31.08.2019

Метод линейной свертки пример. Методы решения многокритериальных задач. Свертка критериев


Другим направлением решения задачи многокритериального анализа является отказ от множества критериев путем сведения их к одному. Простейший подход, когда один критерий считают главным и упорядочивают лишь по нему, а остальные используют, только если у двух альтернатив значения главного критерия одинаковы (если одинаковы значения и главного, и второго по важности критерия, используют третий и т.д.), оказывается удовлетворительным лишь в редких случаях. Обычно среди критериев невозможно выделить важнейший. Лучше работают методы, учитывающие все значения вектора критериев. Такие составные критерии принято именовать свертками.

Рассмотрим основные способы свертки критериев. Сумма критериев представляет собой аддитивную свертку. Умножение значений критериев на весовые коэффициенты позволит придать им разную степень важности -чем больше вес критерия, тем большее влияние он окажет на окончательный результат отбора.

Произведение критериев является мультипликативной сверткой. В этом случае, подобно введению весов в аддитивной свертке, можно перед перемножением критериев возвести их в степень тем большую, чем больше важность, придаваемая критерию. Очевидно, что мультипликативная свертка оправданна, если критерии неотрицательны–иначе правило «минус на минус дает плюс» сыграет с нами плохую шутку, сделав «хорошее» значение свертки из двух заведомо плохих критериев. Впрочем, если только один из критериев принимает отрицательные значения, подобного рода парадоксы не возникают, и мы можем пользоваться мультипликативной сверткой. Также нужно учитывать, что если один из критериев равен нулю, то и мультипликативная свертка равна нулю, для аддитивной же свертки такое правило не выполняется. Вообще, в мультипликативной свертке по сравнению с аддитивной большее влияние оказывают те критерии, которые для данного объекта имеют низкие значения.

Аддитивная свертка наиболее приемлема для критериев, представляющих собой однородные по смыслу и близкие по масштабу значений величины, каковыми в нашей классификации являются прогнозные критерии. Например, комбинируя «математическое ожидание прибыли по логнормальному распределению» и «математическое ожидание прибыли по эмпирическому распределению», естественно взять в качестве критерия их сумму. С другой стороны, для свертывания таких классов критериев, как «математическое ожидание прибыли» и «вероятность прибыли» (по любому из распределений), лучше применять мультипликативную свертку. В этом случае мы используем полезное свойство произведения – если прогнозируемая вероятность прибыли близка к нулю, то и сводный критерий также будет стремиться нулю. Впрочем, в применении произведения есть дополнительная тонкость – если матожидание прибыли отрицательно, то, умножая его на меньшую вероятность, получаем величину более близкую к нулю и, следовательно, большую. Однако это не создает трудностей, если комбинации с отрицательным матожиданием прибыли просто не принимаются к рассмотрению.

Кроме аддитивной и мультипликативной, существует также селективная свертка, когда для каждого элемента исходного множества принимается в качестве значения свертки наименьшее (или наибольшее) значение из всего набора критериев. В главе 5 мы предложили методику минимаксной свертки для функций полезности. Аналогичные принципы могут использоваться и для свертки критериев.

При расчете свертки не стоит забывать о том, что критерии могут измеряться в разных единицах и иметь различный масштаб величин. Существует несколько способов их приведения к единой мере. Так, можно вычесть из значений критериев их средние значения и разделить на стандартные отклонения (метод нормализации) или же вычесть минимальные (минимальные по данной выборке или минимальные принципиально достижимые) значения, разделив затем на разность между максимальным и минимальным значением (в этом случае значения критерия будут лежать в интервале от нуля до единицы). Первый из предложенных способов более пригоден для построения аддитивной, второй–для мультипликативной свертки.

Еще один подход к построению свертки критериев состоит в нахождении расстояния от данного элемента до некоторого «идеального». Для этого значения критериев приводятся к интервалу (0,1), и предполагается, что идеальный вариант имеет все единичные оценки критериев (т. е. у него достигаются все максимально возможные значения критериев одновременно). Для каждого оцениваемого элемента исходного множества j рассчитываем значение свертки R по формуле

Для проведения описанных ниже исследований мы использовали аддитивную свертку с приведением критериев к единому масштабу методом умножения на поправочные коэффициенты. Это самый простой и грубый способ, но он наиболее приемлем при выполнении разноплановых статистических исследований, поскольку дает легко сопоставимые результаты. Для практической же работы предпочтительно использовать более усовершенствованные методы свертки и нормировки, подобные описанным выше, или другие, здесь не упомянутые.

Другая очень распространенная группа методов скаляризации векторной задачи математического программирования - свертка критериев.

Существует большое количество разных видов сверток . Теоретически все они базируются на подходе, связанном с понятием функции полезности лица, принимающего решение.

При данном подходе предполагается, что лицо, принимающее решение, всегда имеет функцию полезности, независимо от того, может ли лицо, принимающее решение задать ее в явном виде (т.е. дать ее математическое описание). Эта функция отображает векторы критериев на действительную прямую так, что большее значение на этой прямой соответствует более предпочтительному вектору критериев. Смысл разных сверток состоит в том, чтобы из нескольких критериев получить один «коэффициент качества» (сводный критерий), приближенно моделируя таким образом неизвестную (не заданную в явном виде) функцию полезности лица, принимающего решение. Наиболее популярной сверткой является метод взвешенных сумм с точечным оцениванием весов. При этом задается вектор весовых коэффициентов критериев, характеризующий относительную важность того или иного критерия:

A = {ak ,k = 1~K}. (64)

Весовые коэффициенты обычно используются в нормированном виде и удовлетворяют равенству:

X ak = 1, ak > 0, Vk е K , (65)

т.е. предполагается, что весовые коэффициенты неотрицательны. Каждый критерий умножается на свой весовой коэффициент, а затем все взвешенные критерии суммируются и образуют взвешенную целевую функцию, значение которой интерпретируются как «коэффициент качества» полученного решения. Полученная скаляризованная функция максимизируется на допустимой области ограничений.

Получается однокритериальная (скалярная) задача математического программирования:

F0 = max X af (X). (66)

В результате решения данной задачи получается точка оптимума X0.

Основным достоинством данной свертки является то, что с ней связаны классические достаточные и необходимые условия оптимальности по Парето (теоремы Карлина).

Теорема Карлина 1.

В выпуклой задаче многокритериальной оптимизации точка X0 е S оптимальна по Парето, если существует вектор весовых коэффициентов A0 = {a° > 0, k = 1,K}, для которого выполняется соотношение:

X«Оf0(X0) = maxX«0h (X). (67)

Теорема Карлина 2.

Если в выпуклой задаче многокритериальной оптимизации точка X0 е S Парето-оптимальна, то существует вектор весовых коэффициентов A0 = {a° > 0, к = 1,К}, для которого выполняется соотношение:

X«0f^X°) = maxX«0fk (X). (68)

«h (X) =ma„xXakJkк=1 40eS к =1

Согласно данным теоремам, данную свертку можно использовать для получения Парето-оптимальных точек.

Примером данной свертки может служить итоговый рейтинг надежности банка Кромонова, полученный как аддитивная свертка ряда коэффициентов.

Достоинством данного метода является то, что он согласно теореме Карлина генерирует Парето-оптимальные точки. Однако ему присущ целый ряд фундаментальных недостатков. Во-первых, неявная функция полезности лица, принимающего решения, как правило, нелинейна, поэтому «истинные» веса критериев (т.е. такие веса, при которых градиент взвешенное целевой функции совпадает по направлению в градиентом функции полезности) будут меняться от точки к точке, поэтому можно говорить лишь о локально подходящих весах, кроме того, часто лицо, принимающее решение вообще не может задать весовые коэффициенты. Во-вторых, далеко не всегда потеря качества по одному из критериев компенсируется приращением качества по другому. Поэтому полученное решение, оптимальное в смысле единого суммарного критерия, может характеризоваться низким качеством по ряду частных критериев и быть поэтому абсолютно неприемлемым. В-третьих, полученное решение часто бывает неустойчиво, т. е. малым приращениям весовых коэффициентов соответствуют большие приращения целевых функций. В-четвертых, свертка критериев разной физической природы не позволяет интерпретировать значение взвешенной целевой функции. В-пятых, значительные затруднения могут возникнуть в случае сильной корреляции между критериями.

Некоторые из вышеперечисленных недостатков могут быть скорректированы. Так, в случае разной физической (экономической) природы критериев возможна их нормализация и последующая свертка нормализованных критериев. Чтобы исключить неприемлемо низкие значения отдельных критериев, можно наложить дополнительные ограничения на эти критерии.

Другим методом борьбы с данным недостатком - неприемлемо низкими значениями отдельных критериев при хорошем значении суммарного критерия - является применение сверток не аддитивного, а мультипликативного вида:

F0 = max П (af (X))Рк. (69)

Однако данная свертка не получила большого распространения ввиду того, что существуют аналогичные, но более перспективные виды сверток.

Так, существует свертка вида: (70)

minF0 =X| f (X)V

fк Наиболее широкое применение данная свертка получила при p = 2, которая трактуется как минимизация суммы квадратов относительных отклонений функционалов от своих достижимых оптимальных значений. Данная точка в случае равноценности критериев показывает решение, наиболее близкое к недостижимой «идеальной» точке (в которой все критерии принимают свое максимальное значение). Однако данной свертке также свойственен следующий распространенный недостаток: «хорошее» значение сводного критерия достигается ценой низких значений некоторых частных критериев.

Метод свёртки критериев

Стандартный приём «борьбы» с многокритериальным выбором это переход к однокритериальной задаче с использованием метода свёртки критериев.

Свёртка критериев означает построение интегрального показателя на основе частных критериев. Интегральный показатель I рассчитывается или как взвешенная сумма частных показателей (выражение (1) - аддитивная форма) или как их произведение (выражение (2) – мультипликативная форма), опять же нормированное на соответствующие веса (важность критериев).

K – частный критерий,

a – вес критерия, причём ,

N – количество критериев,

v - номер критерия.

Использование такого метода как свёртка критериев предполагает, что частные критерии измеряются в абсолютной шкале. Кроме того, критерии должны быть независимы друг от друга. Это означает, что справедливы выражения (3) и (4), то есть отношение предпочтения определяется либо критерием «2» - выражение (3), - либо критерием «1» - выражение (4).

(xi1, xi2) < (xi1,xj2) => (xj1, xi2) < (xj1, xj2) (3)

(xi1, xi2) < (xj1,xi2) => (xi1, xj2) < (xj1, xj2) (4)

Вес критериев, как правило, определяется экспертным методом.

Типичным примером использования метода свёртки критериев является построение интегрального показателя качества продукции.

В литературе встречается утверждение, что мультипликативная и аддитивная формы интегрального показателя эквивалентны. В подтверждение этого ссылаются на взаимную однозначность преобразования интегрального показателя из одной формы в другую, например, с использованием перехода в логарифмическую шкалу и обратно. Следует отметить, что такой переход в общем случае не сохраняет тех же самых отношений предпочтения, то есть может привести к разным выборам. Эквивалентный в смысле сохранения отношения предпочтения переход от мультипликативной формы к аддитивной требует применения весовых коэффициентов, зависящих от значения критерия 2 .

Схемы компромиссов, метод свертывания критериев

Схемы компромиссов смотреть здесь.

Метод свёртывания критериев

Локальные критерии свёртываются в глобальный в соответствии с какой-то функцией.

Линейная аддитивная свёртка:

Линейная мультипликативная свёртка: , где - вес критерия,

Нелинейная свёртка:

Эффективность-стоимость:

После операции свёртки, альтернативы упорядочиваются по значению глобального критерия: .

Основные проблемы применения метода свёртывания критерия:

· Сложно обосновать значения «весов» критериев;

· Недостатки по одним критериям могут компенсироваться большими значениями других критериев;

· Сложно обосновать вид функции свёртки критериев.

ВЫВОДЫ

Для оценки достижения цели организации используется целый ряд показателей – критериев, так как цель хозяйственной системы носит многомерный характер. Каждый из критериев должен быть количественно измерим, определён на одной из шкал измерений.

При принятии управленческих решений могут быть использованы все известные виды шкал: номинальная, ранговая, интервальная и абсолютная.

Важной задачей является построение системы показателей, отражающих генеральную цель ЛПР. В литературе сформулирован целый ряд требований, которые необходимо соблюдать, чтобы использование системы показателей было оправданным. Это требования полноты, действенности, разложимости, неизбыточности и минимальной размерности.

Наиболее распространённым методом решения многокритериальных задач является построение интегральных показателей на основе метода свёртки критериев.

Для использования метода свёртки критериев необходимо измерение значений критериев в абсолютной шкале, а также соблюдение требования независимости критериев.

Лексикографический метод решения многокритериальных задач заключается в последовательном применении упорядоченных по важности критериев.

В случае, когда разнокачественность сравниваемых объектов принципиальна, единственным адекватным подходом является выделение множества Парето.

Множество Парето образует набор таких объектов, что переход от одного к другому обязательно повысит значение хотя бы одного критерия и ухудшит значение минимум одного критерия. Выбор одного из объектов требует дополнительных соображений.

Метод свертывания критериев предполагает преобразование набора имеющихся частных критериев в один суперкритерий.

Т.е. мы получаем новый суперкритерий F, который является функцийот частных критериев. В общем случае, функциюназывают сверткой частных критериев .

К основным этапом свертывания относятся:

1. Обоснование допустимости свертки

При обосновании допустимости свертки, мы в первую очередь должны подтвердить, что критерии, которые мы сворачиваем, должны быть однородными. Выделяют такие группы показателей эффективности;

Показатели результативности;

Показатели ресурсоемкости;

Показатели оперативности.

Критерии, которые мы сворачиваем, должны относиться к одной и той же группе, нельзя сворачивать критерии, которые относятся, например, один из них к показателям оперативности, а другой к показателям результативности. Т.е. для каждой группы свертывание частных критериев следует выполнять отдельно. При нарушении этого принципа теряется смысл критерия .

2. Нормировка критериев

Правила нормализации критериев, мы рассматривали ранее в предыдущем разделе.

3. Учет приоритетов критериев

Учет приоритетов обычно задается некоторым векторам весовых коэффициентов, которые отображают важность того или иного критерия для решаемой задачи.

4. Построение функции свертки

Для свертывания критериев, используют такие основные типы функций:

Аддитивные функции свертки;

Мультипликативные;

Агрегированные, а также могут быть другие варианты сверток.

Аддитивная свертка

Аддитивную свертку критериев можно рассматривать как реализацию принципа справедливой компенсации абсолютных значений нормированных частных критериев . В этом случае, суперкритерий обычно строятся как взвешенная сумма частных критериев

(2.9)

Весовые коэффициенты выбираются такими, чтобы их сумма была равна единицы. В методе равномерной оптимизации, который является частным случаем аддитивной свертке, весовые коэффициенты берутся равными друг другу. Иногда оказывается более удобным другой подход к определению весовых коэффициентов, их определяет соответствие с такой таблицей:

таблица 2.1.

Таблица относительной важности критериев

Мультипликативная свертка

Мультипликативная свертка базируется на принципе справедливой компенсации относительных изменений частных критериев. При этом, суперкритерий имеет вид: , произведение частных критериев, каждый из которых возведен в степень. При этом сумма весовых коэффициентовдолжна быть равна единицы, а каждый из весовых коэффициентов должен быть не отрицательной величиной.

При использовании мультипликативных критериев не требуется нормировка частных критериев, и это является их преимуществом .

Выбор между аддитивными и мультипликативными критериями определяется важностью учета абсолютных или относительных изменений значений частных критериев.

Агрегирование частных критериев используют также различные варианты агрегирование. В частности, если компенсация значений одних показателей эффективности другими недопустима, то используют функции агрегирования вида:

Для каждого частного критерия, находится его нормированное значение и умножается на весовой коэффициент. А потом из всех полученных величин выбирается либо максимальное, либо минимальное значение.

Если первые mпоказателей надо увеличить, а остальные – уменьшить, то используют функцию агрегирования вида:

(2.11)

В числители находятся произведение тех критериев, значение которых нам надо максимизировать, а в знаменателе находятся произведение тех критериев, значение которых нам надо минимизировать. И поэтому мы получаем новый критерий, который нам надо будет максимизировать .

Методы свертывания критериев широко используются в решение задач многокритериальной оптимизации. Однако они имеют также проблемы и недостатки. В частности трудно обосновать выбор метода свертывания критериев, а от выбора метода часто зависит получаемый результат. Другим недостатком является трудность обоснование выбора весовых коэффициентов, часто для этого привлекается эксперты, проводятся опросы, потом обрабатываются полученные результаты, однако это требует много времени и затраты других ресурсов. Еще одна проблема связана с тем, что эти методы, как правила дает возможность компенсировать малые значения одних критериев большими значениями других, что часто бывает неприемлемо для конкретных решений .

Рассмотрим в качестве примера такую задачу:

Перед тем как преобразовывать эти критерии в 1, мы должны привести их в однородном состоянии. Т.е. в данном случае нужно максимизировать f2→ f2" = -f2. И тогда получим: . После этого суммируем частных критериевв один, и можем дальше решить задачу обычным путем.

Также нужно учитывать и весовые коэффициенты, при этом их сумма должна быть = 1, и каждый из весовых коэффициентов должен быть неотрицательной величиной. Весовые коэффициенты распределяется по важности этих самих частных критериев . В данном случае, весовые коэффициенты будут распределяться следующим образом: 0,5; 0,2; 0,3.

После подсчета вместе с весовыми коэффициентами, мы получим целевую функцию такого вида: или.

Открываем электронную книгу Excel и, как и для решения однокритериальной задачи определяем ячейки под переменные . Для этого в ячейку А3 вводим подпись «Переменные», а соседние три ячейки В2, С2 и D2 вводим значения переменных. Это могут быть произвольные числа, например единицы или нули, далее они будут оптимизироваться. В нашем случае это единицы.

рис.2.11. Определение переменных, целевых и ограничений

В четвертой строке задаем целевую функцию. В А4 вводим подпись «Целевая», а в В4, С4, D4 наши значения.

В ячейку F6,F7и F8 вводим формулы «=B6*$B$3+C6*$C$3+D6*$D$3», «=B7*$B$3+C7*$C$3+D7*$D$3»,«=B8*$B$3+C8*$C$3+D8*$D$3» соответственно.

После открытия окна «Поиск решения» в поле «Оптимизировать целевую функцию» ставим курсор и делаем ссылку на ячейку «F4». В окне появится $F$4. В связи с тем, что целевая функция максимизируется, далее нужно проверить, что флажок ниже поля стоит напротив надписи «Максимум».

После ставим курсор в поле «Изменяя ячейки переменных» и обводим ячейки с переменными В3, С3 и D3, выделяя ячейки с переменными. В поле появиться $B$3:$D$3.

В нижней части окна находится поле «Ограничения». Добавляем все необходимые ограничения, «F6» «» «F6», «F7:F8» «≤» и «G7:G8».

Вводим дополнительное ограничение, и получим следующую формулу «B3:D3», «», «0».

рис.2.12. Параметры поиска решения

Далее выбираем метод решения «Поиск решения линейных задач симплекс-методом». Для запуска вычислений нажимаем кнопку «Найти решение». Появляется надпись, что решение найдено. Выбираем «Сохранить найденное решение» и «ОК» видим результат.

рис.2.13. Окончательный результат решения по методу свертывания критериев

Существующие методы предназначены в основном для сравнения заданных альтернатив и выбора лучшей из них. Довольно часто критерии, по которым оцениваются альтернативы, противоречивы, для них используются разные методы и шкалы оценок.

С математической точки зрения не существует идеального способа или метода решения многокритериальных задач оптимизации. Тем не менее, эти методы помогают подготовить всю необходимую для принятия решения информацию таким образом, чтобы помочь лицам принимающее решение максимально точно разобраться в ситуации и принять наиболее обоснованное решение.

Из презентаций

здесь x – альтернатива из множества Парето

fi (x ) – оценка альтернативы x по i -му критерию

Ci – коэффициенты относительной важности критериев

Использование линейной свертки

Это задачи, связанные с критериями

суммарного ущерба или прибыли ,

дохода ,

денежных или временных затрат

по годам планирования или по этапам

жизненного цикла экономических информационных систем и т. п.,

т.е. там, где допускается, что низкая ценность одной частной характеристики результата компенсируется высокой ценностью другой

Квадратичная свертка

При решении практических задач ЛПР, как правило, ранжирует критерии в соответствии со своими предпочтениями. В этом случае в качестве интегрального критерия используются различные виды сверток

, линейная свертка ,

здесь x – альтернатива из множества W;

f i (x) – оценка альтернативы x по i-му критерию;

с i – весовые коэффициенты, с которыми оценки альтернатив входят в интегральный критерий. с i – коэффициенты значимости, или коэффициенты относительной важности критериев.

Коэффициенты с i можно найти, например, из специально организованной экспертизы: m экспертов должны расставить (ранжировать) критерии по важности:ранг 1 присвоить самому важному критерию и т.д. Пусть r ij – ранг, который присвоил j-ый экперт i-му критерию. Чтобы получить числовую оценку, введем новый коэффициент

.

Тогда коэффициент значимости i-го критерия с точки зрения j-го эксперта:

Обобщенные коэффициенты получим, усреднив оценки экспертов.

Пусть g j – компетентность j-го эксперта, тогда

.

Еще один метод назначения коэффициентов относительной важности основан на внесении предпочтений во множество критериев. Он состоит в следующем.

Пусть удается количественно выразить отношения предпочтения между критериями: критерий f i предпочтительнее критерия f j в h раз: . Тогда коэффициенты относительной важности этих критериев связаны между собой линейным уравнением C i =hC j . Это следует из теоремы:

Th. Если , то C i =hC j , C i >0, åC i =1.

Решая систему линейных уравнений, получим искомые коэффициенты.

Пример. Пусть варианты некоторой системы оцениваются по четырем критериям с пятибалльной шкалой. Значения критериевf i (х) даны в табл.13.

Пусть известно, что , f 2 ~ f 3 , .

Решение . Составим систему линейных уравнений для определения коэффициентов C i :

C 1 =1,5C 2 ; C 2 =C 3 ; C 3 =C 4 ; C 1 +C 2 +C 3 +C 4 =1;

Отсюда следует, что C 1 =3/8; C 2 =2/8; C 3 =2/8; C 4 =1/8.

В табл. 13 приведены значения интегрального критерия «Линейная свертка ».

Таблица 13

Оценки вариантов по критериям

f 1 f 2 f 3 f 4
Х1 Х2 Х3 Х4 Х5 Х6 2 5 4 5 5 3 4 3 3 2 5 5 4 3 4 4 3 4 4 4 4 3 3 4 3/8*2+2/8*5+2/8*4+1/8*5=29/8 32/8 28/8 30/8 29/8 28/8

По этому критерию лучшая альтернатива – Х 2 .

Задачи, в которых выполняются условия для использования линейной свертки, часто встречаются в практике. Это задачи, связанные с критериями суммарного ущерба или прибыли, дохода, денежных или временных затрат по годам планирования или по этапам жизненного цикла экономических информационных систем и т. п., т.е. там, где допускается, что низкая ценность одной частной характеристики результата компенсируется высокой ценностью другой.

Свертка может быть не только линейной , но и квадратичной :

,

сверткой порядка t :

,

Величина t, стоящая в показателе степени, отражает допустимую степень компенсации малых значений одних равноценных критериев большими значениями других. Чем больше значение t, тем больше степень возможной компенсации.

Например, при , т.е. когда недопустима никакая компенсация и требуется выравнивание значений всех критериев (равномерное «подтягивание» значение всех критериев к их наилучшему уровню), интегральный критерий приобретает вид

.

Если t →0, т.е. требуется обеспечение примерно одинаковых уровней значений отдельных частных критериев, то интегральный критерий имеет вид

мультипликативная функция.

При t=1 имеем линейную свертку, при t=2 – квадратичную.

В задачах планирования ударов «по узкому месту» допустима компенсация увеличения одного из критериев сколь угодно большим уменьшением остальных, т.е. , тогда интегральный критерий можно использовать в виде

.

Используя в качестве интегрального критерия свертку, выбирают в качестве лучшей ту альтернативу, для которой F(x) имеет максимальное значение .

Замечание . Входящие в интегральный критерий целевые функции имеют разную размерность и выражены в разных шкалах. Поэтому необходимо предварительно выразить все оценки в одной однородной шкале. Целесообразно использовать для этого следующий прием

,

где f i * (x) оценка альтернативы x по i-му критерию в «родной» шкале, f i max и f i min максимальное и минимальное значения альтернатив по i -му критерию. Полученные оценки принадлежат отрезку и являются дробными, что не всегда удобно для расчетов. Поэтому можно, умножив все оценки по соответствующим критериям на наименьшее общее кратное, перейти в целочисленную шкалу. Сдвиг по шкале на общую для каждого из критериев величину позволит избавиться от отрицательных оценок.


Вариант8,19 Методы решения МКЗ при равнозначных критериях