленно растворяется с выделением водорода и образованием хлорида СоСl2 или сульфата СоSO4. Разбавленная азотная кислота растворяет кобальт с выделением оксидов азота и образованием нитрата Со(NO3)2. Концентрированная азотная кислота пассивирует кобальт. Все соли кобальта хорошо растворимы в воде. Едкие щелочи осаждают из водных растворов солей синий гидроксид Со(ОН)2 .

При взаимодействии с газообразным аммиаком при 350-450 ˚С кобальт образует нитриды Со3N и Co2N2 , которые, не являются устойчивыми.

Кобальт реагирует с водой при нагревании и в интервале 422-921˚С вытесняет водород, образуя СоО.

2.5. Химические свойства соединений кобальта

Известны окислы и гидроокиси двух-, трех- и четырехвалентного кобальта.

Окислы и гидроокиси двухвалентного кобальта. Закись кобальта СоО образуется при окислении металлического кобальта парами воды при температуре красного каления, а также при нагревании карбонатов, сульфатов.

Со2+ +Н2О t красного каления Со + Н2

Закись кобальта имеет серо-зеленый цвет с различными оттенками в зависимости от способа получения.

Закись кобальта легко растворяется в соляной, серной, азотной и других сильных кислотах, труднее – в уксусной, фтористоводородной кислотах с образованием соответствующих солей двухвалентного кобальта розового цвета

СоО + 2НСl Õ CoCl2 + H2O

Гидроокись двухвалентного кобальта образуется при добавлении едкого натра или гидроокиси аммония к растворам солей двухвалентного кобальта

2NaOH + CoS Õ Co(OH)2 + Na2S

При обычной температуре, особенно без доступа воздуха, и при осаждении небольшим избытком раствора гидроокиси натрия сначала образуется синий осадок. Синий осадок постепенно становится фиолетовым и, наконец, розовым.

Гидроокись кобальта окисляется кислородом воздуха, превращаясь в Со(ОН)3 с изменением цвета из розового в бурый. Окисление ускоряется добавлением хлора, брома или перекиси водорода.

При незначительном нагревании происходит превращение Co(OH)2 в НСоО2, а затем в Со3О4; при более высокой температуре Со3О4 превращается в СоО.

Закись-окись кобальта Со3О4 образуется при нагревании закиси кобальта СоО (400-900°С) и при сгорании пирофорного кобальта на воздухе. Она получается также при нагревании гидроокиси кобальта

Со(ОН)3 120-190°С НСоО2 240-300°С Со3О4

Со3О4 770-920°С 3СоО + ½ О2

Закись-окись Со3О4 медленно растворяется в кислотах с образованием солей двухвалентного кобальта и выделением свободного кислорода. Растворение в соляной кислоте сопровождается выделением хлора

Окись Со2О3 и гидроокись трехвалентного кобальта Со(ОН)3.

Со2О3 +H2S CoS + O2 + H2O

Co(OH)3 + H2S CoS + O2 + H2O

Простые ионы трехвалентного кобальта в водных растворах неустойчивы, они легко восстанавливаются до ионов двухвалентного кобальта.

Окись четырехвалентного кобальта СоО2 .

Этот окисел частично образуется при получении Со2О3. Он неустойчив, легко разлагается с выделением кислорода.

Соли кобальта .

Сульфид кобальта СоS – черного цвета, выделяется пропусканием сероводорода в нейтральные воды раствора солей кобальта, содержащие ацетат натрия или добавлением раствора сульфида аммония и слабощелочным водным раствором солей кобальта.

Образования, которые можно получить при действии сульфида аммония (или сероводорода) на водные растворы солей кобальта, при прямом соединении элементов при высоких температурах можно также получить сульфид кобальта Со5S4 и др. в природе встречается минерал линнеит Со3S4, который можно получить искусственно.

Сульфат кобальта СоSO4 и СоSO4 ∙ 7 H2O. Безводный сульфат кобальта используется как весовая форма при определении кобальта.

Тиосульфат кобальта СоS2О3 мало диссоциирует.

Пирофосфаты, арсенаты, карбонаты.

В водных растворах установлено потенциометрическим и спектрофотометрическим методами существование комплексного аниона СоР2О7 2-. Кондуктометрический метод указывает также на образование более сложного комплекса Со(Р2О7)2 6-. Кроме того изучены полифосфатные соединения кобальта.

Галогениды.

СоСl2, СоF2, СоJ2 хорошо растворимы в этиловом спирте, диэтиловом эфире, ацетоне и других органических растворителях, с образованием окрашенных в синий цвет растворов. Бромид кобальта СоВr2 мало растворим в этиловом и метиловом спиртах и в диэтиловом эфире.

Хлориды кобальта при растворении в воде образуют растворы розового цвета; однако при введении раствора соляной кислоты или различных органических растворителей розовая окраска переходит синюю или голубую.

Часть 3

Заключение.

Биологическая роль кобальта для сельского хозяйства.

Кобальт всегда содержится в организмах животных и растений, участвует в обмене веществ. Кобальт относится к числу микроэлементов, то есть постоянно присутствует в тканях растений и животных. Некоторые наземные растения и морские водоросли способны накапливать кобальт. Входя в молекулу витамина В12(кобаламина), кобальт участвует в важнейших процессах животного организма - кроветворении, функциях нервной системы и печени, ферментативных реакциях.

Кобальт участвует в ферментативных процессах фиксации атмосферного азота клубеньковыми бактериями.

Соединения кобальта обязательно входят в состав микроудобрений. Однако избыток кобальта для человека вреден. ПДК пыли кобальта в воздухе 0,5 мг/м3, в питьевой воде допустимое содержание солей кобальта 0,01 мг/л. Токсическая доза - 500 мг. Особенно токсичны пары октакарбонила кобальта Со2(СО)8.

Недостаток его в почве и кормах вызывает у животных тяжелое заболевание «сухотку» или «лизуху».

Большое практическое значение имеет искусственно получаемый радионуклид кобальта 60Со (период полураспада Т1/2 5,27 года). Испускаемое этим радионуклидом гамма-излучение обладает достаточно мощной проникающей способностью, и «кобальтовые пушки» - устройства, снабженные 60Со, широко используют при дефектоскопии, например, сварных швов газопроводов, в медицине для лечения онкологических заболеваний и для других целей. Используется 60Со и в качестве радионуклидной метки.

4 часть

Литература.

1. Свойства элементов в двух книгах. Под общей редакцией М.Е.Дрица. книга 2. Москва изд. Дом «Руда и металлы» 2003г.

Название "кобальт" происходит от немецкого слова Kobold, что означает "карлик, охраняющий клады" (горный дух или нечистая сила), или от греческого слова kobalo, что означает "талантливый император". Впервые термин kobelt упоминается в труде Агриколы "О горном деле и металлургии".
Археологи нашли ожерелье из стекла, окрашенного кобальтовой синью, которое было изготовлено за 2500 лет до н.э. Красители, содержащие кобальт, применялись в Китае за 907 - 618 лет до н.э. Металлический кобальт (загрязненный) впервые был получен в 1735 году шведским химиком Г. Брандтом.

Нахождение в природе, получение:

Спектральным анализом было установлено присутствие кобальта в атмосфере Солнца и различных звезд. В природе два стабильных изотопа: 59 Со и 57 Со. Содержание в земной коре 4*10 -3 %. Кобальт изредка встречается в виде самородков, однако соединения его очень распространены. Важнейшие минералы: карролит CuCo 2 S 4; линнеит Co 3 S 4 ; кобальтин CoAsS; скуттерудит CoAs 3 ; шмальтинхлоантин (Co, Ni, Fe) As 3 ; саффлорит (Co, Fe) As 2 .
В небольших количествах кобальт содержится в тканях животных и растений, в частности, он входит в состав витамина В 12 (C 63 H 88 O 14 N 14 PCo).
Металлический кобальт получают восстановлением оксидов, солей, комплексных соединений (Cl 2 , CO 3) водородом, углеродом, окисью углерода или метаном (при нагревании), алюмо- или кремнетермическим восстановлением оксидов кобальта, термическим разложением карбонилов Co 2 (CO) 8 , Co 4 (CO) 12 и электролизом водных растворов солей CoSO 4 *7H 2 O или (NH 4) 2 SO 4 *CoSO 4 *6H 2 O.

Физические свойства:

В компактном состоянии кобальт представляет собой серебристо-белый с розоватым отливом металл с плотностью 8,83 г/см 3 , т. пл. 1492° и т. кип. 3185°. Кобальт тверже железа (5,5 по шкале Мооса), более хрупок, чем сталь, обладает ферромагнитными свойствами (которые исчезают при температуре выше 1150°, и образуется парамагнитная модификация), тягуч и плохо поддается ковке. Металлический кобальт известен в двух кристаллических модификациях: a -Co - с плотной гексагональной структурой и b -Co - с кубической гранецентрированной кристаллической решеткой. Пирофорный кобальт представляет собой черный порошок, который окисляется на воздухе при обычной температуре, разогреваясь при этом до белого каления. Коллоидный кобальт окрашен в золотисто-коричневый цвет.

Химические свойства:

При обычной температуре металлический кобальт в компактном состоянии устойчив к действию сухого и влажного воздуха, воды, сильных щелочей и разбавленных растворов органических кислот. При температуре выше 300°С покрывается пленкой оксидов. Кобальт-магниевый сплав энергично разлагает воду на холоду.
Порошкообразный кобальт взаимодействует при нагревании с галогенами, серой, фосфором, мышьяком, сурьмой, углеродом, кремнием, бором, но не реагирует с азотом:
Металлический кобальт медленно растворяется в разбавленных соляной и серной кислотах и быстро - в разбавленной азотной, поскольку нормальный потенциал системы Co/Co 2+ равен -0,277В:
8Co + 20HNO 3 + (n-10)H 2 O = 8Co(NO 3) 2 *nH 2 O + 2NO + N 2
Под действием дымящей HNO 3 на холоду кобальт пассивируется. Плавиковая кислота и царская водка реагируют с кобальтом на холоду. Расплавленное едкое кали (550°С) также растворяет металлический кобальт.

Важнейшие соединения:

В соединениях кобальт проявляет степень окисления +2 и +3.
Оксид кобальта(II) , CoO - амфотерный оксид, вытесняет аммиак из теплых растворов солей аммония; при сплавлении с избытком щелочи образуются кобальтиты ярко-синего цвета, в растворах - гидроксокобальтаты.
Гидроксид кобальта(II) Co(OH) 2 ,- существует в двух модификациях, слабо растворим в воде, растворяется в теплых концентрированных растворах щелочей, минеральных кислотах и большинстве органических кислот.
Co(OH) 2 катализирует окисление сульфита натрия кислородом воздуха.
Соли кобальта(II) - обычно получают при обработке CoO или Co(OH) 2 различными кислотами. Соли сильных кислот в большинстве растворимы, растворы имеют кислую реакцию благодаря гидролизу. Разбавленные растворы солей содержат катион 2+ розового цвета. Такова же окраска кристаллогидратов, безводные соли - синего цвета.
Комплексные соединения кобальта (II) довольно неустойчивы и легко окисляются до соединений кобальта (III).
Карбонилы . Известны моно- и полиядерные карбонильные соединения кобальта:
2CoI 2 +8CO + 4Cu = Co 2 (CO) 8 + 4CuI
Дигидрид кобальта (темно-серые кристаллы) устойчив под слоем эфира ниже 5°С:
CoCl 2 + 2C 6 H 5 MgBr + 2H 2 = CoH 2 + 2C 6 H 6 + MgBr 2 + MgCl 2
Соединения кобальта (III) : известны многочисленные комплексные соединения кобальта (III): катионные (Cl 3), анионные (K 3 , нейтральные.
Для комплексов с разными лигандами возможна цис-транс изомерия.
K 3 - гексанитритокобальт(III)ат калия, нерастворим, желтый осадок, качественная реакция на соли калия (реагентом служит растворимая соль гексанитритокобальт(III)ат натрия).
Оксид кобальта(II-III) , Co 3 O 4 - сильный окислитель, растворяется в кислотах с выделением кислорода:
2Co 3 O 4 + 6H 2 SO 4 = 6CoSO 4 + O 2 + 6H 2 O.

Применение:

Компонент твердых жаропрочных, магнитных, коррозионностойких и др. сплавов и покрытий, для получения кобальтсодержащих катализаторов. Радиоактивный изотоп 60 Co (Т 1/2 =5,24с) - источник g -излучений в технике и медицине.
С древности известно применение оксидов CoO и Co 3 O 4 при изготовлении синих эмалей и для окраски в синий цвет расплавленного стекла. Способность оксидов кобальта образовывать твердые растворы (окрашенные в синий, зеленый, розовый и другие цвета) с оксидами различных металлов обусловила их применение в керамической и стекольной промышленности.

Батракова А.В.
ХФ ТюмГУ

Источники: 1. Рипан Р., Четяну И. Неорганическая химия, т.2 / пер. с румынского - М.: Изд-во Мир, 1972. - 872 с.
2. Химический энциклопедический словарь/ред. И.Л.Кнунянц. - М.: Большая Российская энциклопедия, 2003. - 792 с.

Контрольная работа

Кобальт и синтез его соли

1. Литературный обзор

1 Кобальт. Общая характеристика элемента

2 Физические свойства кобальта

3 Химические свойства кобальта

4 Комплексные соединения Co(III)

Экспериментальная часть

1 Исходные вещества

2 Методика синтеза

2 Методика синтеза

2.3 Синтез

2.4 Анализ

Литература

Введение

Соединения кобальта представляют особый интерес, так как из трех основных ферримагнитных металлов: железа, никеля и кобальта. Последний обладает наиболее высокой точкой Кюри, т. е. той температурой, при которой металл утрачивает свойство быть магнитом. Если для никеля точка Кюри составляет всего 358°С, для железа 770°С, то для кобальта она достигает 1130°С. И так как магнитам приходится трудиться в самых разнообразных условиях, в том числе и при весьма высоких температурах, кобальту суждено было стать важнейшим компонентом магнитных сталей.

Использование кобальта довольно широко.

Кобальт играет важную роль в биологических процессах. Отсутствие кобальта в пище ведет к нарушению работы организма. Кобальт входит в состав витамина В12, в котором содержится 4,5 % кобальта. Это единственный витамин, в состав которого входит металл. Биологическая роль этого витамина очень велика. При отсутствии в организме витамина В12 развивается злокачественное малокровие. Витамин В12 потребляется и микробами, в том числе теми, которые живут в кишечнике человека.

Целью данной работы является синтез соли NO3

1. Литературный обзор

1.1 Кобальт. Общая характеристика элемента

Кобальт - элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева, атомный номер 27. Обозначается символом Co (лат. Cobaltum ).

Атомный номер - 27

Атомная масса - 58,933

Плотность, кг/м³ - 8900

Температура плавления, °С - 1495

Теплоемкость, кДж/(кг·°С) - 0,414

Электроотрицательность - 1,8

Ковалентный радиус, Å - 1,16

1-й ионизац. потенциал, эв - 7,86

История кобальта

Соединения кобальта (англ. Cobalt, франц. Cobalt, нем. Kobalt) были известны и применялись в глубокой древности. Сохранился египетский стеклянный кувшин, относящийся к ХV в. до н.э., окрашенный солями кобальта, а также голубые стекловидные кирпичи, содержащие кобальт. В древней Ассирии, а также в Вавилоне из кобальта изготовляли лазурит - голубую краску, которой обливали керамические изделия. Вероятно, исходным материалом для получения кобальтовых соединений служил тогда цаффер (Zaffer) - сапфир, содержащий висмут и кобальт; откуда, по-видимому, и произошли названия красок - сафлор, шафран и др. В средние века горняки находили вместе с другими рудами кобальтовую "землю", но не знали, что с ней делать. Иногда эта земля была похожа на серебряную руду, но не содержала никакого серебра. Примесь кобальтовой земли к другим рудам мешала выплавке металлов: с образующимся густым дымом (сульфидов и арсенидов) терялась часть выплавляемого металла.

Кобальт упоминается у Бирингуччо, Василия Валентина, Парацельса и других авторов XV - XVII вв. В "Алхимическом лексиконе" Руланда (1612) о кобальте говорится: "Кобол кобальт (Koboltum, Kobaltum) или коллет (Colletum) - металлическая материя, чернее свинца и железа, растягивающаяся при нагревании. Кобальт - черная, немного похожая по цвету на золу материя, которую можно ковать и лить, но она не обладает металлическим блеском, и которая представляет собой вредную взвесь, уводящую (при плавке) вместе с дымом хорошую руду". Очевидно, здесь говорится о металлическом кобальте. Тем не менее в истории химии принято считать, что металлический кобальт был впервые описан в 1735 г. упсальским профессором Брандтом. В диссертации "О полуметаллах" Брандт указывает, в частности,что получаемый из руд металлический висмут не представляет собой чистого металла, а содержит "кобальтовый королек" (металлический кобальт). Он же выяснил,что соли кобальта окрашивают стекла в синий цвет. В чистом виде металлический кобальт был получен Верцелиусом.

Нахождение кобальта в природе

Содержание Кобальт в литосфере 1,8·10-3% по массе. В земной коре он мигрирует в магмах, горячих и холодных водах. При магматической дифференциации кобальт накапливается главным образом в верхней мантии: его среднее содержание в ультраосновных породах 2·10-2% . С магматическими процессами связано образование так называемых ликвационных месторождений кобальтовых руд. Концентрируясь из горячих подземных вод, Кобальт образует гидротермальные месторождения; в них Со связан с Ni, As, S, Cu. Известно около 30 минералов Кобальт.

В биосфере Кобальт преимущественно рассеивается, однако на участках, где есть растения - концентраторы Кобальта, образуются кобальтовые месторождения. В верхней части земной коры наблюдается резкая дифференциация Кобальта - в глинах и сланцах в среднем содержится 2·10-3% Кобальта, в песчаниках 3·10-5, в известняках 1·10-5. Наиболее бедны Кобальтом песчаные почвы лесных районов. В поверхностных водах Кобальта мало, в Мировом океане его лишь 5·10-8% . Будучи слабым водным мигрантом, Кобальт легко переходит в осадки, адсорбируясь гидрооксидами марганца, глинами и других высокодисперсными минералами.

Кобальт входит в состав минералов: каролит CuCo2S4, линнеит Co3S4, кобальтин CoAsS, сферокобальтит CoCO3, смальтин CoAs2, скуттерудит (Co, Ni)As3 и других. Всего известно около 30 кобальтосодержащих минералов. Кобальту сопутствуют железо, никель, марганец и медь. Содержание в морской воде приблизительно (1,7)·10−10%.

В природе кобальт всегда встречается вместе с никелем, главным образом в виде соединений с мышьяком. Важнейшими из минералов кобальта являются кобальтовый шпейс (смальтит) CoAs2 и кобальтовый блеск (кобальтит) CoAsS.

Ничтожные количества кобальта имеются в морской воде (10-7%) и в воде минеральных источников. Кобальт входит в состав более 30 минералов. К ним относятся каролит CuCo2SO4, линнеит Co3S4, кобальтин CoAsS, сферокобальтит CoCO3, смальтит СоAs2 и другие. Как правило, кобальту в природе сопутствуют его соседи по 4-му периоду - никель, железо, медь и марганец.

1.2 Физические свойства кобальта

Кобальт - твердый металл, существующий в двух модификациях. При температурах от комнатной до 427 °C устойчива α-модификация. При температурах от 427 °C до температуры плавления (1494 °C) устойчива β-модификация кобальта (решётка кубическая гранецентрированная). Кобальт - ферромагнетик, точка Кюри 1121 °C.

Представляет собой блестящий металл, похожий на железо, с удельным весом 8,8. Температура его плавления несколько больше, чем у никеля. Кобальт очень тягуч. Он обладает большой твердостью и прочностью, чем сталь. Он ферромагнитен и только выше 10000 переходит в модификацию, не обладающую способностью намагничиваться.

Желтоватый оттенок ему придает тонкий слой оксидов.

При обычной температуре и до 417 °С кристаллическая решетка Кобальта гексагональная плотноупакованная (с периодами а = 2,5017Å, с = 4,614Å), выше этой температуры решетка Кобальта кубическая гранецентрированная (а = 3,5370Å). Атомный радиус 1,25Å, ионные радиусы Со2+0,78Å и Со3+0,64Å. Плотность 8,9 г/см3 (при 20 °С); tпл 1493°С, tкип3100°С. Теплоемкость 0,44 кдж/(кг·К), или 0,1056 кал/(г·°С); теплопроводность 69,08 вт/(м·К), или 165 кал/(см·сек·°С) при 0-100 °С. Удельное электросопротивление 5,68·10-8ом·м, или 5,68·10-6 ом·см (при О °С). Кобальт ферромагнитен, причем сохраняет ферромагнетизм от низких температур до точки Кюри, Θ = 1121 °С. Механические свойства Кобальта зависят от способа механической и термической обработки. Предел прочности при растяжении 500 Мн/м2 (или 50 кгс/мм2) для кованого и отожженного Кобальта; 242-260 Мн/м2для литого; 700 Мн/м2 для проволоки. Твердость по Бринеллю 2,8 Гн/м2 (или 280 кгс/мм2) для наклепанного металла, 3,0 Гн/м2для осажденного электролизом; 1,2-1,3 Гн/м2для отожженного.

1.3 Химические свойства кобальта

Конфигурация внешних электронных оболочек атома Кобальта 3d74s2. В соединениях Кобальт проявляет переменную валентность. В простых соединениях наиболее устойчив Со(П), в комплексных - Со(III). Для Со(I) и Co(IV) получены только немногочисленные комплексные соединения. При обыкновенной температуре компактный Кобальт стоек против действия воды и воздуха. Мелко раздробленный Кобальт, полученный восстановлением его оксида водородом при 250 °С (пирофорный Кобальт), на воздухе самовоспламеняется, превращаясь в СоО. Компактный Кобальт начинает окисляться на воздухе выше 300 °С; при красном калении он разлагает водяной пар: Со + Н2О = СоО + Н2. С галогенами Кобальт легко соединяется при нагревании, образуя галогениды СоХ2. При нагревании Кобальт взаимодействует с S, Se, P, As, Sb, С, Si, В, причем состав получающихся соединений иногда не удовлетворяет указанным выше валентным состояниям (например, Со2Р, Co2As, CoSb2, Со3С, CoSi3). В разбавленных соляной и серной кислотах Кобальт медленно растворяется с выделением водорода и образованием соответственно хлорида СоCl2 и сульфата CoSO4. Разбавленная азотная кислота растворяет Кобальт с выделением оксидов азота и образованием нитрата Co(NO3)2. Концентрированная HNO3 пассивирует Кобальт. Названные соли Со (II) хорошо растворимы в воде [при 25°С 100 г воды растворяют 52,4 г СоCl2, 39,3 г CoSO4, 136,4 г Co(NO3)2]. Едкие щелочи осаждают из растворов солей Со2+ синий гидрооксид Со(ОН)2, которая постепенно буреет вследствие окисления кислородом воздуха до Со(ОН)3. Нагревание в кислороде при 400-500 °С переводит СоО в черную закись-окись Со3О4, или СоО·Со2О3 - соединение типа шпинели. Соединение того же типа CoAl2О4 или СоО·Al2О3 синего цвета (тенарова синь, открытая в 1804 году Л. Ж. Тенаром) получается при прокаливании смеси СоО и Al2О3при температуре около 1000 °С

Из простых соединений Со (III) известны лишь немногие. При действии фтора на порошок Со или СоCl2 при 300-400 °С образуется коричневый фторид CoF3. Комплексные соединения Со (III) весьма устойчивы и получаются легко. Например, KNO2 осаждает из растворов солей Со (II), содержащих СН3СООН, желтый труднорастворимый гексанитрокобальтат (III) калия K3. Весьма многочисленны кобальтаммины (прежнее название кобальтиаки) - комплексные соединения Со (III), содержащие аммиак или некоторые органических амины.

Вода и воздух при обычной температуре не оказывают действия на компактный кобальт, но в мелкораздробленном состоянии он обладает пирофорными свойствами. В разбавленных кислотах, например в соляной или серной, кобальт растворяется значительно труднее, что соответствует его положению в электрохимическом ряду напряжений справа от железа (его нормальный потенциал равен -0,28 в). Разбавленная азотная кислота легко растворяет кобальт, а при действии концентрированной HNO3 он пассивируется. Образует соединения чаще всего в степени окисления +2, реже - в степени окисления +3 и очень редко в степенях окисления +1, +4 и +5.

При нагревании на воздухе Со окисляется, а при температуре белого каления сгорает до Сo3O4. При нагревании кобальт соединяется со многими другими веществами, причем реакция его с S, P, As, Sb, Sn и Zn нередко сопровождается воспламенением. При сплавлении с кремнием Со образует целый ряд соединений. При высокой температуре он соединяется также с бором, но не реагирует с азотом. Кобальт легко образует соединения с галогенами. С железом и никелем, а также с хромом и марганцем он образует твердые растворы в любых соотношениях. По отношению к углероду кобальт ведет себя так же, как железо; однако при охлаждении углеродсодержащих расплавов никогда не выделяется карбид Со3С (хотя, по данным Руффа, существование его в расплаве является вероятным); если содержание углерода превышает пределы существования твердого раствора, избыток углерода всегда выделяется в виде графита. При действии СН4 или СО на тонкоизмельченный металлический кобальт при слабом нагревании (ниже 225°), по данным Бара, образуется соединение Со2С, разлагающееся при более высоких температурах. Каталитическое разложение СH4 и СО под действием кобальта происходит лишь при таких температурах, когда карбид становится неустойчивым

Co + 2HCl(разб.)+t= CoCl2 + H2

Co + H2SO4(разб.)+t= CoSO4+ H2

3Co + 8HNO4(разб.)+t= 3Co(NO3)2+ 2NO + 4H2O

Co + 4NaOH + 3O2+t= 4NaCoO2 + 2H2O

2Co + O2 +t=2CoO

Получение

Кобальт - относительно редкий металл, и богатые им месторождения в настоящее время практически исчерпаны. Поэтому кобальтсодержащее сырье (часто это никелевые руды, содержащие кобальт как примесь) сначала обогащают, получают из него концентрат.

Этот сплав затем выщелачивают серной кислотой. Иногда для извлечения кобальта проводят сернокислотное «кучное» выщелачивание исходной руды (измельченную руду размещают в высоких кучах на специальных бетонных площадках и сверху поливают эти кучи выщелачивающим раствором).

Для очистки кобальта от сопутствующих примесей все более широко применяют экстракцию.

Наиболее сложная задача при очистке кобальта от примесей - это отделение кобальта от наиболее близкого к нему по химическим свойствам никеля.

2СоСl2+ NaClO + 4NaOH + H2O = 2Co(OH)3↓ + 5NaCl

Чёрный осадок Co(OH)3 прокаливают для удаления воды, а полученный оксид Со3O4 восстанавливают водородом или углеродом. Металлический кобальт, содержащий до 2-3% примесей (никель, железо, медь), может быть очищен электролизом.

Образование соединений кобальта

·При нагревании, кобальт реагирует с галогенами, причём соединения кобальта (III) образуются только с фтором. 2Co + 3F2 → CoF3, но, Co + Cl2 → CoCl2

·С серой кобальт образует 2 различных модификации CoS. Серебристо-серую α-форму (при сплавлении порошков) и чёрную β-форму (выпадает в осадок из растворов).

·При нагревании CoS в атмосфере сероводорода получается сложный сульфид Со9S8

·С другими окисляющими элементами, такими как углерод, фосфор, азот, селен, кремний, бор. кобальт тоже образует сложные соединения, являющиеся смесями где присутствует кобальт со степенями окисления 1, 2, 3.

·Кобальт способен растворять водород, не образуя химических соединений. Косвенным путем синтезированы два стехиометрических гидрида кобальта СоН2 и СоН.

·Кобальт создаёт комплексные соединения. Чаще всего на основе аммиака.

Наиболее устойчивыми комплексами являются лутеосоли }