31.08.2019

В каких случаях применяется мультипликативная модель. Способом абсолютных разниц. К экономическим моделям могут относится модели


Условие: определить влияние численности персонала, количества отработанных смен и выработки в смену на одного работника на изменение объема выпуска продукции (N п).

Сделать вывод.

Алгоритм решения:

    Факторная модель, описывающая взаимосвязь показателей, имеет вид: N = ч * См * В

    Исходные данные – факторы и результирующий показатель представляются в аналитической таблице:

Показатели

Условные обозначения

Базисный период

Отчетный период

Отклонение

Темп изменения, %

1. Численность работников, чел.

2. Количество смен

3. Выработка, штук

4. Выпуск продукции, тыс. шт.

    Способы детерминированного факторного анализа, применяемые для решения трехфакторных моделей:

 цепной подстановки;

 абсолютных разниц;

 взвешенных конечных разниц;

 логарифмический;

 интегральный.

    Применение различных методов для решения типовой задачи:

    1. Способ цепной подстановки. Применение этого способа предполагает выделение количественных и качественных факторных признаков: здесь количественными факторами являются численность персонала и количество отработанных смен; качественный признак – выработка.

а) N 1 = ч 0 * См 0 * В 0 =5184 тыс. шт.;

б) N 2 = ч 1 * См 0 * В 0 =25 * 144 * 1500 =5400 тыс. шт.;

в) N (ч) = 5400 – 5184 = 216 тыс. шт.;

N 3 = ч 1 * См 1 * В 0 =25 * 146 * 1500 =5475 тыс. шт.;

N(См) = 5475 – 5400 = 75 тыс. шт.;

N 4 = ч 1 * См 1 * В 1 =25 * 146 * 1505 =5493,25 тыс. шт.;

N(В) = 5493,25 – 5475 = 18,25 тыс. шт.;

N = N(ч) +N(См) +N (B) = 216 + 75 +18,25 = 309,25 тыс. шт.

4.2 . Способ абсолютных разниц также предполагает выделение количественных и качественных факторов, определяющих последовательность подстановки:

а) N(ч) =ч * См 0 * В 0 = 1 * 14 * 1500 = 216 тыс. шт.;

б) N(См) =См * ч 1 * В 0 = +2 * 25 * 1500 = 75 тыс. шт.;

в) N (B) =B * ч 1 * См 1 = +5 * 25 * 146 = 18,25 тыс. шт.;

N = N(ч) +N(См) +N (B) = 309,25 тыс. шт.

      Способ относительных разниц

а) N(ч) =
тыс. шт.;

б) N(См) =тыс. шт.;

в) N(В)тыс. шт.;

Общее влияние факторов: N =N(ч) +N(См) +N (B) = 309,3 тыс. шт.

4.4 . Способ взвешенных конечных разностей предполагает применение всех возможных постановок на основе способа абсолютных разниц.

Подстановка 1 производится в последовательности
результаты определены в предыдущих расчетах:

N(ч) = 216 тыс. шт.;

N(См) = 75 тыс. шт.;

N (B) = 18,25 тыс. шт.

Подстановка 2 производится в последовательности
:

а)+1 * 1500 * 144 = 216 тыс. шт.;

б) +5 * 25 * 11 = 18 тыс. шт.;

в) +2 * 25 *1505 = 75,5 тыс. шт.;

Подстановка 3 производится в последовательности
:

а) 2 * 24 * 1500 = 72 тыс. шт.;

б) 1 * 146 * 1500 = 219 тыс. шт.;

в) + 5 * 25 * 146 = 18,25 тыс. шт.

Подстановка 4 производится в последовательности
:

а) 2 * 1500 *5 * 146 * 24 = 17,52 тыс. шт.;

б) 5 * 146 * 24 = 17,52 тыс. шт.;

в) 1 * 146 * 1515 = 219,73 тыс. шт.;

Подстановка 5 производится в последовательности
:

а) 5 * 144 * 24 = 17,28 тыс. шт.;

б) 2 * 1505 * 24 = 72,27 тыс. шт.;

в) 1 * 146 * 1505 = 219,73 тыс. шт.

Подстановка 6 производится в последовательности
:

а) 5 * 24 * 144 = 17,28 тыс. шт.;

б) 1 * 1505 * 144 = 216,72 тыс. шт.;

в) 2 * 1505 * 25 = 75,25 тыс. шт.

Влияние факторов на результирующий показатель

Факторы

Размер влияния факторов при подстановке, тыс. шт.

Среднее значение влияния факторов

1. Численность

2. Сменность

3. Выработка

4.5. Логарифмический способ предполагает распределение отклонения результирующего показателя пропорционально доле каждого фактора в сумме отклонения результата

а) доля влияния каждого фактора измеряется соответствующими коэффициентами:

б) влияние каждого фактора на результирующий показатель рассчитывается как произведение отклонения результата на соответствующий коэффициент:

309,25*0,706 = 218,33;

309,25*0,2438 = 73,60;

309,25* 0,056 = 17,32.

4.6. Интегральный метод предполагает применение стандартных формул для расчета влияния каждого фактора:

5. Результаты расчетов каждого из перечисленных способов объединяются в таблице совокупного влияния факторов.

Совокупное влияние факторов:

Факторы

Размер влияния, тыс. шт.

Способом относительных разниц

Размер влияния, тыс. шт.

Способом цепных подстановок

Способом абсолютных разниц

Способом взвешенных конечных разниц

Логарифм. способ

Интегральный

способ

1. Численность

2. Количество смен

3. Выработка

Сопоставление результатов расчетов, полученных различными способами (логарифмическим, интегральным и взвешенных конечных разниц), показывает их равенство. Громоздкие расчеты способом взвешенных конечных разниц удобно заменить применением логарифмического и интегрального методов, которые дают более точные результаты по сравнению с приемами цепной подстановки и абсолютных разниц.

5. Вывод: Объем выпуска продукции возрос на 309,25 тыс. штук.

Положительное влияние в размере 217,86 тыс. шт. оказал рост численности персонала.

В результате увеличения количества смен объем выпуска возрос на 73,6 тыс. шт.

За счет увеличения выработки объем выпуска продукции увеличился на 17,76 тыс. шт.

Наиболее сильное влияние на объем выпуска продукции оказали экстенсивные факторы: рост численности персонала и количества отработанных смен. Совокупное влияние этих факторов составили 94,26 % (70,45 +23,81). На долю влияния фактора выработки приходится 5,74 % роста выпуска продукции.

Примечание: Применение рассмотренных приемов аналогично в отношении мультипликативных моделей любого количества факторов. Однако использование приема взвешенных конечных разниц к многофакторным моделям ограничено необходимостью выполнения большого количества расчетов, и это нецелесообразно при наличии других, более простых и рациональных приемов, например, логарифмического.


1. Факторная модель: Р = Z ´ N.

Тип модели: двухфакторная мультипликативная.

2. Способы факторного детерминированного анализа, применяемые для решения задач подобного типа:

Цепной подстановки;

Абсолютных разниц;

Простого прибавления неразложимого остатка;

Взвешенных конечных разниц;

Логарифмический;

Интегральный.

3. Аналитическая таблица для решения:

4. Расчет влияния факторов.

4.1. Применение способа цепной подстановки:

а) Р 1 = N 0 ´ Z 0 = 195 ´ 0,12 = 23,4 (т);

б) Р 2 = N 1 ´ Z 0 = 205 ´ 0,12 = 24,6 (т);

в) Р(N) = Р 2 – Р 1 = 24,6 – 23,4 = + 1,2 (т);

г) Р 3 = 205 ´ 0,11 = 22,55 (т);

д) Р(Z) = Р 3 – Р 2 = 22.55 – 24,6 = -2,05 (т);

е) Р = Р (N) + Р (Z) = 1,2 –2,05 = -0,85 (т).

4.2. Применение способа абсолютных разниц:

а) Р(N) = N ´ Z 0 = +10 ´ 0,12 = 1,2 (т);

б) Р( Z) = Z ´ N 1 = -0,01 ´ 205 = -2,05 (т);

в) Р = Р (N) + Р (Z) = 1,2 –2,05 = --0,85 (т).

4.3. Применение способа относительных разниц:

а) Р(Z) = (т);

б) Р(N) = (т);

в) Р (Z) + Р (N) = -1,94+1,09= --0,85 (т).

Совокупное влияние факторов рассчитанных способом цепной подстановки и абсолютных разниц:

4.4. Применение способа простого прибавления неразложимого остатка:

а) неразложимый остаток: N ´ Z = -0,01 ´ 10 = -0,1 (т);

б) Р 1 (N) = N ´ Z 0 + = 1,2 + (--0,1) = 1,15(т);

в) Р(Z) = Z ´ N 1 - = -2,05 - (-0,1) = -2 (т);

г) Р = Р (N) + Р (Z) =-0,85 (т).

4.5. Применение способа взвешенных конечных разностей:

а) Р(N) 1 = N ´ Z 0 = 1,2;

Р(N) 2 = N ´ Z 1 =+10 ´ 0,11 = 1,1 (т);

б) Р(Z) 1 = Z ´ N 0 = --0,01 ´ 195 = -1,95 (т);

Р(Z) 2 = Z ´ N 1 = - 0,01´ 205 =-2,05 (т);

Применение логарифмического способа

в) К N + К Z = -1,35+2,35 =1 ;

(-1,35)= +1,15;

(2,35)= -2;

Общее влияние +1,15 – 2 = - 0, 85.

Применение интегрального способа

а) (т)

б) (т)

Совокупное влияние факторов, рассчитанное способом взвешенных конечных разниц, простого прибавления неразложимого остатка, логарифмического и интегрального.

Применение указанных способов дает возможность получить уточненный результат расчетов.

5) Вывод: норма расхода сырья снизилась на 0,85 т при увеличении выпуска продукции, что потребовало дополнительного использования сырья в размере 1,15 т.

Снижение нормы расходы сырья способствовало экономии сырьевых ресурсов в размере 2,0 т. Влияние снижения нормы расходы превышает влияние увеличения производственной программы в 1,71 раза – удельный вес влияния нормы расхода превышает удельный вес влияния производственной программы в 1,73 раза ().

Более сильное влияние снижения нормы расхода по сравнению с увеличением используемого сырья в результате увеличения выпуска продукции явилось фактором экономии сырья в размере 0,85 т.

Примечание : Специфика данной ситуации в том, что знак «минус» влияния фактора – норма расхода не означает его отрицательного влияния на результирующий показатель, т.к. снижение расхода материальных ресурсов при увеличении производственной программы является показателем интенсивного развития производства.

ЗАДАЧИ

для самостоятельного решения

18. На основе приведенных данных:

Составить факторную модель зависимости расхода сырья от нормы расхода и производственной программы;

Сделать вывод.

19. Способом цепной подстановки и методом абсолютных разниц провести анализ расходов на инкассацию выручки.

21. Проанализировать всеми возможными способами влияния на товарооборот выработки и численности работников.

22. Проанализировать всеми возможными способами влияние на товарооборот площади торгового зала и нагрузки на 1 кв.м площади.

Периоды Товарооборот, тыс. руб., (N)
2,1
2,15

23 . Составить факторную модель зависимости товарооборота от среднего остатка оборотных средств и их оборачиваемости.

Показатели Предприятие № 1 Предприятие № 2 Предприятие № 3
Базисный период Отчетный период Базисный период Отчетный период Базисный период Отчетный период
Товарооборот, тыс. руб., (N)
Средний остаток оборотных средств, тыс. руб., (С об) 156,4 162,5 228,4 226.5 44,5 48,6
Оборачиваемость (обор.), К об 8,6 8,4 12,1 12,8 4,9 5,2

24. Составить факторную модель зависимости выпуска продукции от фондоотдачи и средней стоимости основных средств.

Показатели Предприятие № 1 Предприятие № 2 Предприятие № 3
Базисный период Отчетный период Базисный период Отчетный период Базисный период Отчетный период
Выпуск продукции, тыс. руб., (N)
Средняя стоимость основных средств, тыс. руб.,( ост) 538,0 564,2 565,6 265,8 268,4
Фондоотдача, 1,806 1,862 1,206 1,200 14,5 14,8

25. . Составить факторную модель зависимости рентабельности капитала от рентабельности продаж и коэффициента оборачиваемости капитала.

Определить влияние рентабельности продаж и коэффициента оборачиваемости капитала на рентабельность капитала всеми возможными способами.

26 . Составить и решить всеми возможными способами факторную модель зависимости фонда заработной платы от численности персонала и средней заработной платы одного работника.

27 . Определить влияние изменений в составе основных фондов и фондоотдачи активной части основных фондов на фондооотдачу основных фондов, используя следующую модель:

где - фондоотдача активной части основных фондов;

Доля активной части основных фондов в стоимости основных фондов.

РЕЗУЛЬТАТЫ РЕШЕНИЯ ЗАДАЧ

Детерминированный факторный анализ – это методика исследования влияния факторов, связь которых с результативным показателем носит функциональный характер, т.е. когда результативный показатель представлен в виде произведения, частного или алгебраической суммы факторов.

При моделировании детерминированных факторных систем необходимо выполнять ряд требований:

1. Факторы, включаемые в модель, и сами модели должны иметь определенно выраженный характер, реально существовать, а не быть придуманными абстрактными величинами или явлениями.

2. Факторы, которые входят в систему, должны быть не только необходимыми элементами формулы, но и находиться в причинно-следственной связи с изучаемыми показателями.

3. Каждые показатели факторной модели должны быть количественно измеримыми, т.е. должны иметь единицу измерения и необходимую информационную обеспеченность.

4. Факторная модель должна обеспечивать возможность измерения влияния отдельных факторов, это означает, что в ней должна учитываться соразмерность измерений результативного и факторных показателей, а сумма влияния отдельных факторов должна равняться общему приросту результативного показателя.

Типы факторных моделей встречающихся в детерминированном анализе:

Аддитивные модели, используются в случаях, когда результативный показатель представляет собой алгебраическую сумму нескольких факторных показателей;

Мультипликативные модели, применяются, когда результативный показатель представляет собой произведение нескольких факторов;

Кратные модели, применяются, когда результативный показатель получают делением одного факторного показателя на величину другого;

Смешанные (комбинированные) модели – сочетание в различных комбинациях предыдущих моделей.

Основные приемы детерминированного факторного анализа и сфера их применения систематизированы в виде таблице 2.1.

Таблица 2.1 – Область применения основных приемов детерминированного факторного анализа

Методы элиминирования

Элиминировать– значит устранить, отклонить, исключить воздействие всех факторов на величину результативного показателя, кроме одного. Этот метод исходит из того, что все факторы изменяются независимо друг от друга: сначала изменяется один, а все другие остаются без изменения, потом изменяются два, затем три и т.д. Это позволяет определить влияние каждого фактора на величину исследуемого показателя в отдельности. К методам элиминирования относятся способ цепной подстановки, индексный метод, способ абсолютных и способ относительных разниц.

Способ цепной подстановки. Данный способ является универсальным, так как используется для расчета влияния факторов во всех типах детерминированных факторных моделей: аддитивных, мультипликативных, кратных и смешанных. Этот способ позволяет определить влияние отдельных факторов на изменение величины результативного показателя путем постепенной замены базисной величины каждого факторного показателя в объеме результативного показателя на фактическую в отчетном периоде. С этой целью определяют ряд условных величин результативного показателя, которые учитывают изменение одного, затем двух, трех и т.д. факторов, допуская, что остальные не меняются. Сравнение величины результативного показателя до и после изменения уровня того или иного фактора позволяет элиминироваться от влияния всех факторов, кроме одного, и определить взаимодействие последнего на прирост результативного показателя.

Рассмотрим алгоритм расчета способом цепной подстановки для различных моделей:

Мультипликативная модель

Двухфакторная мультипликативная модель (Y = a ´ b):

; ; .

.

Трехфакторная мультипликативная модель(Y = a ´ b ´ с):

; .

; ; ; .

Кратная модель

В кратных моделях (Y = a ÷ b) алгоритм расчета факторов на величину результативного показателя следующий:

; ;

.

Смешанные модели

Мультипликативно-аддитивного типа (Y = a ´ (b – c)):

; ;

; ;

; ;

; .

Кратно-аддитивного типа ():

;

; ;

; .

Используя способ цепной подстановки, рекомендуется придерживаться определенной последовательности расчетов: в первую очередь нужно учитывать изменение количественных, а затем качественных показателей. Если же имеется несколько количественных и несколько качественных показателей, то сначала следует изменить величину факторов первого уровня подчинения, а потом более низкого.

Индексный метод. Индексный метод основан на относительных показателях динамики, пространственных сравнений, выполнения плана, выражающих отношение фактического уровня анализируемого показателя в отчетном периоде к его уровню в базисном периоде.

С помощью агрегатных индексов можно выявить влияние различных факторов на изменение уровня результативных показателей в мультипликативных и кратных моделях.

Рассмотрим алгоритм расчета индексного метода для мультипликативной модели.

; ; ; .

Способ абсолютных разниц. Как и способ цепной подстановки, данный способ применяется для расчета влияния факторов на прирост результативного показателя в детерминированном анализе, но только в мультипликативных и мультипликативно-аддитивных моделях: и . Особенно эффективно применяется данный способ в том случае, если исходные данные уже содержат абсолютные отклонения по факторным показателям.

При его использовании величина влияния факторов рассчитывается умножением абсолютного прироста исследуемого фактора на базовую (плановую) величину факторов, которые находятся справа от него, и на фактическую величину факторов, расположенных слева от него в модели.

Мультипликативная модель

Алгоритм расчета для мультипликативной факторной модели типа . Имеются плановые и фактические значения по каждому факторному показателю, а также их абсолютные отклонения:

Изменение величины результативного показателя за счет каждого фактора:

; .

Смешанные модели

Алгоритм расчета факторов этим способом в смешанных моделях типа :

; ; .

Способ относительных разниц применяется для изменения влияния факторов на прирост результативного показателя только в мультипликативных моделях и мультипликативно-аддитивных моделях: . Он значительно проще цепных подстановок, что при определенных обстоятельствах делает его очень эффективным. Это касается тех случаев, когда исходные данные содержат уже определенные ранее относительные приросты факторных показателей в процентах или коэффициентах.

Мультипликативная модель

Алгоритм расчета влияния факторов на величину результативного показателя для мультипликативных моделей типа (Y = a ´ b ´ с).

Сначала рассчитываются относительные отклонения факторных показателей:

; ; .

Изменение результативного показателя за счет каждого фактора определяется следующим образом:

Задание . На основе данных, скорректированных на инфляцию, о прибыли компании за 12 кварталов (табл.) построить мультипликативной модель тренда и сезонности для прогнозирования прибыли компании на следующие два квартала. Дать общую характеристику точности модели и сделать выводы.

Решение проводим с помощью калькулятора Построение мультипликативной модели временного ряда .
Общий вид мультипликативной модели следующий:
Y = T x S x E
Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой (T), сезонной (S) и случайной (E) компонент.
Рассчитаем компоненты мультипликативной модели временного ряда.
Шаг 1 . Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого:
1.1. Найдем скользящие средние (гр. 3 таблицы). Полученные таким образом выровненные значения уже не содержат сезонной компоненты.
1.2. Приведем эти значения в соответствие с фактическими моментами времени, для чего найдем средние значения из двух последовательных скользящих средних – центрированные скользящие средние (гр. 4 табл.).

t y t Скользящая средняя Центрированная скользящая средняя Оценка сезонной компоненты
1 375 - - -
2 371 657.5 - -
3 869 653 655.25 1.33
4 1015 678 665.5 1.53
5 357 708.75 693.38 0.51
6 471 710 709.38 0.66
7 992 718.25 714.13 1.39
8 1020 689.25 703.75 1.45
9 390 689.25 689.25 0.57
10 355 660.5 674.88 0.53
11 992 678.25 669.38 1.48
12 905 703 690.63 1.31
13 461 685 694 0.66
14 454 690.5 687.75 0.66
15 920 - - -
16 927 - - -

Шаг 2 . Найдем оценки сезонной компоненты как частное от деления фактических уровней ряда на центрированные скользящие средние (гр. 5 табл.). Эти оценки используются для расчета сезонной компоненты S. Для этого найдем средние за каждый период оценки сезонной компоненты S j . Сезонные воздействия за период взаимопогашаются. В мультипликативной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна числу периодов в цикле. В нашем случае число периодов одного цикла равно 4.
Показатели 1 2 3 4
1 - - 1.33 1.53
2 0.51 0.66 1.39 1.45
3 0.57 0.53 1.48 1.31
4 0.66 0.66 - -
Всего за период 1.74 1.85 4.2 4.28
Средняя оценка сезонной компоненты 0.58 0.62 1.4 1.43
Скорректированная сезонная компонента, S i 0.58 0.61 1.39 1.42

Для данной модели имеем:
0.582 + 0.617 + 1.399 + 1.428 = 4.026
Корректирующий коэффициент: k=4/4.026 = 0.994
Рассчитываем скорректированные значения сезонной компоненты S i и заносим полученные данные в таблицу.
Шаг 3 . Разделим каждый уровень исходного ряда на соответствующие значения сезонной компоненты. В результате получим величины T x E = Y/S (гр. 4 табл.), которые содержат только тенденцию и случайную компоненту.
Находим параметры уравнения методом наименьших квадратов .
Система уравнений МНК:
a 0 n + a 1 ∑t = ∑y
a 0 ∑t + a 1 ∑t 2 = ∑y t
Для наших данных система уравнений имеет вид:
16a 0 + 136a 1 = 10872.41
136a 0 + 1496a 1 = 93531.1
Из первого уравнения выражаем а 0 и подставим во второе уравнение
Получаем a 0 = 3.28, a 1 = 651.63
Среднее значения
overline{y} = {sum{}{}{}y_{i}}/{n} = {10872.41}/{16} = 679.53
t y t 2 y 2 t y y(t) (y-y cp) 2 (y-y(t)) 2
1 648.87 1 421026.09 648.87 654.92 940.05 36.61
2 605.46 4 366584.89 1210.93 658.2 5485.32 2780.93
3 625.12 9 390770.21 1875.35 661.48 2960.37 1322.21
4 715.21 16 511519.56 2860.82 664.76 1273.1 2544.83
5 617.72 25 381577.63 3088.6 668.04 3819.95 2532.22
6 768.66 36 590838.18 4611.96 671.32 7944.97 9474.64
7 713.6 49 509219.75 4995.17 674.6 1160.83 1520.44
8 718.73 64 516571.58 5749.83 677.88 1536.93 1668.26
9 674.82 81 455381.82 6073.38 681.17 22.14 40.28
10 579.35 100 335647.52 5793.51 684.45 10034.93 11045.26
11 713.6 121 509219.75 7849.56 687.73 1160.83 669.14
12 637.7 144 406656.13 7652.35 691.01 1749.71 2842.39
13 797.67 169 636280.07 10369.73 694.29 13958.53 10687.5
14 740.92 196 548957.15 10372.83 697.57 3768.85 1878.69
15 661.8 225 437983.3 9927.05 700.85 314.08 1524.97
16 653.2 256 426667.57 10451.17 704.14 693.14 2594.6
136 10872.41 1496 7444901.2 93531.1 10872.41 56823.71 53162.96

Шаг 4 . Определим компоненту T данной модели. Для этого проведем аналитическое выравнивание ряда (T + E) с помощью линейного тренда. Результаты аналитического выравнивания следующие:
T = 651.634 + 3.281t
Подставляя в это уравнение значения t = 1,...,16, найдем уровни T для каждого момента времени (гр. 5 табл.).

t y t S i y t /S i T TxS i E = y t / (T x S i) (y t - T*S) 2
1 375 0.58 648.87 654.92 378.5 0.99 12.23
2 371 0.61 605.46 658.2 403.31 0.92 1044.15
3 869 1.39 625.12 661.48 919.55 0.95 2555.16
4 1015 1.42 715.21 664.76 943.41 1.08 5125.42
5 357 0.58 617.72 668.04 386.08 0.92 845.78
6 471 0.61 768.66 671.32 411.36 1.14 3557.43
7 992 1.39 713.6 674.6 937.79 1.06 2938.24
8 1020 1.42 718.73 677.88 962.03 1.06 3359.96
9 390 0.58 674.82 681.17 393.67 0.99 13.45
10 355 0.61 579.35 684.45 419.4 0.85 4147.15
11 992 1.39 713.6 687.73 956.04 1.04 1293.1
12 905 1.42 637.7 691.01 980.66 0.92 5724.7
13 461 0.58 797.67 694.29 401.25 1.15 3569.68
14 454 0.61 740.92 697.57 427.44 1.06 705.39
15 920 1.39 661.8 700.85 974.29 0.94 2946.99
16 927 1.42 653.2 704.14 999.29 0.93 5225.65

Шаг 5 . Найдем уровни ряда, умножив значения T на соответствующие значения сезонной компоненты (гр. 6 табл.).
Расчет ошибки в мультипликативной модели производится по формуле:
E = Y/(T * S) = 16
Для сравнения мультипликативной модели и других моделей временного ряда можно использовать сумму квадратов абсолютных ошибок:
Среднее значения
overline{y} = {sum{}{}{}y_{i}}/{n} = {10874}/{16} = 679.63
16 927 61194.39 136 10874 1252743.75

R^{2} = 1 - {43064.467}/{1252743.75} = 0.97
Следовательно, можно сказать, что мультипликативная модель объясняет 97% общей вариации уровней временного ряда.
Проверка адекватности модели данным наблюдения.
F = {R^{2}}/{1 - R^{2}}{(n - m -1)}/{m} = {0.97^{2}}/{1 - 0.97^{2}}{(16-1-1)}/{1} = 393.26
где m - количество факторов в уравнении тренда (m=1).
Fkp = 4.6
Поскольку F > Fkp, то уравнение статистически значимо
Шаг 6 . Прогнозирование по мультипликативной модели. Прогнозное значение F t уровня временного ряда в мультипликативной модели есть сумма трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда:T = 651.634 + 3.281t
Получим
T 17 = 651.634 + 3.281*17 = 707.416
Значение сезонного компонента за соответствующий период равно: S 1 = 0.578
Таким образом, F 17 = T 17 + S 1 = 707.416 + 0.578 = 707.994
T 18 = 651.634 + 3.281*18 = 710.698
Значение сезонного компонента за соответствующий период равно: S 2 = 0.613
Таким образом, F 18 = T 18 + S 2 = 710.698 + 0.613 = 711.311
T 19 = 651.634 + 3.281*19 = 713.979
Значение сезонного компонента за соответствующий период равно: S 3 = 1.39
Таким образом, F 19 = T 19 + S 3 = 713.979 + 1.39 = 715.369
T 20 = 651.634 + 3.281*20 = 717.26
Значение сезонного компонента за соответствующий период равно: S 4 = 1.419
Таким образом, F 20 = T 20 + S 4 = 717.26 + 1.419 = 718.68

Пример . На основе поквартальных данных построена мультипликативная модель временного ряда . Скорректированные значения сезонной компоненты за первые три квартала равны: 0,8 - I квартал, 1,2 - II квартал и 1,3 - III квартал. Определите значение сезонной компоненты за IV квартал.
Решение. Поскольку сезонные воздействия за период (4 квартала) взаимопогашаются, то имеем равенство: s 1 + s 2 + s 3 + s 4 = 4. Для наших данных: s 4 = 4 - 0.8 - 1.2 - 1.3 = 0.7.
Ответ: Сезонная компонента за IV квартал равна 0.7.

Страница
6

Примером мультипликативной модели является двухфакторная модель объема реализации

где Ч - среднесписочная численность работников;

CB - средняя выработка на одного работника.

Кратные модели:

Примером кратной модели служит показатель срока оборачиваемости товаров (в днях) . ТОБ.Т:

,

где ЗТ - средний запас товаров; ОР - однодневный объем реализации.

Смешанные модели представляют собой комбинацию перечисленных выше моделей и могут быть описаны с помощью специальных выражений:

Примерами таких моделей служат показатели затрат на 1 руб. товарной продукции, показатели рентабельности и др.

Для изучения зависимости между показателями и количественного измерения множества факторов, повлиявших на результативный показатель, приведем общие правила преобразования моделей с целью включения новых факторных показателей.

Для детализации обобщающего факторного показателя на его составляющие, которые представляют интерес для аналитических расчетов, используют прием удлинения факторной системы.

Если исходная факторная модель

то модель примет вид

.

Для выделения некоторого числа новых факторов и построения необходимых для расчетов факторных показателей применяют прием расширения факторных моделей. При этом числитель и знаменатель умножаются на одно и тоже число:

.

Для построения новых факторных показателей применяют прием сокращения факторных моделей. При использовании данного приема числитель и знаменатель делят на одно и то же число.

.

Детализация факторного анализа во многом определяется числом факторов, влияние которых можно количественные оценить, поэтому большое значение в анализе имеют многофакторные мультипликативные модели. В основе их построения лежат следующие принципы: · место каждого фактора в модели должно соответствовать его роли в формировании результативного показателя; · модель должна строиться из двухфакторной полной модели путем последовательного расчленения факторов, как правило качественных, на составляющие; · при написании формулы многофакторной модели факторы должны располагаться слева направо в порядке их замены.

Построение факторной модели – первый этап детерминированного анализа. Далее определяют способ оценки влияния факторов.

Способ цепных подстановок заключается в определении ряда промежуточных значений обобщающего показателя путем последовательной замены базисных значений факторов на отчетные. Данный способ основан на элиминировании. Элиминировать – значит устранить, исключить воздействие всех факторов на величину результативного показателя, кроме одного. При этом исходя из того, что все факторы изменяются независимо друг от друга, т.е. сначала изменяется один фактор, а все остальные остаются без изменения. потом изменяются два при неизменности остальных и т.д.

В общем виде применение способа цепных постановок можно описать следующим образом:

где a0, b0, c0 - базисные значения факторов, оказывающих влияние на обобщающий показатель у;

a1 , b1, c1 - фактические значения факторов;

ya, yb, - промежуточные изменения результирующего показателя, связанного с изменением факторов а, b, соответственно.

Общее изменение Dу=у1–у0 складывается из суммы изменений результирующего показателя за счет изменения каждого фактора при фиксированных значениях остальных факторов:

Рассмотрим пример:

Таблица 2

Исходные данные для факторного анализа

Показатели

Условные обозначения

Базисные значения

Фактические значения

Изменение

Абсолютное (+,-)

Относительное (%)

Объем товарной продукции, тыс. руб.

Количество работников, чел

Выработка на одного работающего, тыс.руб.

Анализ влияния на объем товарной продукции количества работников и их выработки проведем описанным выше способом на основе данных табл.2. Зависимость объема товарной продукции от данных факторов можно описать с помощью мультипликативной модели:

Тогда влияние изменения величины количества работников на обобщающий показатель можно рассчитать по формуле:

Таким образом, на изменение объема товарной продукции положительное влияние оказало изменение на 5 человек численности работников, что вызвало увеличение объема продукции на 730 тыс. руб. и отрицательное влияние оказало снижение выработки на 10 тыс. руб., что вызвало снижение объема на 250 тыс. руб. Суммарное влияние двух факторов привело к увеличению объема продукции на 480 тыс. руб.

Преимущества данного способа: универсальность применения, простота расчетов.

Недостаток метода состоит в том, что, в зависимости от выбранного порядка замены факторов, результаты факторного разложения имеют разные значения. Это связано с тем, что в результате применения этого метода образуется некий неразложимый остаток, который прибавляется к величине влияния последнего фактора. На практике точностью оценки факторов пренебрегают, выдвигая на первый план относительную значимость влияния того или иного фактора. Однако существуют определенные правила, определяющие последовательность подстановки: · при наличии в факторной модели количественных и качественных показателей в первую очередь рассматривается изменение количественных факторов; · если модель представлена несколькими количественными и качественными показателями, последовательность подстановки определяется путем логического анализа.