12.07.2019

Экологические преимущества замкнутого технологического. Смотреть страницы где упоминается термин циклы экологические. Из отходов — в нужные вещи


  • 3.1.Основные свойства живых систем
  • 3.2.Надорганизменные биосистемы. Популяции
  • 3.3.Экосистемы
  • - Перенос веществ, - перенос энергии
  • Площади, биомасса и продуктивность основных биомов Земли
  • 3.4.Биосфера
  • Сравнение биосферы с другими геосферами Земли
  • Количественная характеристика биомассы и продуктивности современной биосферы
  • 3.5.Биотическая регуляция окружающей среды
  • 3.6.Эволюция биосферы
  • Главаiv. Экологическая среда
  • 4.1.Факторы среды
  • 4.2.Закономерности абиотических воздействий
  • 4.3.Закономерности биотических воздействий
  • Классификация межвидовых отношений в зависимости от влияния численности каждого из видов пары на изменения численности другого
  • 4.4.Ресурсы биосферы
  • Компоненты радиационного баланса различных природно-климатических зон России (Вт/м2)
  • Распределение водных запасов Земли
  • Распространенность основных типов почв мира и степень их освоения
  • Главаv. Техносфера и поглощение природных ресурсов
  • 5.1.Техногенез
  • Рост техносферы в XX веке
  • 5.2.Техносфера
  • 5.3.Ресурсы техносферы
  • 5.4.Земля, вода, биоресурсы
  • Площадь земель, не затронутых хозяйственной деятельностью (%)
  • Коэффициент антропогенного давления и доля (в %) ненарушенных территорий
  • Ландшафтно-хозяйственная структура земель всего мира и Российской Федерации
  • 5.5.Энергетические и минеральные ресурсы
  • Потенциальные и используемые ресурсы горючих ископаемых мира* (млрд т условного топлива)
  • Потенциальная ценность запасов полезных ископаемых России
  • Главаvi. Техногенное загрязнение среды
  • 6.1.Техногенные эмиссии и воздействия
  • Удельные выбросы в атмосферу при работе тэс мощностью 1000 мВт на разных видах топлива, г/кВт *час
  • Состав отработавших газов автомобиля, % по объему
  • Газовые выбросы (до очистки) основных переделов черной металлургии (без коксохимического производства), в кг/т соответствующего продукта
  • 6.2.Загрязнение атмосферы
  • Выбросы в атмосферу пяти главных загрязнителей в мире и в России (млн т)
  • 6.3.Загрязнение природных вод
  • Ориентировочные количества массовых загрязнителей океана и континентальных вод планеты
  • 6.4.Загрязнение земли
  • 6.5.Радиационное загрязнение
  • Площади областей и республик России, загрязненных цезием-13 7 (по состоянию на январь 1995 г.)
  • 6.6.Физическое волновое загрязнение среды
  • Сравнительная оценка шумовых воздействий
  • Главаvii. Техногенные поражения и экологическая безопасность
  • 7.1.Техногенные поражения
  • Динамика чс на территории рф*
  • 7.2.Загрязнение среды и здоровье людей
  • Коэффициенты накопления для некоторых опасных веществ (Быков, Мурзин, 1997)
  • 7.3.Экологическая безопасность
  • 7.4.Оценка экологического риска
  • Годовой индивидуальный риск смерти, обусловленной различными причинами (Россия, 1996г.)
  • Стресс-индексы для/наличных групп загрязнителей окружающей среды
  • Число преждевременных смертей, связанных с годом работы блока мощностью 1гВт «угольном и атомном топливном циклах
  • Главаviii. Экологическая регламентация техногенных воздействий
  • 8.1.Эколого-экономические и природно-технические системы
  • 8.2.Соизмерение производственных и природных потенциалов территории
  • Соизмерение техногенной нагрузки с экологической техноемкостыо двух различных территорий
  • 8.3.Экологическое нормирование
  • 8.4.Экологический мониторинг
  • 8.5.Организационные формы контроля экологической регламентации
  • Главаix. Экологизация экономики
  • 9.1.Экологическая обусловленность экономики
  • Зависимость отраслей мировой экономики по сырьевому обеспечению объема производства от современных (а) и связанных с геологическим прошлым Земли (б) экологических процессов и ресурсов биосферы, (в %)
  • 9.2.Главные слагаемые экологизации экономики
  • 9.3.Экономические издержки и платность природопользования
  • Затраты на охрану природы в Российской Федерации в 1990 и 1998 гг. (млн усл. Единиц)
  • 9.4.Необходимость структурных изменений экономики
  • Главаx. Экологизация производства
  • 10.1.Принципы и технологии экологизации производства
  • 10.2.Проблемы отходности производства
  • 10.3.Биотехнологии
  • 10.4.Средозащитная техника
  • Границы санитарно-защитных зон вдоль трассы лэп на населенной местности
  • 10.5.Технологии постиндустриальной цивилизации
  • Главаxi. Выбор концепции развития
  • 11.1.Место и роль человека в экосфере
  • 11.2.Демографический взрыв и его следствия
  • 11.3.Путь к новой парадигме развития
  • 11.4.Концепция экоразвития
  • Приложения. Справочный материал п1. Применяемые единицы измерения и их соотношения
  • Кратные единицы величины
  • П2. Энергетика. Биоэнергетика
  • Теплоты реакций окисления органических веществ
  • Обмен газов, воды и энергии при окислении углеводородов, жиров и белков в организме млекопитающих
  • Обмен веществ и морфометрия у человека
  • П3. Предельно допустимые концентрации (пдк) некоторых веществ в атмосферном воздухе, мг/м3
  • В воде, мг/л
  • П4. Единицы радиоактивности и дозы радиоактивного облучения
  • П5. Некоторые масштабные техногенные катастрофыxxвека*
  • Основные дозовые пределы (Нормы радиационной безопасности нрб -96)
  • Выделение загрязняющих веществ в термических печах
  • Удельное выделение пыли при механической обработке чугуна и цветных металлов
  • Удельное выделение пыли (г/с) основным технологическим оборудованием при абразивной обработке металлов без охлаждения
  • Удельное выделение аэрозолей масла и эмульсола при механической обработке металлов с охлаждением
  • Пробеговые выбросы загрязняющих веществ легковыми автомобилями по территории населенных пунктов
  • Значения коэффициента, учитывающего изменение выбросов загрязняющих веществ легковыми автомобилями при движении но территории населенных пунктов
  • Словарь терминов
  • Литература Рекомендуемая
  • Дополнительная
  • Оглавление:
  • Акимова Татьяна Акимовна,
  • Главаx. Экологизация производства

    Проработав эту главу, вы должны уметь:

    1. Охарактеризовать основные направления экологизации промышленного производства, энергетики, сельского хозяйства и транспорта.

    2. Дать определение безотходной и малоотходной технологиям и прокомментировать возможности их реализации.

    4. Оценить современные промышленные технологии с точки зрения их природоемкости.

    5. Привести примеры биотехнологий и рассказать об их достоинствах и недостатках.

    6. Перечислить методы и средства защиты окружающей среды, оценить вклад средозащитной техники в экологизацию производства.

    7. Изложить свои соображения по поводу постиндустриальных технологий.

    10.1.Принципы и технологии экологизации производства

    Основные направления. Начиная с 60-х годов экологическая ситуация и возрастание (в основном через экономику и законодательство) экологических требований к ведению хозяйства привели в разных странах к ряду изменений в промышленном производстве, энергетике, транспорте в направлении усиления природоохранных и средозащитных функций. Прежде часто беспечное и беспорядочное отношение к отходам производства, не подлежащим утилизации или вторичной переработке, сменилось более организованным их складированием и захоронением, созданием специализированных полигонов и хранилищ. Во многих случаях эта деятельность носила стихийный характер и была связана со стремлением скрыть опасные загрязнения. Примером может служить домпинг - «утопление» в водоемах, морях вредных химических и радиоактивных отходов в емкостях или просто «навалом».

    По существу концентрированно и перемещение вредных веществ в пространстве или, наоборот, их разбавление в больших объемах транспортирующих сред - воздуха и воды - до сих пор остаются главными способами «охраны окружающей среды», хотя с экологической точки зрения представляют собой «заметание сора под лавку». В последние десятилетия это направление дополнилось довольно циничной «экологической геополитикой», при которой опасные агенты экспортируются в слаборазвитые страны - как в виде строительства там высокоотходных предприятий, так и в форме натурных загрязнителей.

    Более прогрессивное направление - очистка выбросов и стоков от загрязнителей - по мере совершенствования соответствующих технологий постепенно переходит к улавливанию отходов уже в виде вторичного сырья, полезных материалов. Циклы реутилизации вторичного сырья включают производство различных изделий, сжигание органических отходов с получением полезной энергии, переработку мусора в компост, получение биогаза, обеспечение биотехнологий и др. Переориентация различных производств на малоотходные циклы основана на создании совершенного очистного и средозащитного оборудования, «экологизированной» техники, мусороперерабатывающих агрегатов и предприятий. В ряде развитых стран такая «экологическая промышленность» оказывается в ряду лидирующих производств, заметно расширяет сферу занятости и приносит немалую прибыль. Возникает ситуация, при которой экологические требования не противоречат экономическим интересам, когда капитал приобретается не за счет ухудшения состояния среды, а благодаря решению экологических проблем. Другими словами, происходит экологическая конверсия производства.

    Экологизация промышленного производства нацелена на одновременное повышение эффективности и снижение его природоемкости. Она предполагает формирование прогрессивной структуры общественного производства, ориентированной на увеличение доли продукции конечного потребления при снижении ресурсоемкости и отходности производственных процессов. Существует несколько принципиальных направлений снижения природоемкости:

      изменение отраслевой структуры производства с уменьшением относительного и абсолютного количества природоемких высокоотходных производств и исключением выпуска антиэкологичной продукции;

      кооперирование разных производств с целью максимального использования отходов в качестве вторичных ресурсов; создание производственных объединений с высокой замкнутостью материальных потоков сырья, продукции и отходов;

      смена производственных технологий и применение новых, более совершенных ресурсосберегающих и малоотходных технологий;

      создание и выпуск новых видов продукции с длительным сроком жизни, пригодных для возвращения в производственный цикл после физического и морального износа; сокращение выпуска расходных материалов;

      совершенствование очистки производственных эмиссии и транспортирующих сред от техногенных примесей с одновременной детоксикацией и иммобилизацией конечных отходов; разработка и внедрение эффективных систем улавливания и утилизации отходов.

    Каждое из этих направлений в отдельности способно решить лишь локальную задачу. Для снижения природоемкости производства в целом необходимо объединение всех этих способов. При этом центральное место занимают проблемы технологического перевооружения, внедрения малоотходных технологий, экономического и технического контроля экологизации.

    Экологизация энергетики помимо требований, относящихся к промышленному производству, предполагает осуществление разнообразных мер, которые направлены на:

      постепенное сокращение всех способов получения энергии на основе химических источников, т.е. с помощью экзотермических химических реакций, в том числе окислительных и электрохимических, и в первую очередь - сжигания любого топлива;

      максимальную замену химических источников природными возобновимыми источниками энергии, среди которых ведущая роль должна принадлежать солнечной энергии.

    О соответствующих ресурсах и технических возможностях уже говорилось (гл.5). В идеале единственным действительно экологичным химическим топливом может стать только водород, полученный на основе ге-лиоэнергетического фотолиза воды. Что касается ядерной, в том числе и будущей термоядерной энергетики (на основе того же водорода, но в существенно меньшем количестве), то даже при абсолютном устранении всех форм радиационного загрязнения (что весьма проблематично) ocraeft ся неустранимое тепловое загрязнение экосферы.

    Экологизация энергетики в рамках преобразования ее топливных ресурсов содержит множество резервов и принципиальных технических решений - от общего сокращения объема энергетики на основе всех форм экономии энергии до изменения структуры использования топлив и технологий преобразования энергии. Сейчас уже и энергетикам становится ясно, что главным мотивом вынужденной экологизации энергетики является не столько близость исчерпания топливных ресурсов, сколько требования глобальной экологии.

    Экологизация транспорта предполагает:

      включение экологических требований в организацию транспортных потоков с целью уменьшения транспортного загрязнения за счет сокращения холостых пробегов и рационализации маршрутов;

      подавление тенденции индивидуализации транспортных средств и содействие развитию комфортного и экономичного общественного транспорта с целью уменьшения общего числа транспортных единиц:

      создание новых транспортных средств и замена одних средств транспорта другими, более экологичными, а также создание новых, более экологичных двигателей для имеющихся транспортных средств;

      разработка и применение более безопасных топлив или других энергоисточников; замена вредных топливных присадок каталитическими средствами оптимизации сжигания; дожигание и очистка выхлопов двигателей внутреннего сгорания;

      пассивная и активная защита от шума.

    Все эти меры очень важны, так как без них общая природоемкость транспорта в скором времени может превзойти природоемкость стационарной энергетики и промышленного производства.

    Экологизация сельского хозяйства еще в недавнем прошлом казалась бы излишним требованием, так как неиндустриализированное земледелие и животноводство были по существу самой экологичной областью хозяйственной деятельности человека. Однако в XX веке произошло быстрое превращение сельского хозяйства в агропромышленное производство со всеми последствиями механизации и химизации. Индустриализация агрокомплексов и ферм, широкое применение минеральных удобрений и ядохимикатов повысили удельную продуктивность агроценозов, но снизили их экологичность и экологические качества сельскохозяйственной продукции. Для преодоления этой тенденции необходим комплекс мер, который помимо требований экологизации, характерных для промышленности, включает также:

      ограничение использования солевых форм минеральных удобрений и замена их специально трансформированными органическими удобрениями и колловдированными органоминеральными смесями (эту технологию иногда обозначают как «биологическое» или «органическое» земледелие);

      минимизацию применения пестицидов и максимальную замену их биологическими средствами борьбы с вредителями;

      исключение гормональных стимуляторов и химических добавок при кормлении животных;

      предельную осторожность в использовании трансгенных форм сельскохозяйственных растений и других продуктов генной инженерии;

      применение наиболее щадящих методов обработки земли. Дальнейшее изложение касается в основном средств экологизации промышленного производства.

    Модели производственных процессов с точки зрения экологии. Любой производственный процесс представляет собой некоторую систему, органически связанную с внешней средой. Такая производственная система получает из окружающей среды исходное сырье, материалы, энергию, а отдает в нее готовую продукцию и всевозможные отходы. Функционирование системы осуществляется благодаря потоку энергии, подводимой извне (электрической, солнечной и т.п.) либо генерируемой внутри системы за счет физико-химических процессов. К отходам относятся все вещества и материалы, тепловые выбросы, физические и биологические агенты, которые попадают во внешнюю среду и в дальнейшем уже не участвуют в получении продукции или энергии.

    Рис. 10.1. Принципиальные модели технологических процессов:

    А - незамкнутый; Б - замкнутый; В - изолированный

    Если пользоваться представлениями термодинамики, то, как и все системы, технологические процессы в принципе подразделяются на три категории: незамкнутые (открытые), замкнутые и изолированные. Они представлены на рис. 10.1 в виде блоковых моделей. Абсолютное большинство реальных технологических процессов относятся к категории незамкнутых (рис. 10.1, А). Замкнутыми считаются такие системы, у которых отсутствует обмен с внешней средой веществом, но возможен обмен

    энергией. Технологическим аналогом замкнутой системы может служить такой процесс, в котором полностью отсутствуют отходы химических веществ - твердые, жидкие и газообразные выбросы (рис. 10.1, Б). Например, конечная сборка изделия из готовых деталей. При этом обмен с внешней средой исходным сырьем и готовой продукцией во внимание не принимается, хотя продукцию также можно рассматривать как отложенный отход. Теоретически возможны и изолированные процессы, которые не дают ни материальных, ни энергетических отходов (рис. 10.1, В).

    В общем случае все технологические процессы можно рассматривать с точки зрения их экологического соответствия. Относительно экологичными можно считать такие технологические процессы и производства, воздействие которых на окружающую среду в рамках определенных количественных соотношений не нарушает нормального функционирования природных экосистем. Неэкологичные техпроцессы создают повышенную техногенную нагрузку и оказывает негативное воздействие на состояние окружающей природной среды.

    Неэкологичным может быть любой технологический процесс. Так, замкнутый техпроцесс, не имеющий отвода химических веществ в окружающую среду, нельзя считать экологичным, если он сопровождается вредными физическими воздействиями: тепловыми выбросами, шумами, электромагнитными полями и т.п.

    Экологичность производственных процессов можно оценить с помощью метода сырьевых балансов, который основан на законах сохранения: масса всех используемых ресурсов (сырья, топлива, воды и т.п.) в конечном итоге равна массе готовых продуктов и промышленных отходов. Рассмотрим схемы материальных потоков в производствах разной степени замкнутости (рис. 10.2). Приняты следующие обозначения:

    R - поток ресурсов (исходное сырье, основные и вспомогательные материалы, полуфабрикаты);

    W - поток отходов (химические вещества и энергия), загрязняющий среду и уносящий определенную часть полезных ресурсов;

    W y - поток уловленных отходов;

    Р - поток готовой продукции.

    Незамкнутому производственному процессу (рис. 10.2, А) соответствует следующее уравнение материально-технического баланса:

    R = Р + W = (R – W y) + W. (10.1)

    Скобки в уравнении указывают на единство потока (ресурсов и отходов). «Отходность производства» можно оценить по коэффициенту К отх = W/R. Соответственно коэффициент безотходности К б = Р/ R. Производственный процесс, предусматривающий очистку загрязняющих потоков, представлен схемой 10.2, Б, а при использовании уловленных веществ W y в качестве вторичного сырья - схемой 10.2, В. В последнем случае материально-технический баланс описывается системой уравнений:

    (R + W y) = (R + W y - W)+W;

    W = (W - W y) + W y .

    В замкнутом производственном цикле (рис. 10.2, Г) происходит полная переработка и утилизация потока отходов W y , который вновь возвращается в сферу производства. Здесь потоки W и W y количественно равны, а поток готовой продукции Р соответствует потоку R.

    В ряде работ рассматриваются математические модели экологичности техпроцессов с различными схемами входных, промежуточных и выходных потоков. В качестве характеристик потоков принимаются не только массовые расходы вещества, но и его концентрации, температура, давление, расход тепла и другие физические параметры, связанные между собой балансовыми уравнениями. Методы моделирования производственных процессов оказываются полезными при решении задач оптимизации технологий по экологическим критериям.

    Рис. 10.2. Материальные потоки в производственных процессах различной степени замкнутости

    В последние годы рынки экологически чистых видов энергии растут чрезвычайно высокими темпами, свой вклад в развитие новых технологий и создание альтернативных видов топлива вносят не только ученые, но и компании, которые инвестируют средства в поиск решений экологических проблем. Для сохранения природных ресурсов, идет поиск новых видов биотоплива. Третьим поколением растительного сырья, которое можно применить для выработки энергии, уже считаются водоросли. Вложениями в экологию можно считать не только прямые природоохранные мероприятия, но и капиталовложения в ресурсосберегающую структурную перестройку, малоотходные и безотходные технологии.

    Источниками экологической опасности являются разработка месторождений полезных ископаемых и строительство нефте- и газопроводов, промышленность, использующая старые технологии, концентрация автотранспорта и нерацио­нальное природопользование, приводящее к трансформации природно-ресурсного потенциала. Кроме того, климат региона - слишком жаркий летом и холодный зимой - зачастую является причиной экологической нестабильности.

    Одно из направлений экологизации экономического развития состоит в широком развитии малоотходных и ресурсосберегающих технологий. Цель их развития - создание замкнутых технологических циклов с полным использованием поступающего сырья и отходов. К технологии безотходного производства прибегла и компания «АгроСиб-Раздолье», которая начала выпускать в Алтайском крае топливные брикеты из лузги подсолнечника.

    Безотходное производство

    Раньше на предприятии «АгроСиб-Раздолье» производили масло и шроты - концентрированный корм для птицефабрик и животноводческих ферм. За последний год мощности компании выросли, и встал вопрос о целесообразном использовании отходов основного производства. «Сегодня мы перерабатываем 600 тысяч тонн подсолнечника. Увеличилось количество отводимой лузги. Котельная работает на пределе. Вот и возникла необходимость утилизировать лузгу», - рассказывает генеральный директор «АгроСиб-Раздолье» Владимир Анипченко .

    На покупку оборудования и запуск производства топливных брикетов «АгроСиб-Раздолье» потратило 17 млн руб­лей. Срок окупаемости проекта оценивается в полтора года.

    Сами топливные брикеты представляют собой небольшие цилиндры диаметром до 12 сантиметров и длиной до 30 сантиметров. Сегодня «АгроСиб-Раздолье» производит до 20 тонн брикетов в день, но с увеличением объемов производимого масла будет меняться и мощность производства топлива. «Насколько нам известно, в Алтайском крае производят еще топливо из опилок отходов деревообрабатывающего производства, но не в брикетах, а в пеллетах. На Алтае также есть производство топливных гранул из лузги овса», - заявляет маркетолог-аналитик компании Евгения Васильева .

    По мнению координатора программ благотворительной организации «Сибирский экологический центр» Александра Дубынина , отходы сельского хозяйства должны быть сырьем для производства биотоплива и включаться в цикл использования ресурса. «В мире отмечается тенденция - компания, производящая какой-либо товар, должна нести ответственность и за утилизацию отходов. Так или иначе, мы должны выходить на такие замкнутые циклы - произвел и переработал. Конечно, надо просчитывать, насколько это выгодно для предприятия, но с экологической точки зрения любые такие проекты важны, и мы должны их всячески поддерживать, а государство - предоставлять максимально хорошие условия, если это малый бизнес - давать гранты или беспроцентные кредиты», - комментирует Дубынин.

    По словам Васильевой, большого спроса на биотопливо из лузги еще нет, есть пока только интерес. «Интерес достаточно большой, нам поступают звонки. Продукт в любом случае инновационный, он требует большой разъяснительной и просветительской работы, потому что людям надо показывать и доказывать, в чем выгода, какие преимущества имеет это топливо по сравнению с другими. Но спрос еще полностью не сформировался, рынок в стадии становления», - вздыхает маркетолог.

    Говоря о новой технологии, Евгения Васильева делает оговорку: переработка лузги - это не изобретение алтайского завода. Маслоэкстракционные предприятия, которые также производят биотопливо из лузги, работают в европейской и южной частях России. «Но это новинка в Алтайском крае и в Сибири вообще», - добавляет она.

    Использовать топливные брикеты из лузги можно вместо дров или угля и в частном доме, и в котельных небольшой мощности, отапливающих села или административные учреждения: школы, больницы. Дрова и уголь можно заменять или дополнять этими топливными брикетами.

    Вместо дров и угля

    Древесина, которая сама по себе является биотопливом, - ресурс возобновляемый. В настоящее время в мире для производства дров или биомассы выращивают энергетические леса, состоящие из быстрорастущих пород - таких как, например, тополь. В России на дрова и биомассу в основном идет балансовая древесина, не подходящая по качеству для производства пиломатериалов.

    На замену дровам приходят топливные гранулы и брикеты - прессованные изделия из древесных отходов (опилок, щепы, коры), соломы, отходов сельского хозяйства (лузги подсолнечника, ореховой скорлупы) и другой биомассы. Древесные топливные гранулы называются пеллетами, они имеют форму небольших - до трех сантиметров в длину и двух в диаметре - цилиндрических или сферических гранул. Сегодня в России производство топливных гранул и брикетов экономически выгодно только при больших объемах.

    Однако для использования пеллетов необходимо специальное котельное оборудование, установка которого требует значительных затрат, в то время как топливные брикеты из лузги можно сжигать в уже установленных котельных.

    По исследованиям компании «АгроСиб-Раздолье», в сравнении с традиционным углеводородным сырьем у топливных брикетов из лузги есть ряд неоспоримых плюсов: в отличие от дров топливные брикеты обладают стабильной влажностью - 8–10 процентов, в то время как влажность дров может постоянно меняться, отчего меняется и их теплопроводность. Оптимальная влажность дров для топки составляет порядка 20–25 процентов, но тогда их теплопроводность на 30–35 процентов меньше, чем у брикетов. «Зачастую поставляемые дрова имеют влажность 30–40 процентов, в таком случае теплотворность брикетов может быть выше на 40–100%.То есть для производства одного и того же количества тепловой энергии потребуется 100 кг брикетов от 130 до 200 килограммов дров», - объясняют в «АгроСиб-Раздолье». Количество выделяемого при горении брикетов тепла сопоставимо с теплоотдачей при горении каменного угля, но в то же время зольность брикетов намного ниже - всего 2,8 процента против 10–20 процентов у каменного угля и 5–10 процентов у древесины. «То есть образуется в 5–10 раз меньше продуктов сгорания. К тому же продукты сгорания угля содержат много вредных веществ и требуют обязательной утилизации - вывоза на золошлакоотвалы и прочее. Образующаяся в результате сгорания лузги зола абсолютно безвредна и может использоваться как удобрение», - уточняет Евгения Васильева.

    Другие плюсы - экономия на транспортировке, экономия занимаемого ими пространства, но главное - экологичность. По словам Васильевой, при изготовлении брикетов не применяются клеящие синтетические вещества. «При высоком давлении и температуре из волокон выделяется клейкое вещество - лигнин, которое и соединяет лузгу в брикет. В связи с предельно малым содержанием в лузге таких элементов, как сера, азот, хлор при сжигании топливных брикетов не образуется никаких вредных летучих веществ», - поясняет маркетолог-аналитик.

    Стоимость брикетов - от 1 900 рублей за тонну без транспортной доставки, цена зависит от вида упаковки, объема закупки и других факторов. По мнению производителей, это достаточно конкурентоспособная цена по сравнению с ценой дров. «В Барнауле сейчас средняя цена березовых дров - 1 300 руб­лей за кубометр. Если переводить это на килограммы и теплопроводность, то сжигание брикетов на 50–60 процентов выгоднее по цене. Цена угля для котельных примерно на том же уровне, а для населения уголь также обойдется существенно дороже», - объясняют в компании.

    Продавать брикеты компания планирует в Алтайском крае и в ближайших регионах. В «АгроСиб-Раздолье» опасаются, что более протяженная логистика приведет к нерентабельному удорожанию продукта. Сбывать биотопливо компания намерена через своего барнаульского дистрибьютора.

    Создание замкнутых производственных циклов связано с со­вершенствованием методов очистки техногенных выбросов и воз­можностью их повторного использования.

    Разработка эффективных методов очистки газов решается по нескольким направлениям, основные из которых следующие:

    совершенствование и разработка новых технологий и методов очистки;

    применение современных коррозионно- и термостойких ма­териалов и агрегатов в системах газоочистки.

    Пыль является одним из токсичных компонентов, присутству­ющих в газовых выбросах. Для тонкой очистки газов от пыли в различных отраслях промышленности применяют электрофильт­ры, которые характеризуются высоким потреблением электриче­ской энергии.

    В настоящее время разрабатываются и внедряются экономич­ные тканевые фильтры. В них используют современные тканевые материалы на коррозионно- и термостойкой основе. Такие аппа­раты могут заменить электрофильтры и работать при температуре до 750 °С. Новые конструкции тканевых рукавных фильтров на­шли применение в цветной металлургии.

    В различных отраслях промышленности широко используется абсорбционная очистка газов, но при этом образуется большое количество шламов, которые не находят применения и транс­портируются на промышленные свалки или в шламонакопители.

    В качестве альтернативы в настоящее время разрабатывают ме­тоды адсорбционной очистки с применением твердых сорбирую­щих материалов и последующей регенерацией адсорбента, что позволяет значительно сократить количество шламов.

    Разрабатываются и применяются технологические процессы с замкнутым циклом рециркуляции газов. По этой технологии отходя­щие газы промышленных производств проходят очистку, осво­бождаются от пыли и токсичных примесей, а затем их вновь пода­ют на технологическую стадию.

    Таким образом, уже сейчас имеются достаточно эффективные методы газоочистки и технологические процессы, позволяющие значительно снизить или ликвидировать выброс токсичных газов в атмосферу.

    Вопросы уменьшения жидких техногенных выбросов решаются путем совершенствования методов очистки промышленных сточных вод и организации замкнутых водооборотных циклов.

    Состав сточных вод весьма различен, что делает невозможным подбор универсальных методов очистки. Одним из наиболее рас­пространенных и эффективных способов является биологическая очистка. Использование уникальных свойств микробных клеток позволяет значительно ускорить процессы самоочищения загряз­ненной воды за счет создания искусственных условий, благопри­ятных для роста микробов.

    Наиболее признанным и эффективным технологическим при­емом является организация замкнутых водооборотных циклов. При этом сокращается водопотребление и уменьшается сброс промыш­ленных вод в природные водоемы благодаря многократному ис­пользованию воды.



    Реализация водооборотных схем зависит от технологий очист­ки загрязненной воды, обеспечивающих возможность ее возврата в цикл. Обычно устанавливают локальные устройства для очистки сточных вод до норм, позволяющих использовать воды повторно. В этом случае свежая вода расходуется только для восполнения потерь.

    Замкнутые водооборотные циклы реализованы на многих про­изводствах. Например, в химической промышленности при произ­водстве экстракционной фосфорной кислоты, при получении сер­ной кислоты и аммиака. В сочетании с реализацией новых аппаратурно-технических решений при производстве фосфорной кисло­ты это дало возможность уменьшить потребление воды в 20 раз.

    ЗАМКНУТЫЙ ТЕХНОЛОГИЧЕСКИЙ ЦИКЛ

    способ орг-ции технологич. схемы произ-ва (обогащения полезных ископаемых, гидрометаллургии, хим. технологии), при к-ром один или несколько (но не все) продукты технологич. операции возвращаются в предыдущую или в ту же операцию, обеспечивая полноту переработки исходного сырья.


    Большой энциклопедический политехнический словарь . 2004 .

    Смотреть что такое "ЗАМКНУТЫЙ ТЕХНОЛОГИЧЕСКИЙ ЦИКЛ" в других словарях:

      Охватывает замкнутый воспроизводственный цикл от добычи природных ресурсов и профессиональной подготовки кадров до непроизводственного потребления. В рамках ТУ осуществляется замкнутый макропроизводственный цикл, включающий добычу и получение… … Словарь бизнес-терминов

      Технологический процесс - (Process) Определение технологического процесса, типы технологического процесса Определение технологического процесса, типы технологического процесса, правила процесса Содержание Содержание Определение. Понятие технологического процесса Основные … Энциклопедия инвестора

      Покрытия термодиффузионные цинковые (ТДЦ) Содержание 1 Определения 2 Защита металлов от коррозии … Википедия

      Содержание 1 Димитровградский завод тросов привода «Автопартнер» 2 История 3 Деятельность … Википедия

      Координаты: 59°57′28.98″ с. ш. 30°22′44.68″ в. д. / 59.9580507, 30.37908 … Википедия

      Средний бизнес - (Medium business) Определение среднего бизнеса, нюансы среднего бизнеса Информация об определении среднего бизнеса, нюансы среднего бизнеса Содержание Содержание О “Что делать” и “с чего начать” вот в чем вопрос! О пользе… … Энциклопедия инвестора

      система - 4.48 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей. Примечание 1 Система может рассматриваться как продукт или предоставляемые им услуги. Примечание 2 На практике… … Словарь-справочник терминов нормативно-технической документации

      Или АСУ комплекс аппаратных и программных средств, предназначенный для управления различными процессами в рамках технологического процесса, производства, предприятия. АСУ применяются в различных отраслях промышленности, энергетике,… … Википедия

      Один из крупнейших советских писателей. Род. в Сосновке, степном хуторе Самарской губ. Воспитывался в семье отчима разорившегося помещика. Мать писательница, печаталась под псевдонимом Александры Бострем. Окончил Петербургский… … Большая биографическая энциклопедия

    В вопросах воздействия на экосистему, экономику и общество актеры первого плана — это деградация окружающей среды и изменение климата. По данным ООН, к 2030 году население Земли достигнет отметки в восемь с половиной миллиардов людей. А к середине века более половины населения планеты станет проживать в городах. Значит, если среда не будет адаптирована под растущую популяцию, экологические условия проживания в мегаполисах продолжат стремительно ухудшаться.

    Фото: pixabay/diegoxue

    Что с этим делать? Внедрять и развивать в городах экономику замкнутых циклов, уверены исследователи из Технологического института Блекинге в шведском городе Карлскроне. Они выпустили отчет «Циклическая экономика: опыт городов по всему миру» , в котором проанализировали различные городские проекты, связанные с циклической экономической моделью. В поле зрения экспертов попал 21 город в США, Англии, Нидерландах, Швеции и других странах. Исследователи описали проекты, которые были финансово поддержаны муниципалитетами, и то, какие выгоды эти инициативы принесли городу.

    Экономика замкнутых циклов — это подход, при котором в производство возвращается все то, что раньше считалось ненужным и отправлялось на захоронение в рамках следования линейной экономической модели «произвел — потребил — выбросил». Специалисты Технологического института Блекинге отметили, какие департаменты городской администрации были задействованы в реализации инициатив, и какую пользу, в конечном счете, подобные проекты приносят городам и их жителям.

    Из отходов — в нужные вещи

    Городские власти способны регулировать ситуацию с отходами в городе и использовать рынок для их полезного применения. Так, например, исследователи отметили в отчете успешный проект торгового центра ReTuna в Швеции, где вся продукция в магазинах — это использованные вещи и остаточные материалы. Жители оставляют в торговом центре различные предметы, бывшие в употреблении. Сотрудники центра по необходимости их ремонтируют и сортируют по отделам. Каждый магазин принадлежит независимым предпринимателям. В 2016 году ReTuna обеспечил работой 47 жителей Эскильстун.



    Фото: lm-magazine.com

    Технологии — всему голова

    Примером внедрения новых технологических решений для перехода с линейных экономических моделей к замкнутым циклам может послужить проект по извлечению из органических отходов биогаза и удобрений в Осло. Для этого муниципалитет инвестировал средства в строительство городского биогазового завода. Выработанный газ применяется для заправки мусоровозов и общественных автобусов. А побочные продукты производства муниципалитет передает местным фермерам в качестве биоудобрений.

    Вдохновить устойчивостью

    В качестве примера взаимодействия городских властей и бизнеса в отчете приведен бизнес-парк «20|20» в Харлеммермере — на западе Нидерландов. Парк построен в соответствии со стандартами Cradle to Cradle (C2C), что в переводе с английского означает «От колыбели до колыбели». Эта концепция основана на идее циклических безотходных систем производства, которые не наносят вред окружающей среде. Парк занимает 92 тысячи квадратных метров площади, на которой расположены офисы, супермаркеты, фитнес-центр и несколько ресторанов. Все проекты реализованы с акцентом на снижение выбросов CO2 и внедрения принципов циклической экономики.



    Фото: i.ytimg.com

    Поделись сырьем своим

    Авторы исследования отмечают, что муниципалитеты способны играть роль помощников в экологических взаимодействиях между городскими компаниями. Так, например, городской совет Питерборо профинансировал создание онлайн-платформы Share Peterborough, где фирмы могут торговать и обмениваться различными ресурсами между собой. Причем не только материалами, но также помещениями для конференций и даже навыками. Главное условие — максимально все использовать, чтобы слово «ненужный мусор» пропадало из обихода ведения бизнеса в городе. В основе такой инициативы — продвижение идей «business to business» или B2B, что означает «бизнес для бизнеса». B2B подразумевает, что компания работает не только на конечного рядового потребителя, но также на другие компании.

    В российской действительности инициативы в сторону замкнутых циклов производства зачастую продвигаются снизу вверх — от бизнес-инициатив к муниципалитетам. Например, чтобы содействовать развитию циклической экономики в России, компания-поставщик упаковки, канцтоваров и хозтоваров для бизнеса «ОптиКом» запустила проект по вывозу бумажных отходов «Бумаговорот». В центре проекта — столичные офисы, где бумага чаще всего превращается в бесполезный мусор. Однако сбор макулатуры — это и забота о лесах (переработка одной тонны бумаги сохраняет 24 дерева), и сокращение выбросов в атмосферу СО2, а также существенная экономия воды и энергии. Идея «ОптиКома» в чем-то пересекается с инициативой в городе Питерборо, преследуя принципы максимально эффективного использования ресурсов и принципов услуги B2B.


    «„Бумаговорот“ соответствует нашей миссии способствовать построению циклической экономики в России. Мы собираем макулатуру, из которой затем производят бумажную упаковку, таким образом, мы замыкаем цикл. Это не только предотвращает рост свалок, но и позволяет сохранять природные ресурсы», — рассказывает генеральный директор компании Максим Рогожко. Пока проект реализуется только в Москве и предполагает закупку компанией-партнером расходных материалов у «ОптиКом».

    При этом «зеленым» офисам компания предлагает линейку экологичных товаров: от бумажно-гигиенической продукции из вторичного волокна до биоразлагаемых моющих средств. Чтобы сотрудники офисов быстрее приноровились к сбору макулатуры, компания бесплатно проводит тренинги для персонала компаний-участников проекта. Во время инструктажа работники получают информацию о том, как и зачем собирать макулатуру отдельно от бытового мусора, какие виды бумаги «ОптиКом» принимает на переработку и почему картонные стаканчики в контейнер для макулатуры помещать нельзя (подсказка: такие стаканчики в России пока не перерабатываются).