31.08.2019

Материковая добыча нефти. Подземное оборудование фонтанных скважин


Владимир Хомутко

Время на чтение: 5 минут

А А

Как осуществляется газлифтная эксплуатация нефтяных скважин?

С течением времени при эксплуатации нефтяной скважины снижается уровень пластового давления, вследствие чего нефть перестает фонтанировать. Для возобновления притока добываемого сырья переходят на механизированные методы эксплуатации скважин, которые подразумевают ввод дополнительной энергии с поверхности. Газлифтная эксплуатация нефтяных скважин является одним из таких способов.

К основным преимуществам этого метода относятся:

  • он позволяет отбирать большие объемы жидкостей при любом диаметре эксплуатационной колонны, а также дает возможность форсировать отбор из скважин с высокой степенью обводненности;
  • с его помощью можно эксплуатировать скважины с высоким показателем газового фактора; другими словами, этот способ дает возможность использовать энергию пластовых газов, даже в скважинах, забойное давление которых меньше давления насыщения;
  • при использовании этого способа влияние профиля скважинного ствола на эффективность работы невелико, что очень актуально для скважин наклонного направления;
  • высокое значение давления и температура добываемой продукции и наличие в ней механических примесей не влияет на работу скважины;
  • регулировать режим работы скважины по дебиту при этом способе эксплуатации достаточно просто;
  • обслуживание и ремонт газлифтных скважин достаточно просты, а использование современных видов оборудование позволяет добиваться большого временного промежутка безремонтной работы;
  • этот способ позволяет реализовать одновременную раздельную эксплуатацию, а также эффективно бороться с коррозией, солевыми и парафиновыми отложениями;
  • простота проведения исследований скважин.

Есть у газлифта и свои недостатки, к которым относятся:

Учитывая достоинства и недостатки газлифтного (компрессорного) способа эксплуатации нефтяных скважин, его применение наиболее эффективно на больших нефтяных месторождениях, где есть скважины с высокими значениями забойного давления после прекращения фонтанирования и с большими дебитами. Кроме того, эту методику можно применять при эксплуатации наклонно-направленных скважин, а также на горных выработках, продукция которых содержит большое количество примесей механического характера. Другими словами – в таких условиях, при которых главным критерием рациональной работы является МРП (межремонтный период) работы оборудования.

Если поблизости есть газовые месторождения или скважины с достаточными резервами газа и с необходимым значением давления, то для нефтедобычи применяется так называемый бескомпрессорный газлифт.

Такая система может применяться в качестве временной меры, пока строится компрессорная станция. Бескомпрессорная система газлифта практически ничем не отличается от компрессорной, посколько единственное их отличие – это источник газа с высоким давлением.

Газлифтная эксплуатация бывает периодической или непрерывной.

Периодический газлифт, как правило, используют на скважинах, суточный дебит которых составляет 40 -60 тонн, а также при низком значении пластового давления.

В процессе выбора метода эксплуатации приоритет газлифтной системы определяется с помощью технико-экономического анализа, с учетом специфики региона добычи и особенностей конкретного месторождения. К примеру, длительный МРП работы скважин с газлифтом, достаточно простое обслуживание и ремонт, а также высокая степень автоматизации добычи стали главными факторами, предопределившими организацию больших газлифтных систем таких крупных российских месторождениях Западной Сибири, как Самотлорское, Правдинское и Федоровское.

Применение этой методики позволило снизить необходимость в региональных трудовых ресурсах и дало возможность создать всю необходимую инфраструктуру (в том числе и бытовую), с целью обеспечить рациональное использование этих ресурсов.

Газлифтная нефтедобыча

Этот способ эксплуатации подразумевает подачу недостающей энергии в продуктивный с поверхности. Носителем этой энергии выступает сжатый газ, подающийся по специальным каналам.

Как уже было сказано ранее, существуют два вида газлифта – бескомпрессорный и компрессорный. Компрессорный газлифт подразумевает сжатие попутного нефтяного газа с помощью компрессоров. Бескомпрессорный подразумевает использование газа газовых промыслов, который находится под достаточным давлением, или газа, получаемого из других внешних источников.

По сравнению с прочими механизированными технологиями эксплуатации нефтяных скважин, у газлифта есть ряд несомненных достоинств:

  • он позволяет отбирать большие объемы жидкого сырья с большой глубины на любом этапе разработки месторождения с высокими технико-экономическими показателями;
  • газлифтное оборудование достаточно простое, и его удобно обслуживать;
  • такая эксплуатация хорошо подходит для скважин, ствол которых имеет с большие искривления;
  • эффективен этот метод при работе с высокотемпературными пластами и высоким газовым фактором без возникновения осложнений;
  • газлифт позволяет осуществлять весь комплекс исследований, необходимых для контроля работы каждой скважины и разработки всего месторождения в целом;
  • этот способ дает возможность полностью автоматизировать и телемеханизировать добывающий процесс;
  • длительный МРП работы скважин и высокая надежность всей системы;
  • позволяет осуществлять одновременно-раздельную эксплуатацию нескольких продуктивных пластов и обеспечить надежный контроль за добывающим процессом;
  • достаточно просто при этом способе бороться с солевыми и парафиновыми отложениями и с коррозией;
  • подземный текущий ремонт скважины и восстановление работоспособности расположенного под землей оборудования, обеспечивающего подъем добываемой продукции, достаточно просты.

К основным недостаткам газлифта специалисты относят высокие первоначальные затраты, а также фондо- и металлоемкость. Размер этих показателей во многом зависит от утвержденной схемы обустройства месторождения, и незначительно больше, чем аналогичные показатели насосной добычи.

Компрессорная система газлифта отличается самым большим количеством элементов и более сложным оборудованием. Современный газлифтный комплекс – это замкнутая герметичная система, обеспечивающая высокое давление.

Основные компоненты такой газлифтной системы:

  • скважины;
  • комплекс компрессорных станций;
  • система газопроводов высокого давления;
  • сборные трубопроводы для нефтяного и газового сырья;
  • различные виды сепараторов;
  • батарея газораспределения;
  • ГЗУ (групповые замерные установки);
  • очистные и осушительные газовые системы с возможностью регенерации этиленгликоля;
  • ДНС (дожимные насосные станции);
  • пункт сбора добываемой нефти.

В составе такого комплекса есть система, называемая АСУ ТП (автоматизированная система управления технологическим процессом), задачами которой являются:

  • обеспечение необходимых автоматических измерений;
  • контроль за рабочим давлением линий газоподачи в скважины с магистральных коллекторов;
  • проведение замеров и контролирование перепадов давления;
  • обеспечение автоматического управления, оптимизации и стабилизации работы эксплуатируемых скважин;
  • проведение расчета рабочего газа;
  • замеры суточных дебитов скважин отдельно по сырой нефти, по воде и по общему объему выкачиваемой жидкости.

Оптимальное распределение компримируемого газа заключается в назначении для каждой скважины заранее определенного режима закачки газа, который поддерживается вплоть до следующей смены рабочего режима. Основной параметр для стабилизации работы – это значение перепада давления, определяемого измерительной шайбой дифференциального манометра, который ставится на рабочей линии газоподачи.

При выборе типа установки газлифта и необходимого технологического оборудования, целью которого является обеспечение наиболее эффективной эксплуатации, необходимо учитывать горно-геологические и технологические условия разработки объектов нефтедобычи, а также особенности конструкций конкретных скважин и принятого режима их работы.

Какой-либо строгой классификации таких установок нет. Их группируют по принципу общности технологических и конструктивных особенностей.

Например, по таким критериям, как количество рядов спущенных в скважину труб, направление движения рабочей среды и газожидкостных смесей, а также взаимное расположение трубных рядов, различают следующие газлифтные системы:

  • с однорядным подъемником центральной и кольцевой системы;
  • с двухрядным подъемником центральной и кольцевой системы;
  • с полуторарядным лифтом (как правило – кольцевой системы).

У каждой из перечисленных систем газлифтных подъемников есть свои достоинства и недостатки. Целесообразность их применения определяется ч учетом технологических и геологических и технологических особенностей каждого конкретного объекта эксплуатации.

По близости связей кольцевого и трубного пространства со скважинным забоем газлифтные устройства разделяют на:

  • открытые;
  • закрытые;
  • полузакрытые.

Внутрискважинный газлифт является самым эффективным способом, обеспечивающим подъем жидкости. Он производится с помощью перепуска газа из выше или ниже лежащего газового пласта в продуктивный слой посредством специального забойного регулятора.

Для организации внутрискважинного газлифта нет необходимости строить наземные газопроводы и пункты газораспределения, призванные обеспечивать газосбор и последующее распределение газа, а также нет нужды в установках газоподготовки (осушительных, для удаления жидких углеводородов, очистительных и т.п.).

Кроме того, ввод в подъемник, расположенный близко к башмаку колонны НКТ, газа под высоким давлением, обеспечивает высокую термодинамическую эффективность поднимающего потока. К примеру, самые лучшие режимы компрессорного и бескомпрессорном газлифта дают термодинамическую эффективность на уровне 30-ти – 40-ка процентов, а внутрискважиный бескомпрессорный газлифт – на уровне 85-ти – 90 процентов.

Самым эффективным из таких способов является использование устройств, называемых пусковыми газлифтными клапанами. Они ставятся в скважинные камера ниже уровня жидкости. Газлифтные клапаны могут работать как от давления затрубного пространства, так и от давления жидкостного столба в НКТ, а также от перепадов между ними значений давления.

Наиболее популярны клапаны, которые управляются затрубным давлением (сильфонный тип серии Г). Их выпускают со следующими наружными диаметрами: 20-ть, 25-ть и 38-мь миллиметров. Диапазон давления зарядки – от 2-х до 7-ми МПа.

В состав газлифтного клапана серии Г входят:

  • устройство для зарядки;
  • сильфонная камера;
  • пара шток – седло;
  • обратный клапан;
  • устройство для фиксации в скважинной камере.

Зарядка сильфонной камеры азотом производится посредством золотника. Давление в этой камере регулируется на специальном стенде марки СИ-32.

Сильфонная камера является сварным герметичным сосудом высокого давления. Основной рабочий орган – многослойный металлический сильфон.

Пара шток – седло представляет собой запорное устройство газлифтного клапана, на которое газ попадает посредством окон, расположенных в кармане скважинной камеры. За герметичность поступления газа отвечают два комплекта манжет.

Обратный клапан предотвращает переток продукции в затрубное пространство из подъемной трубной колонны

Газлифтные клапаны серии Г подразделяют на рабочие и пусковые.

Другой тип применяемых для понижения давления клапанов – это дифференциальные клапаны КУ-25 и КУ-38, которые работают от перепадов давления между колонной НКТ и затрубного пространства.

Принцип действия

Газлифтная скважина - это по существу та же фонтанная скважина, в которой недостающий для необходимого разгазирования жидкости газ подводится с поверхности по специальному каналу. По колонне труб 1 газ с поверхности подается к башмаку 2, где смешивается с жидкостью, образуя ГЖС, которая поднимается на поверхность по подъемным трубам 3. Закачиваемый газ добавляется к газу, выделяющемуся из пластовой жидкости. В результате смешения газа с жидкостью образуется ГЖС такой плотности, при которой имеющегося давления на забое скважины достаточно для подъема жидкости на поверхность. Все понятия и определения, изложенные в теории движения газожидкостных смесей в вертикальных трубах, в равной мере приложимы к газлифтной эксплуатации скважин и служат ее теоретической основой.

Расчет газлифта

Точка ввода газа в подъемные трубы (башмак) погружена под уровень жидкости на величину h ; давление газа Р 1 в точке его ввода в трубы пропорционально погружению h и связано с ним очевидным соотношением Р 1 = hρg . Давление закачиваемого газа, измеренное на устье скважины, называется рабочим давлением Р p . Оно практически равно давлению у башмака Р 1 и отличается от него только на величину гидростатического давления газового столба ΔР 1 и потери давления на трение газа в трубе ΔР 2 , причем ΔР 1 увеличивает давление внизу Р 1 , а ΔР 2 уменьшает. Таким образом:


В реальных скважинах ΔР 1 составляет несколько процентов от Р 1 , а ΔР 2 еще меньше. Поэтому рабочее давление Р р и давление у башмака Р 1 мало отличаются друг от друга. Таким образом, достаточно просто определить давление на забое работающей газлифтной скважины по ее рабочему давлению на устье.

Виды газлифта

Это упрощает процедуру исследования газлифтной скважины, регулировку ее работы и установление оптимального режима. Скважину, в которую закачивают газ для использования его энергии для подъема жидкости, называют газлифтной , при закачке для той же цели воздуха - эрлифтной . Применение воздуха способствует образованию в насоснокомпрессорной трубе очень стойкой эмульсии, разложение которой требует ее специальной обработки поверхностно-активными веществами, нагрева и длительного отстоя. Выделяющаяся при сепарации на поверхности газовоздушная смесь опасна в пожарном отношении, так как при определенных соотношениях образует взрывчатую смесь. Это создает необходимость выпуска отработанной газовоздушной смеси после сепарации в атмосферу.

Применение углеводородного газа, хотя и способствует образованию эмульсии, но такая эмульсия нестойкая и разрушается (расслаивается) часто простым отстоем без применения дорогостоящей обработки для получения чистой кондиционной нефти. Это объясняется отсутствием кислорода или его незначительным содержанием в используемом углеводородном газе и химическим родством газа и нефти, имеющих общую углеводородную основу. Кислород, содержащийся в воздухе, способствует окислительным процессам и образованию на глобулах воды устойчивых оболочек, препятствующих слиянию воды, укрупнению глобул и последующему их оседанию при отстое. Вследствие своей относительной взрывобезопасности отработанный газ после сепарации собирается в систему газосбора и утилизируется. Причем отсепарированный газ газлифтной скважины при бурном перемешивании его с нефтью при движении по НКТ обогащается бензиновыми фракциями. При физической переработке такого газа на газобензиновых заводах получают нестабильный бензин и другие ценные продукты. Что касается нефти, то она стабилизируется, что уменьшает ее испарение при транспортировке и хранении.

Переработанный (осушенный) на газобензиновых заводах газ снова используется для работы газлифтных скважин после его предварительного сжатия до необходимого давления на компрессорных станциях промысла. Таким образом, газлифт позволяет улучшать использование газа и эксплуатировать месторождение более рационально по сравнению с эрлифтом. Единственным достоинством эрлифта является неограниченность источника воздуха как рабочего агента для газожидкостного подъемника. Реальные газлифтные скважины не оборудуются по приведенной принципиальной схеме газлифта, так как спуск в скважину двух параллельных рядов труб, жестко связанных внизу башмаком, практически осуществить нельзя. Эта схема приведена только лишь для пояснения принципа работы газлифта. Однако ее использование вполне возможно и в ряде случаев целесообразно для откачки больших объемов жидкости, например, из шахт или других емкостей с широким проходным сечением.

Для работы газлифтных скважин используется углеводородный газ, сжатый до давления 4-10 МПа. Источниками сжатого газа обычно бывают либо специальные компрессорные станции, либо компрессорные газоперерабатывающих заводов, развивающие необходимое давление и обеспечивающие нужную подачу. Такую систему газлифтной эксплуатации называют компрессорным газлифтом . Системы, в которых для газлифта используется природный газ из чисто газовых или газоконденсатных месторождений, называют бескомпрессорным газлифтом .

При бескомпрессорном газлифте природный газ транспортируется до места расположения газлифтных скважин и обычно проходит предварительную подготовку на специальных установках, которая заключается в отделении конденсата и влаги, а иногда и в подогреве этого газа перед распределением по скважинам. Избыточное давление обычно понижается дросселированием газа через одну или несколько ступеней штуцеров. Существует система газлифтной эксплуатации, которая называется внутрискважинным газлифтом . В этих системах источником сжатого газа служит газ газоносных пластов, залегающих выше или ниже нефтенасыщенного пласта. Оба пласта вскрываются общим фильтром.

В таких случаях газоносный горизонт изолируется от нефтеносного пласта одним или двумя пакерами (сверху и снизу), и газ вводится в трубы через штуцерное устройство, дозирующее количество газа, поступающего в НКТ. Внутрискважинный газлифт исключает необходимость предварительной подготовки газа, но вносит трудности в регулировку работы газлифта. Этот способ оказался эффективным средством эксплуатации добывающих скважин на нефтяных месторождениях Тюменской области, в которых над нефтяными горизонтами залегают газонасыщенные пласты с достаточными запасами газа и давления для устойчивой и продолжительной работы газлифта.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Область применения газлифтного способа добычи нефти

После прекращения фонтанирования из-за нехватки пластовой энергии переходят на механизированный способ эксплуатации скважин, при котором вводят дополнительную энергию извне (с поверхности). Одним из таких способов, при котором вводят энергию в виде сжатого газа, является газлифт.

Использование газлифтного способа эксплуатации скважин в общем виде определяется его преимуществами.

Возможность отбора больших объемов жидкости практически при всех диаметрах луатационных колонн и форсированного отбора сильнообводненных скважин.

Эксплуатация скважин с большим газовым фактором, т.е.использование энергии пластового газа, в том числе и скважин с забойным давлением ниже давления насыщения.

Малое влияние профиля ствола скважины на эффективность работы газлифта, что особенно важно для наклонно на правленных скважин, т.е. для условий морских месторождений и районов освоения Севера и Сибири.

Отсутствие влияния высоких давлений и температуры продукции скважин, а также наличия в ней мехпримесей (песка) на работу скважин.

Гибкость и сравнительная простота регулирования режима работы скважин по дебиту.

Простота обслуживания и ремонта газлифтных скважин и большой межремонтный период их работы при использовании современного оборудования.

7.Возможность применения одновременной раздельной эксплуатации, эффективной борьбы с коррозией, отложениями солей и парафина, а также простота исследования скважин.

Указанным преимуществам могут быть противопоставлены недостатки.

Большие начальные капитальные вложения в строительство компрессорных станций.

Сравнительно низкий коэффициент полезного действия (КПД) газлифтной системы.

Возможность образования стойких эмульсий в процессе подъема продукции скважин.

Исходя из указанного выше, газлифтный (компрессорный) способ ксплуатации скважин, в первую очередь, выгодно использовать на крупных месторождениях при наличии скважин с большими дебитами и высокими забойными давлениями после периода фонтанирования.

Далее он может быть применен в наклонно направленных скважинах и скважинах с большим содержанием мехпримесей в продукции, т.е. в условиях, когда за основу рациональной эксплуатации принимается межремонтный период (МРП) работы скважин.

При наличии вблизи газовых месторождений (или скважин) с достаточными запасами и необходимым давлением используют бескомпрессорный газлифт для добычи нефти.

Эта система может быть временной мерой -- до окончания строительства компрессорной станции. В данном случае система газлифта остается практически одинаковой с компрессорным газлифтом и отличается только иным источником газа высокого давления.

Газлифтная эксплуатация может быть непрерывной или периодической. Периодический газлифт применяется на скважинах с дебитами до 40--60 т/сут или с низкими пластовыми давлениями.

Технико-экономический анализ, проведенный при выборе способа эксплуатации, может определить приоритет использования газлифта в различных регионах страны с учетом местных условий. Так, большой МРП работы газлифтных скважин, сравнительная простота ремонта и возможность автоматизации предопределили создание больших газлифтных комплексов на Самотлорском, Федоровском, Правдинском месторождениях в Западной Сибири. Это дало возможность снизить необходимые трудовые ресурсы региона и создать необходимые инфраструктуры (жилье и т.д.) для рационального их использования.

2. Газлифтный способ добычи нефти

При газлифтном способе эксплуатации недостающая энергия подается с поверхности в виде энергии сжатого газа по специальному каналу.

Газлифт подразделяется на два типа: компрессорный и бескомпрессорный. При компрессорном газлифте для сжатия попутного газа применяются компрессоры, а при бескомпрессорном газлифте используется газ газового месторождения, находящийся под давлением, или из других источников.

Газлифт относительно других механизированных способов эксплуатации скважин имеет ряд преимуществ:

возможность отбора значительных объемов жидкости с больших глубин на всех этапах разработки месторождения при высоких технико-экономических показателях;

простота скважинного оборудования и удобство его обслуживания;

эффективная эксплуатация скважин с большими искривлениями ствола;

эксплуатация скважин в высокотемпературных пластах и с большим газовым фактором без осложнений;

возможность осуществления всего комплекса исследовательских работ по контролю за работой скважины и разработкой месторождения;

полная автоматизация и телемеханизация процессов добычи нефти;

большие межремонтные периоды работы скважин на фоне высокой надежности оборудования и всей системы в целом;

возможность одновременно-раздельной эксплуатации двух пластов и более при надежном контроле за процессом;

простота борьбы с отложением парафина, солей и коррозионными процессами;

простота работ по подземному текущему ремонту скважины, восстановлению работоспособности подземного оборудования для подъема продукции скважины.

Недостатками газлифта по традиции считаются высокие начальные капитальные вложения, фондоемкость и металлоемкость. Эти показатели, во многом зависящие от принятой схемы обустройства промысла, ненамного превышают показатели при насосной добыче.

Наибольшее число элементов в системе газлифта и более сложное оборудование используются в случае компрессорного газлифта. Современный газлифтный комплекс представляет собой замкнутую герметичную систему высокого давления (рис. 1).

Основными элементами этой схемы являются: скважины 1, компрессорные станции 3, газопроводы высокого давления, трубопроводы для сбора нефти и газа, сепараторы различного назначения 7, газораспределительная батарея 4, групповые замерные установки, системы очистки и осушки газа с регенерацией этиленгликоля 6, дожимные насосные станции, нефтесборный пункт,

Рис. 1. Схема замкнутого цикла газлифтного комплекса

В состав комплекса входит система АСУ ТП, которая включает выполнение следующих задач:

измерение и контроль рабочего давления на линиях подачи газа в скважины на магистральных коллекторах;

измерение и контроль перепада давления;

управление, оптимизация и стабилизация режима работы скважин;

расчет рабочего газа;

измерение суточного дебита скважины по нефти, воде и общему объему жидкости.

В результате решения задачи оптимального распределения компримируемого газа для каждой скважины назначают определенный режим закачки газа, который необходимо поддерживать до следующего изменения режима. Параметром для стабилизации принимается перепад давления на измерительной шайбе дифманометра, установленного на рабочей линии подачи газа в скважину.

Выбор типа газлифтной установки и оборудования, обеспечивающего наиболее активную эксплуатацию скважин, зависит от горно-геологических и технологических условий разработки эксплуатационных объектов, конструкции скважин и заданного режима их эксплуатации.

Строгой классификации газлифтных установок не существует, и они группируются на основе самых общих конструктивных и технологических особенностей.

В зависимости от количества рядов труб, спущенных в скважину, их взаимного расположения и направления движения рабочего агента и газожидкостной смеси имеются системы различных типов

однорядный подъемник кольцевой и центральной систем

двухрядный подъемник кольцевой и центральной систем

полуторарядный лифт обычно кольцевой системы

Перечисленные системы газлифтных подъемников имеют преимущества и недостатки. В связи с этим обоснование целесообразности их применения производится с учетом горно-геологических и технологических особенностей конкретного объекта разработки.

По степени связи трубного и кольцевого пространства с забоем скважины установки газлифта делятся на открытые, полузакрытые и закрытые.

Опыт разработки нефтяных месторождений Западной Сибири показал, что наиболее рациональна система, при которой сжатый газ отбирается из скважин, оборудованных для добычи газа и осуществления внутрискважи Внутрискважинный газлифт - наиболее эффективный способ подъема жидкости. Осуществляется он путем перепуска газа из вышележащего (возможно, и из нижележащего) газового пласта через специальный забойный регулятор.

Применение внутрискважинного газлифта позволяет исключить строительство наземных газопроводов для сбора и распределения газа и газораспределительных пунктов, установок по подготовке газа (осушка, удаление части жидких углеводородов, очистка от сероводорода). В связи с вводом в подъемник ближе к башмаку НКТ газа высокого давления обеспечивается высокая термодинамическая эффективность потока в подъемнике. Если при бескомпрессорном и компрессорном газлифтах при лучших режимах термодинамическая эффективность составляет 30--40 %, то при внутрискважинном бескомпрессорном газлифте значение ее достигает 85-90 %

3. Техника безопасности при эксплуатации газлифтных скважин

газлифтный добыча нефть

Устье газлифтной скважины оборудуют стандартной фонтанной арматурой на рабочее давление, равное максимальному, ожидаемому на устье скважины. Арматуру до установки на скважину опрессовывают в собранном виде на паспортное пробное давление. После установки на устье скважины ее опрессовывают на давление для опрессовки эксплуатационной колонны; при этом, независимо от ожидаемого рабочего давления, арматуру монтируют с полным комплектом шпилек и уплотнений. Ее выкидные и нагнетательные линии, расположенные на высоте, должны иметь надежные опоры, предотвращающие падение труб при ремонте, а также их вибрацию при работе скважин.

Обвязка скважины, аппаратуры и газопроводов под давлением в зимнее время должна отогреваться только паром или горячей водой.

В газораспределительных будках следует не допускать скопления газа, который при определенном соотношении с воздухом образует взрывоопасную смесь. Газ обычно скапливается вследствие пропуска его через фланцевые соединения или сальники вентилей. Во избежание поступления газа из скважины по трубопроводу в БГРА должен быть установлен обратный клапан.

Скопление взрывоопасной смеси особенно недопустимо в зимнее время, когда окна и двери газораспределительных будок закрыты. В зимнее время также могут образовываться гидратные пробки вследствие замерзания конденсата в батареях и газопроводах. Это приводит к повышению давления в трубопроводах и возможному их разрыву. Попадание газа в воздух может быть причиной взрыва. Основная мера, предотвращающая взрыв, - вентиляция помещения. Для устранения утечки газа на линии следует постоянно следить за исправностью сальниковых набивок вентилей, сосудов для конденсата (на газопроводных магистральных линиях в низких точках).

В зимнее время следует утеплить помещения для предотвращения от замерзания конденсата в батареях.

Для устранения источников воспламенения газа в будках необходимо:

использовать электрическое освещение будок, установленное вне будок;

выносить за будку электроприборы (рубильники, печи);

применять инструмент, не дающий искр, при ремонте внутри будок;

запретить применение открытого огня и курение в будке;

сооружать будку из огнестойкого материала.

4. Обслуживание газлифтных скважин

Обслуживание газлифтных скважин включает исследование газлифтных скважин, анализ их работы и устранение неисправностей газлифтнои установки.

Целью исследования является определение параметров пластов, пластовых жидкостей и призабойной зоны для оценки рационального расхода рабочего агента (газа) по критерию максимума добычи нефти или минимума удельного расхода газа.

Основной метод исследования газлифтных скважин -- метод пробных откачек. Забойное давление при этом определяется глубинным манометром или расчетом по давлению нагнетаемого газа.

Осложняющие условия эксплуатации газлифтных скважин требуют проведения необходимых оргтехмероприятий.

Для борьбы с пескопроявлением используют:

фильтры для закрепления призабойной зоны;

ограничение депрессии для предотвращения разрушения скелета нефтесодержащих пород;

конструкции подъемных лифтов и режимы их работы, при которых обеспечивается полный вынос песка.

Для борьбы с парафином, гидратами, солеотложением, образованием эмульсии, несмотря на повышенную металлоемкость установки, иногда используют второй ряд НКТ, что позволяет закачивать в кольцевое пространство между ними растворители и химреагенты без остановки скважины.

Образование ледяных и гидратных пробок в скважинах и негерметичностях лифта устраняют следующими методами:

устранением негерметичности лифта и уменьшением перепада давления на клапане;

вводом ингибитора в нагнетаемый газ;

подогревом газа; снижением давления при прекращении подачи газа на скважину.

5. Методы воздействия на призабойную зону пласта

Дополнительный приток нефти в скважины, а следовательно, и дополнительный дебит обеспечивают применение методов увеличения проницаемости призабойной зоны пласта. На окончательной стадии бурения скважины глинистый раствор может проникать в поры и капилляры призабойной зоны пласта, снижая ее проницаемость. Снижение проницаемости этой зоны, загрязнение ее возможно и в процессе эксплуатации скважины. Проницаемость призабойной зоны продуктивного пласта увеличивают за счет применения различных методов:

· химических (кислотные обработки),

· механических (гидравлический разрыв пласта и с помощью импульсно-ударного воздействия и взрывов),

· тепловых (паротепловая обработка, электропрогрев) и их комбинированием.

Кислотная обработка скважин связана с подачей на забой скважины под определенным давлением растворов кислот. Растворы кислот под давлением проникают в имеющиеся в пласте мелкие поры и трещины и расширяют их. Одновременно с этим образуются новые каналы, по которым нефть может проникать к забою скважины. Для кислотной обработки применяют в основном водные растворы соляной и плавиковой (фтористоводородной) кислоты. Концентрация кислоты в растворе обычно принимается равной 10ё15 %, что связано с опасностью коррозионного разрушения труб и оборудования. Однако в связи с широким использованием высокоэффективных ингибиторов коррозии и снижением опасности коррозии концентрацию кислоты в растворе увеличивают до 25ё28 %, что позволяет повысить эффективность кислотной обработки. Длительность кислотной обработки скважин зависит от многих факторов -- температуры на забое скважины, генезиса пород продуктивного пласта, их химического состава, концентрации раствора, давления закачки. Технологический процесс кислотной обработки скважин включает операции заполнения скважины кислотным раствором, продавливание кислотного раствора в пласт при герметизации устья скважин закрытием задвижки. После окончания процесса продавливания скважину оставляют на некоторое время под давлением для реагирования кислоты с породами продуктивного пласта. Длительность кислотной обработки после продавливания составляет 12ё16 ч на месторождениях с температурой на забое не более 40°С и 2ё3 ч при забойных температурах 100ё150°С.

Гидравлический разрыв пласта (ГРП) заключается в образовании и расширении в пласте трещин при создании высоких давлений на забое жидкостью, закачиваемой в скважину. В образовавшиеся трещины нагнетают песок, чтобы после снятия давления трещина не сомкнулась. Трещины, образовавшиеся в пласте, являются проводниками нефти и газа, связывающими скважину с удаленными от забоя продуктивными зонами пласта. Протяженность трещин может достигать нескольких десятков метров, ширина их 1ч4 мм. После гидроразрыва пласта производительность скважины часто увеличивается в несколько раз.

Операция ГРП состоит из следующих этапов: закачки жидкости разрыва для образования трещин; закачки жидкости -- песконосителя; закачки жидкости для продавливания песка в трещины.

Гидропескоструйная перфорация скважин - применяется для создания каналов, соединяющих ствол скважины с пластом при кислотной обработке скважины и других методах воздействия. Метод основан на использовании кинетической энергии и абразивных свойств струи жидкости с песком, истекающей с большой скоростью из насадок перфоратора и направленной на стенку скважины. За короткое время струя жидкости с песком образует отверстие или прорезь в обсадной колонне и канал или щель в цементном камне и породе пласта. Жидкость с песком направляется к насадкам перфоратора по колонне насосно-компрессорных труб с помощью насосов, установленных у скважины.

Виброобработка забоев скважин заключается в том, что на забое скважины с помощью вибратора формируются волновые возмущения среды в виде частых гидравлических импульсов или резких колебаний давления различной частоты и амплитуды. При этом повышается проводимость пластовых систем вследствие образования новых и расширения старых трещин и очистки призабойной зоны.

Торпедирование скважин состоит в том, что заряженную взрывчатым веществом (ВВ) торпеду спускают в скважину и взрывают против продуктивного пласта. При взрыве образуется каверна, в результате чего увеличиваются диаметр скважины и сеть трещин.

Тепловое воздействие на призабойную зону используют в том случае, если добываемая нефть содержит смолу или парафин. Существует несколько видов теплового воздействия: электротепловая обработка; закачка в скважину горячих жидкостей; паротепловая обработка. Термокислотную обработку скважин применяют на месторождениях нефтей с большим содержанием парафина. В этом случае перед кислотной обработкой скважину промывают горячей нефтью или призабойную зону пласта прогревают каким-либо нагревателем для расплавления осадков парафинистых отложений. Сразу после этого проводят кислотную обработку.

Тепловая обработка призабойной зоны снижает вязкость нефти и усиливает ее приток в скважину. Он прогревает пласт до температуры 80 С на расстояние 0 5 м от забоя.

Тепловые обработки призабойной зоны пласта производит специально подготовленная бригада. При закачивании пара предусматривается возможность управления запорными устройствами с безопасного расстояния. На паропроводе устанавливают обратный клапан. Для проведения глубинных замеров манометром, термометром применяют лубрикатор, имеющий боковой вентиль для стравливания давления. Оборудование устья тщательно закрепляют. В сальниковых устройствах применяют термостойкий материал. Для смазки резьбовых соединений используют термостойкую герметизирующую смазку. Устье скважины оборудуют устройством, компенсирующим удлинение колонны НКТ от температуры. Если для закачивания пара применяют НКТ без пакера, то компенсатор устанавливают и в скважине. При закачивании пара через НКТ с пакером, для предупреждения разрыва эксплуатационной колонны и обвязки устья, задвижку на отводе от затрубного пространства открывают.

Тепловая обработка призабойной зоны нефтяных скважин является эффективным способом восстановления проницаемости призабойной зоны. Она устраняет накапливающиеся в процессе эксплуатации активные парафиново-смоли-сто-асфальтеновые отложения, затрудняющие приток нефти из пласта к забою скважины.

Для тепловой обработки призабойных зон имеются установки СУЭПС-12ОО. Закончено промышленное испытание более мощной установки УЭС-15ОО-25-А. Организовано промышленное производство аккумуляторов давления скважин АДС различных конструкций для теплогазохимического воздействия на призабойную зону.

Способ тепловой обработки призабойной зоны нефтенасыщенного пласта, включающий закачку в пласт перекиси водорода, отличающийся тем, что с целью ускорения разогрева, увеличения объемного охвата тепловой обработкой призабойной зоны и термокаталитической активации реакцией окисления нефти после закачки перекиси водорода последовательно вводят хромовую кислоту и водовоздушную смесь.

При тепловой обработке призабойной зоны в скважину нагнетают перегретый водяной пар, получаемый от ППУ. Затем скважину закрывают на период, необходимый для передачи тепла в глубь пласта. Указанную операцию проводят под давлением. Если обсадная колонна не рассчитана на такое давление, то в скважину спускают термостойкий пакер, который представляет собой устройство для перекрытия ствола скважины на заданной глубине. Принцип действия различных видов пакеров одинаков. После спуска пакера до определенной отметки с помощью механических усилий его расклинивают. Он плотно закупоривает колонну, разобщая ее верхнюю и нижнюю части. При установке пакера задвижка на стволе от затрубного пространства должна быть открыта. Площадку по направлению отвода необходимо освободить от лкэдей и оборудования.

6. Оборудование магистральных нефте- и газопроводов

Можно, используя последние достижения науки и техники, добыть очень дешевое сырье. Но не забывайте: большинство нефтепромыслов в настоящее время находится далеко от нефтеперерабатывающих предприятий.

Можно, конечно, использовать традиционные виды транспорта. На море грузить добываемую нефть в танкеры, на суше в железнодорожные цистерны. Но выгодно ли это?

Даже на море, где современные супертанкеры забирают в трюмы сразу сотни тысяч тонн топлива, такое решение транспортной проблемы нельзя назвать наилучшим. Ведь подобная транспортировка не так уж дешева. Вдобавок, частые аварии танкеров приводят к загрязнению окружающей среды, уничтожают все живое на сотни миль вокруг, да и регулярность такого сообщения могла бы быть лучшей: как известно, и по сию пору скорость движения морского транспорта во многом зависит от погоды.

Еще хуже дела обстоят на суше. Для перевозки топлива нам понадобилось бы с каждым годом строить все новые и новые железные дороги, по которым сновали бы бесчисленные составы цистерн. А уж с газом еще хуже: вместо цистерн пришлось бы заводить целый парк специальных «термосов», в которых бы постоянно поддерживалась температура минус 80 градусов Цельсия и ниже при давлении 5--6 МПа -- только так можно перевозить газ в жидком состоянии.

Собственно так и поступают, например, при транспортировке метана из Алжира в США. Создан целый флот танкеров-метановозов. У них на борту работают специальные компрессорные и холодильные установки, поддерживающие нужный режим в танкерах, с тем, чтобы метан был в нужном (жидком) агрегатном состоянии. Во время рейса часть перевозимого метана расходуется на работу холодильных установок.

Число таких плавучих «термосов» исчисляется десятками. В то же время трудно представить себе такую транспортную технологию в сухопутном исполнении.

По счастью, мы можем обо всем этом говорить в сослагательном наклонении. Специалисты нашли другое решение транспортной проблемы. По всей стране и за ее рубежи проложена мощная и разветвленная сеть трубопроводов, и развитие этой сети продолжается.

Трубопроводы в нашей стране по темпам роста грузооборота намного опередили другие виды транспорта. Доля их в общем объеме перевозок быстро росла и достигла почти трети общего грузооборота страны. Столь стремительные темпы объясняются исключительно высокой экономичностью трубопроводов. Достаточно сказать, что на доставку каждой тонны нефти по трубам требуется в 10 с лишним раз меньше трудовых затрат, чем для ее перевозки по железным дорогам. Этот прогрессивный вид транспорта экономит ежегодно труд примерно 750 тысяч человек!

В настоящее время трубопроводный транспорт становится средоточием новейших достижений отечественной науки и техники. Казалось бы, что тут хитрого: труба она и есть труба... Но само по себе изготовить трубу, да еще большого диаметра -- достаточно сложная инженерно-техническая задача. Тем не менее, в короткий срок производство таких труб было налажено на предприятиях нашей страны.

Другая проблема при строительстве нефтегазопровода -- все трубы необходимо герметично сваривать в единую нитку, и притом довольно длинную: тот же газопровод Уренгой -- Помарьи -- Ужгород имеет протяженность около 4500 километров!

А общая протяженность сварных швов, как показывают расчеты, в 1,5 раза превышает длину самого трубопровода.

Систематическое сооружение нефтепроводов в районах добычи нефти -- в Урало-Поволжье и Закавказье было начато в середине 60-х годов, прошлого века. В этот период, в частности, были построены трансконтинентальные нефтепроводы Туймазы--Омск (впервые применены трубы диаметром 530 мм), Туймазы -- Омск -- Новосибирск -- Иркутск диаметром 720 мм и длиной 3662 км, нефтепроводы Альметьевск -- Горький (первая нитка) Альметьевск -- Пермь, Ишимбай -- Орск, Горький -- Рязань, Тихорецк -- Туапсе, Рязань -- Москва и др. Необходимо особо отметить, что в 1955 г. был введен в эксплуатацию первый «горячий» нефтепровод Озек-Суат -- Грозный диаметром 325 мм и протяженностью 144 км; по нему впервые в нашей стране стали транспортировать нефть после предварительного подогрева в специальных печах.

В 1964 г. был введен в эксплуатацию крупнейший в мире по протяженности (5500 км вместе с ответвлениями) трансевропейский нефтепровод «Дружба», соединяющий месторождения нефти в Татарии и Куйбышевской области с восточно-европейскими странами (Чехия, Словакия, Венгрия, Польша, Германия).

Открытие крупнейших месторождений нефти в Западной Сибири в корне изменило приоритеты трубопроводного строительства. Транспортировка нефти из данного региона до существовавших промышленных центров была крайне затруднена. Расстояние от месторождений до ближайшей железнодорожной станции составляло более 700 км. Единственная транспортная магистраль -- река Обь и впадающая в нее река Иртыш -- судоходны не более 6 мес. в году. Обеспечить транспортировку все возрастающих объемов нефти мог только трубопроводный транспорт.

В декабре 1965 г. было завершено строительство и введен в эксплуатацию первый в Сибири нефтепровод Шаим -- Тюмень диаметром 529-- 720 мм и протяженностью 410 км. В ноябре 1965 г. начато и в октябре 1967 г. завершено строительство нефтепровода Усть-Балык -- Омск диаметром 1020 мм и протяженностью 964 км (в США трубопроводов такого диаметра еще не было) Осенью 1967 г. начато и в апреле 1969 г. завершено строительство нефтепровода Нижневартовск -- Усть-Балык диаметром 720 мм и протяженностью 252 км. В последующие годы на базе Западно-Сибирских месторождений были построены трансконтинентальные нефтепроводы Усть-Балык -- Курган -- Уфа -- Альметьевск (1973 г.), Александровское -- Анжеро-Судженск -- Красноярск -- Иркутск (1973 г.), Нижневартовск -- Курган -- Куйбышев (1976 г.), Сургут -- Горький -- Полоцк (1979 г.) и др.

Продолжалось строительство нефтепроводов и в других регионах. В 1961 г. на месторождениях Узень и Жетыбай (Южный Мангышлак) были получены первые фонтаны нефти, а уже в апреле 1966 г. вступил в строй нефтепровод Узень -- Шевченко длиной 141,6 км. В дальнейшем он был продлен сначала до Гурьева (1969 г.), а затем до Куйбышева (1971 г.). Ввод в эксплуатацию нефтепровода Узень -- Гурьев -- Куйбышев диаметром 1020 мм и протяженностью 1750 км позволил решить проблему транспорта высоковязкой и высокозастывающей нефти Мангышлака. Для этого была выбрана технология перекачки с предварительным подогревом в специальных печах. Нефтепровод Узень -- Гурьев -- Куйбышев стал крупнейшим «горячим» трубопроводом мира.

Были продлены нефтепроводы Альметьевск -- Горький и Туймазы -- Омск -- Новосибирск на участках соответственно Горький -- Ярославль -- Кириши и Новосибирск -- Красноярск -- Иркутск.

На других направлениях в 1971 -- 1975 гг. были построены нефтепроводы Уса -- Ухта -- Ярославль -- Москва, Куйбышев -- Тихорецкая -- Новороссийск и другие. В 1976-- 1980 гг. -- нефтепроводы Куйбышев -- Лисичанск -- Одесса, Холмогоры -- Сургут, Омск -- Павлодар, Каламкас -- Шевченко, Самгори -- Батуми и другие, в 1981-- 1985 гг. -- нефтепроводы Холмогоры -- Пермь -- Альметьевск -- Клин, Возей -- Уса -- Ухта, Кенкияк -- Орск, Павлодар -- Чимкент -- Чардар -- Фергана, Прорва -- Гурьев, Красноленинский -- Шаим, Тюмень -- Юргамыш, Грозный -- Баку.

В настоящее время все магистральные нефтепроводы России эксплуатируются ОАО «АК Транснефть», которое является транспортной компанией и объединяет 11 российских предприятий трубопроводного транспорта нефти, владеющих нефтяными магистралями, эксплуатирующих и обслуживающих их. При движении от грузоотправителя до грузополучателя нефть проходит в среднем 3 тыс. км. ОАО «АК Транснефть» разрабатывает наиболее экономичные маршруты движения нефти, тарифы на перекачку и перевалку нефти с утверждением их в Федеральной энергетической комиссии (ФЭК).

Взаимоотношения ОАО АК «Транснефть» с грузоотправителями регулируются «Положением о приеме и движении нефти в системе магистральных нефтепроводов», утвержденным Минэнерго РФ в конце 1994 г. Этот документ включает методику определения оптимальных объемов поставки нефти и газового конденсата на нефтеперерабатывающих заводах (НПЗ) России, квот нефтеперерабатывающих предприятий для поставки на экспорт, порядок составления ежеквартальных графиков транспортировки нефти для каждого из производителей (с разбивкой по месяцам). Документ провозглашает равнодоступность всех грузоотправителей к системе трубопроводного транспорта.

По состоянию на 2002 г. ОАО АК «Транснефть» эксплуатировала 48,6 тыс. км магистральных нефтепроводов диаметром от 400 до 1220 мм, 322 нефтеперекачивающие станции, резервуары общим объемом по строительному номиналу 13,5 млн м3. 32% нефтепроводов имели срок эксплуатации до 20 лет, 34% -- от 20 до 30 лет и свыше 30 лет эксплуатируется 34% нефтепроводов. Компания выполняет собственными силами и средствами практически весь комплекс профилактических и ремонтно-восстановительных работ на всех объектах магистральных нефтепроводов. В состав нефтепроводных предприятий входят 190 аварийно-восстановительных пунктов, 71 ремонтно-строительная колонна для выполнения капитального ремонта линейной части, 9 центральных (региональных) без производственного обслуживания и ремонта и 38 баз производственного обслуживания. В мае 1991 г. в компании создан Центр технической диагностики, ОАО ЦТД «Диаскан», который обеспечивает проведение диагностики магистральных нефтепроводов.

К настоящему времени нефть различных месторождений поступает на отечественные нефтеперерабатывающие заводы и экспорт по системе нефтепроводов ОАО «Транснефть».

Нефтепроводом принято называть трубопровод, предназначенный для перекачки нефти и нефтепродуктов (при перекачке нефтепродукта иногда употребляют термин нефтепродуктопровод). В зависимости от вида перекачиваемого нефтепродукта трубопровод называют также бензино-, керосин-, мазутопроводом и т.д.

По своему назначению нефте- и нефтепродуктопроводы можно разделить на следующие группы:

1. промысловые -- соединяющие скважины с различными объектами и установками подготовки нефти на промыслах;

2. магистральные (МН) -- предназначенные для транспортировки товарной нефти и нефтепродуктов (в том числе стабильного конденсата и бензина) из районов их добычи (от промыслов) производства или хранения до мест потребления (нефтебаз, перевалочных баз, пунктов налива в цистерны, нефтеналивных терминалов, отдельных промышленных предприятий и НПЗ). Они характеризуются высокой пропускной способностью, диаметром трубопровода от 219 до 1400 мм и избыточным давлением от 1,2 до 10 МПа;

3. технологические -- предназначенные для транспортировки в пределах промышленного предприятия или группы этих предприятий различных веществ (сырья, полуфабрикатов, реагентов, а также промежуточных или конечных продуктов, полученных или используемых в технологическом процессе и др.), необходимых для ведения технологического процесса или эксплуатации оборудования.

Согласно СНиП 2.05.06 -- 85 магистральные нефте- и нефтепродуктопроводы подразделяются на четыре класса в зависимости от условного диаметра труб (в мм): 1 -- 1000--1200 включительно: II -- 500--1000 включительно; III -- 300--500 включительно; IУ -- 300 и менее

Наряду с этой классификацией СНиП 2.05.07 -- 85 устанавливает для магистральных нефтепроводов категории, которые требуют обеспечения соответствующих прочностных характеристик на любом участке трубопровода:

Диаметр нефтепровода, мм до 700 700 и более

подземной IV III

наземной и подземной III III

Приведенная классификация и категории трубопроводов определяют в основном требования, связанные с обеспечением прочности или неразрушимости труб. В северной природно-климатической зоне все трубопроводы относятся к категории III. Исходя из этих же требований в СНиП 2.05.06 -- 85 определены также и категории, к которым следует относить не только трубопровод в целом, но и отдельные его участки. Необходимость в такой классификации объясняется различием условий, в которых будет находиться трубопровод на тех или иных участках местности, и возможными последствиями в случае разрушения трубопровода на них. Отдельные участки нефтепроводов могут относиться к высшей категории В, категории I или II. К высшей категории В относятся трубопроводные переходы через судо- и несудоходные реки при диаметре трубопровода 1000 мм и более. К участкам категории I относятся под- и надводные переходы через реки, болота типов II и III, горные участки, вечномерзлые грунты.

Прокладку трубопроводов можно осуществлять одиночно и параллельно действующим или проектируемым магистральным трубопроводам в техническом коридоре. Под техническим коридором магистральных трубопроводов согласно СНиП 27.05.06--85 понимают систему параллельно проложенных трубопроводов по одной трассе. В отдельных случаях допускается прокладка нефте- и газопроводов в одном коридоре.

Технологические трубопроводы в зависимости от физико-химических свойств и рабочих параметров (давления Р и температуры Т) подразделяются на три группы (А, Б, В) и пять категорий. Группу и категорию технологического трубопровода устанавливают по параметру, который требует отнесения его к более ответственной группе или категории. Класс опасности вредных веществ следует определять по ГОСТ 12.1.005--76 и ГОСТ 12.01.007--76, взрывопожароопасность -- по ГОСТ 12.1.004--76. Нефти имеют класс опасности II, масла минеральные нефтяные -- III, бензины -- IV.

Для технологических трубопроводов нефтеперекачиваюших станций важное значение имеет правильный выбор параметров транспортируемого вещества. Рабочее давление принимается равным избыточному максимальному давлению, развиваемому насосом, компрессором или другим источником давления, или давлению, на которое отрегулированы предохранительные устройства. Рабочую температуру принимают равной максимальной или минимальной температуре транспортируемого вещества, установленной технологическим регламентом или другим нормативным документом (СНиП, РД, СН п т.д.).

Состав сооружений магистральных нефтепроводов

В состав магистральных нефтепроводов входят: линейные сооружения, головные и промежуточные перекачивающие и наливные насосные станции и резервуарные парки (рис. 20.1). В свою очередь линейные сооружения согласно СНиП 2.05.06 -- 85 включают: трубопровод (от места выхода с промысла подготовленной к дальнему транспорту товарной нефти) с ответвлениями и лупингами, запорной арматурой, переходами через естественные и искусственные препятствия, узлами подключения нефтеперекачивающих станций, узлами пуска и приема очистных устройств и разделителей при последовательной перекачке, установки электрохимической защиты трубопроводов от коррозии, линии и сооружения технологической связи, средства телемеханики трубопровода, линии электропередачи, предназначенные для обслуживания трубопроводов, и устройства электроснабжения и дистанционного управления запорной арматурой и установками электрохимической защиты трубопроводов; противопожарные средства, противоэррозионные и защитные сооружения трубопровода; емкости для хранения и разгазирования конденсата, земляные амбары для аварийного выпуска нефти, здания и сооружения линейной службы эксплуатации трубопроводов; постоянные дороги и вертолетные площадки, расположенные вдоль трассы трубопровода, и подъезды к ним, опознавательные и сигнальные знаки местонахождения трубопровода; пункты подогрева нефти указатели и предупредительные знаки.

Основные элементы магистрального трубопровода -- сваренные в непрерывную нитку трубы, представляющие собой собственно трубопровод. Как правило, магистральные трубопроводы заглубляют в грунт обычно на глубину 0,8 м до верхней образующей трубы, если большая или меньшая глубина заложения не диктуется особыми геологическими условиями или необходимостью поддержания температуры перекачиваемого продукта на определенном уровне (например для исключения возможности замерзания скопившейся воды) Для магистральных трубопроводов применяют цельнотянутые илы сварные трубы диаметром 300--1420 мм. Толщина стенок труб определяется проектным давлением в трубопроводе, которое может достигать 10 МПа. Трубопровод, прокладываемый по районам с вечномерзлыми грунтами или через болота, можно укладывать на опоры или в искусственные насыпи.

На пересечениях крупных рек нефтепроводы иногда утяжеляют закрепленными на трубах грузами или сплошными бетонными покрытиями закрепляют специальными анкерами и заглубляют ниже дна реки. Кроме основной, укладывают резервную нитку перехода того же диаметра. На пересечениях железных и крупных шоссейных дорог трубопровод проходит в патроне из труб, диаметр которых на 100--200 мм больше диаметра трубопровода.

С интервалом 10--30 км в зависимости от рельефа трассы на трубопроводе устанавливают линейные задвижки для перекрытия участков в случае аварии или ремонта.

Вдоль трассы проходит линия связи (телефонная, радиорелейная), которая в основном имеет диспетчерское назначение. Ее можно использовать для передачи сигналов телеизмерения и телеуправления. Располагаемые вдоль трассы станции катодной и дренажной защиты, а также протекторы защищают трубопровод от наружной коррозии, являясь дополнением к противокоррозионному изоляционному покрытию трубопровода.

Нефтеперекачивающие станции (НПС) располагаются на нефтепроводах с интервалом 70--150 км. Перекачивающие (насосные) станции нефтепроводов и нефтепродуктопроводов оборудуются, как правило, центробежными насосами с электроприводом. Подача применяемых в настоящее время магистральных насосов достигает 12500 м3/ч. В начале нефтепровода находится головная нефтеперекачивающая станция (ГНПС), которая располагается вблизи нефтяного промысла или в конце подводящих трубопроводов, если магистральный нефтепровод обслуживают несколько промыслов или один промысел разбросанный на большой территории, ГНПС отличается от промежуточных наличием резервуарного парка объемом, равным двух-, трехсуточной пропускной способности нефтепровода. Кроме основных объектов, на каждой насосной станции имеется комплекс вспомогательных сооружений: трансформаторная подстанция, снижающая подаваемое по линии электропередач (ЛЭП) напряжения от 110 или 35 до 6 кВ, котельная, а также системы водоснабжения, канализации, охлаждения и т.д. Если длина нефтепровода превышает 800 км, его разбивают на эксплуатационные участки длиной 100--300 км, в пределах которых возможна независимая работа насосного оборудования. Промежуточные насосные станции на границах участков должны располагать резервуарным парком объемом, равным 0,3--1,5 суточной пропускной способности трубопровода. Как головная, так и промежуточные насосные станции с резервуарными парками оборудуются подпорными насосами. Аналогично устройство насосных станций магистральных нефтепродуктопроводов.

Тепловые станции устанавливают на трубопроводах, транспортирующих высоко застывающие и высоковязкие нефти и нефтепродукты иногда их совмещают с насосными станциями. Для подогрева перекачиваемого продукта применяют паровые или огневые подогреватели (печи подогрева) для снижения тепловых потерь такие трубопроводы могут быть снабжены теплоизоляционным покрытием.

По трассе нефтепровода могут сооружаться наливные пункты для перевалки и налива нефти в железнодорожные цистерны.

Конечный пункт нефтепровода -- либо сырьевой парк нефтеперерабатывающего завода, либо перевалочная нефтебаза, обычно морская, откуда нефть танкерами перевозится к нефтеперерабатывающим заводам или экспортируется за границу.

Список литературы

1. А.А. Коршак, А.М. Шаммазов. Основы нефтегазового дела. Уфа. ГУП «Башкортостан».2001.

2.Воздвиженский В.И., Ребрик В.М. «В глубь земли». Разведочное бурение

3.Басниев К.С. Разработка и эксплуатация газовых и газоконденсатных месторождений. М. Недра

4.Бахарев М.С. Грачев С.И. Сорокин П.М. и др.«Справочное руководство для мастеров буровых бригад» Справочное издание.-Сургут: РИИЦ «Нефть Приобья» .2002.

5.Бобрицкий Н.В., Юфин В.А., Основы нефтяной и газовой промышленности. -М.: Недра, 1988.

6.Бойко В.С. Разработка и эксплуатация нефтяных месторождений. М. Недра. 1990.

7.Муравьев М.В. Основы нефтяного и газового дела. М. Недра. 1967.

8.Насосы и компрессоры./С.А. Абдурашитов, А.А. Тупиченков, И.М. Вершинин, С.М. Тененгольц- М.: Недра, 1974.

9.Середа Н.Г. Бурение нефтяных и газовых скважин. М. Недра. 1974.

Размещено на Allbest.ru

...

Подобные документы

    Применение газлифтного способа добычи нефти. Ограничение притока пластовых вод. Предупреждение образования и методы удаления неорганических солей. Снижение пускового давления. Обслуживания и техника безопасности при эксплуатации газлифтных скважин.

    курсовая работа , добавлен 11.03.2011

    Применение газлифта с высокими газовыми факторами и забойными давлениями ниже давления насыщения. Оборудование устья компрессорных скважин. Газлифтный способ добычи нефти и техника безопасности при эксплуатации скважин. Селективные методы изоляции.

    реферат , добавлен 21.03.2014

    Выбор способов добычи нефти. Схема оборудования фонтанной скважины. Газлифтный и насосные способы добычи нефти. Устройство скважинной струйной насосной установки. Критерии оценки технологической и экономической эффективности способов эксплуатации.

    презентация , добавлен 03.09.2015

    Классификация способов эксплуатации скважин при подъёме скважинной продукции. Изучение видов фонтанирования и типов фонтанных скважин. Характеристика механизированной добычи нефти. Технологический расчет и особенности конструкции газлифтного подъемника.

    контрольная работа , добавлен 21.08.2016

    Подготовительные работы к строительству буровой. Особенности режима бурения роторным и турбинным способом. Способы добычи нефти и газа. Методы воздействия на призабойную зону. Поддержание пластового давления. Сбор, хранение нефти и газа на промысле.

    курсовая работа , добавлен 05.06.2013

    Знакомство со скважиной, способы бурения, обустройства. Буровая установка. Фонтанный и насосный методы добычи нефти и газа. Повышение нефтеотдачи пластов. Технические мероприятия для воздействия на призабойную зону пласта. Подземный ремонт скважин.

    отчет по практике , добавлен 24.03.2015

    Геолого-физическая характеристика продуктивных пластов. Анализ показателей разработки объекта АВ11-2 Самотлорского месторождения. Показатели работы фонда скважин. Разработка программы применения методов увеличения добычи нефти на проектный период.

    дипломная работа , добавлен 07.06.2014

    Анализ результатов испытания скважин Кравцовского месторождения. Обоснование способов воздействия на пласт и призабойную зону. Технология и техника добычи нефти и газа. Исследование влияния различных факторов на производительность горизонтальных скважин.

    дипломная работа , добавлен 25.09.2012

    Краткая геолого-техническая характеристика месторождения. Характеристика производственной структуры предприятия. Оценка экономической эффективности различных методов воздействия на призабойную зону скважин, их влияние на добычу нефти, себестоимость.

    курсовая работа , добавлен 10.12.2013

    Выбор способов добычи нефти. Теория работы газожидкостных подъемников. Фонтанный, газлифтный и насосный способы: подземное оборудование скважин. Оценка технологической и экономической эффективности способов эксплуатации. Месторождения ОАО "Оренбургнефть".

Принцип действия газлифтного подъемника

ГАЗЛИФТНАЯ ДОБЫЧА НЕФТИ

Подземное оборудование фонтанных скважин

К подземному оборудованию относятся насосно-компрессорные трубы

Если пластовой энергии недостаточно для подъема нефти от забоя на поверхность, фонтанирование скважины прекра­щается. Фонтанирование ее можно искусственно продолжить путем подачи в скважину сжатого газа или воздуха.

Газлифтный способ добычи нефти имеет следующие пре­имущества:

а) оборудование размещено на поверхности и доступно для
обслуживания и ремонта;

в) относительная легкость регулирования дебита скважины;

г) отбор больших количеств жидкости;

Недостатки газлифтного способа добычи нефти:

а) низкий к. п. д. газлифтной установки;

б) большой расход труб (металла);

в) необходимость строительства громоздких компрессорных станций.

В результате этого затраты на оборудование одной газ­лифтной скважины, расход электроэнергии на подъем 1 т нефти выше, чем при других способах добычи.

Система, состоящая из эксплуатационной колонны и спу­щенных в нее насосно-компрессорных труб, в которой подъем жидкости осуществляется с помощью сжатого газа, называется газлифтом (газовый подъемник). Способ эксплуатации сква­жин с использованием газа или воздуха, сжатых на поверхно­сти в компрессорах, называется компрессорным. В затрубное пространство с помощью компрессоров нагнетают сжатый газ, результате чего уровень жидкости в этом пространстве бу­дет понижаться, а в насосно-компрессорных трубах - повы­шаться. Когда уровень жидкости понизится до нижнего конца насосно-компрессорных труб, сжатый газ начнет поступать в на­сосно-компрессорные трубы и перемешиваться с жидкостью. В результате плотность такой газожидкостной смеси будет меньше плотности жидкости, поступающей из пласта, а уро­вень жидкости в подъемных трубах будет повышаться. Чем больше будет введено газа, тем меньше будет плотность смеси и тем на большую высоту она поднимется. При непрерывной подаче сжатого газа в скважину жидкость (смесь) поднима­ется до устья и выливается на поверхности, а из пласта по­стоянно поступает в скважину новая порция неразгазированнои жидкости.

Если в качестве рабочего агента для газового подъемника используют газ из газовых пластов высокого давления, не нуждающийся в дополнительном сжатии, то энергию газа можно применять для подъема жидкости в нефтяных скважинах. Такая система называется бескомпрессорным газлифтом (бескомпрессорный газовый подъемник).

Технологическая схема этого способа: газ высокого давле­ния из газовых скважин поступает на пункт очистки и осушки, затем подогревается в специальных подогревателях, откуда направляется в газораспределительную будку (ГРБ), а затем в скважины, после чего вместе с продукцией скважины попа­дает на групповую сепарационно-замерную установку.



При периодической газлифтной добыче нефти газ нагнета­ется в скважину не непрерывно, а периодически. Этот способприменяют при низких динамических уровнях жидкости и низ­ких пластовых давлениях.

Рассмотрим схему периодической добычи нефти. Газ нагне­тается в затрубное пространство, а нефть поднимается по подъемным трубам. После выброса нефти на поверхность по­дача газа автоматически прекращается. При этом в скважине скапливается нефть. Через определенный промежуток времени уровень восстанавливается и автоматически включается подача газа, т. е. цикл повторяется

Периодически работающий фонд скважин.

В практике нефтедобычи не всегда удается достаточно точно рассчитать добывные.возможности скважины и соответственно подобрать нужный типоразмер насоса. В тех случаях, когда дебит скважины значительно меньше производительности спущенного для эксплуатации скважины насоса, его работа настраивается на периодический режим. Такой фонд скважин называют периодическим. На практике в периодическом режиме находятся несколько процентов механизированных скважин, оснащенных УЭЦН и ШГН.

Режим работы этих скважин, т.е. время работы насоса и время, необходимое для накопления ствола скважины продукцией определяется технологической службой НГП. Время работы и время накопления (в часах) отражается в технологических режимах работы скважин.

Осложнения при насосной эксплуатации скважин

Значительное количество свободного газа на приеме насоса приводит к уменьшению коэффициента наполнения насоса, срыву подачи выходу из строя электродвигателя.. Основной метод борьбы - уменьшение газосодержания в жидкости, поступающей в насос.

Сепарацию (отделение) газа можно улучшить с помощью защитных устройств и приспособлений, называемых газовыми якорями (газосепараторами), которые устанавливаются при приеме насоса. Работа их основана на использовании сил гравитации (всплывания), инерции, их сочетания.

Принципиальные схемы газовых якорей однокорпусного (а ),

однотарельчатого (б ):

1 - эксплуатационная колонна; 2 – отверстия; 3 – корпус; 4 – приемная труба;

5 – всасывающий клапан насоса; 6 – тарелки

В однокорпусном якоре при изменении газожидкостного потока на 180 0 пузырьки газа под действием архимедовой силы всплывают и частично сепарируются в затрубное пространство, а жидкость через отверстия 2 поступает в центральную трубу 4 на прием насоса). В однотарельчатом якоре под тарелкой 6 , обращенной краями вниз, пузырьки газа коалесцируют (объединяются), а сепарация газа происходит при обтекании тарелки и движения смеси горизонтально над тарелкой к отверстиям 2 в приемной трубе 4 . Существуют и другие конструкции якорей, например зонтичные, винтовые.

При эксплуатации скважин УЭЦН используют модули-газосепараторы в которых отделение газа происходит под действие центробежной силы.

Отрицательное влияние песка в продукции приводит к абразивному износу плунжерной пары, клапанных узлов, НКТ, ШТАНГ и образованию песчаной пробки на забое. К песчаным скважинам относят скважины с содержанием песка более 1 г/л.

Выделяют 4 группы методов борьбы с песком при насосной эксплуатации:

1. Наиболее эффективный метод - предупреждение и регулирование поступления песка из пласта в скважину. Первое осуществляют посредством либо установки специальных фильтров на забое, либо крепления призабойной зоны, а второе - уменьшением отбора жидкости.

2. Обеспечение выноса на поверхность значительной части песка, поступающего в скважину.

Это обеспечивается подбором сочетаний подъемных труб и штанг либо подкачкой в затрубное пространство чистой жидкости (нефти, воды).

3. Установкой песочных якорей (сепараторов) и фильтров у приема насоса достигается сепарация песка от жидкости. Работа песчаных якорей основана на гравитационном принципе

Песочный якорь прямого действия одновременно является газовым якорем. Применение песочных якорей - не основной, а вспомогательный метод борьбы с песком. Метод эффективен для скважин, в которых поступление песка непродолжительно и общее его количество невелико.

Принципиальная схема песочного якоря прямого действия:

1 – эксплуатационная колонна, 2 – слой накопившегося песка, 3 –корпус, 4 – приемная труба,5 – отверстия для ввода смеси в якорь.

4. Использование специальных насосов для песочных скважин.

При большой кривизне ствола скважины наблюдается интенсивное истирание НКТ и штанг вплоть до образования длинных щелей в трубах или обрыва штанг. Для медленного проворачивания колонны штанг и плунжера "на выворот" при каждом ходе головки балансира с целью предотвращения одностороннего истирания штанг, муфт и плунжера при использовании пластинчатых скребков применяют штанговращатель. Кроме того, принимают режим откачки, характеризующийся большой длиной хода S и малым числом качаний n .

БОРЬБА С ОТЛОЖЕНИЕМ ПАРАФИНА В ПОДЪЕМНЫХ ТРУБАХ

Одним из факторов, осложняющих процесс подготовки и транспорта, является отложение парафина на стенках трубопроводов и оборудовании

Образованию отложений парафина способствует: снижение температуры; интенсивное выделение газа из нефти ; шероховатость поверхности оборудования и; наличие асфальто-смолистых веществ

Для борьбы с отложениями парафина применяют следующие основные способы:

1. Механический , при котором парафин со стенок труб периодически удаляется специальными скребками и выносится поток м жидкости, удаление парафина во время чистки аппаратов. Существует метод депарафинизации с помощью пластинчатых скребков. Скребки крепят хомутами к штангам на расстоянии друг от друга не более длины хода плунжера. Ширина скребка на 5 – 8 мм меньше диаметра НКТ. Насосные установки оборудуют штанговращателями. Колонны штанг с укрепленными на них скребками при каждом ходе вниз срезают парафин со стенок труб. Так же широко используют установки для механического удаления парафина «Каскад» и лебедку Сулейманова.

2. Тепловой , теплоизоляция трубопроводов; (использование парогенераторных установок, путевых подогревателей)

3. Использование труб с гладкой внутренней поверхностью (остеклованных или покрытых специальным лаком или эмалями).

4. Химический , при котором парафин удаляется с помощью растворителей и растворов ПАВ

Химические методы борьбы с отложениями парафина развиваются и создаются по двумосновным направлениям:

· удаление смолопарафиновых отложений с помощью органических растворителей и водных растворов различных композиций поверхностно-активных веществ (ПАВ);

· предотвращение отложения парафина применением химпродуктов, ингибирующих процесс формирования смолопарафиновых отложений.

Сущность химических методов удаления парафиновых отложений заключается в предварительном их разрушении или растворении с последующим удалением. Для этих целей используются: органические растворители и водные растворы ПАВ, которые при контакте с парафиновыми отложениями проникают в их толщу и, диспергируя (дробят, разрушают) смолопарафиновую массу, снижают их прочность вплоть до разрушения.

Для предотвращения парафиноотложения применяют разнообразные композиции химических веществ

При использовании ПАВ на поверхности оборудования создается гидрофильная пленка, препятствующая формированию на ней отложений. Одновременно такой реагент оказывает диспергирующее действие на твердую фазу смолопарафиновых веществ, что способствует беспрепятственному выносу их потоком жидкости. Для предупреждения отложений парафина применяются химреагенты, предотвращающие рост кристаллов и изменяют кристаллическую структуру парафинов. В результате образуются недоразвитые кристаллы парафина, структурно несоединенные друг с другом.

Для этих целей используются ингибитор: парафиноотложений СОНПАР-5403и СНПХ-2005, парафиногидратоотложений СНПХ-7920 удалитель парафиноотложений СНПХ-7850 . На практике нередко химические методы удаления парафиновых отложений применяются в сочетании с тепловыми и механическими методами. При этом достигается наибольший технологический и экономический эффект в результате существенного ускорения процесса и полноты удаления смолопарафиновых отложений.

Образование гидратных пробок, меры предупреждения их образования.

Природные газы в условиях пласта насыщены парами воды. Движение газа в пласте, скважине и газопроводах сопровождается уменьшением его температуры и давления. Пары воды конденсируются и скапливаются в скважине и газопроводах. При определенных термодинамических условиях в результате взаимодействия паров воды и газов образуются твердые кристаллические вещества, называемые кристаллогидратами. По внешнему виду гидраты напоминают снег или лед. Это неустойчивые соединения и при нагревании или понижении давления быстро разлагаются на газ и воду. Образовавшиеся гидраты могут закупорить скважины, газопроводы, сепараторы, нарушить работу измерительных приборов и регулирующих средств.

Борьба с гидратами, как и с любыми осложнениями, ведется в направлениях их предупреждения и ликвидации. Образование гидратов можно предупредить применением ингибиторов гидрато-образования. Ингибитор гидратообразования снижает температуру гидратообразования. Основные ингибиторы, применяемые в газовой промышленности, - метиловый спирт СНзОН (метанол), хлористый кальций, гликоли (этиленгликоль, ди-и триэтиленгликоль) , СНПХ- 7920 (ингибитор парафино-гидратоотложений). Известны и другие методы предупреждения образования гидратов: применение забойных на­гревателей, теплоизолированных стволов скважины, гидрофобного покрытия труб. Для предотвращения образования гидратов и их ликвидации можно применить подогрев газа путем теплообмена с горячими дымовыми газами.

Когда гидратная пробка уже образовалась, то резкое снижение давления в системе приводит к разложению гидратов, которые затем выносятся продувкой через отводы в атмосферу

Виды коррозии нефтепромыслового оборудования.

Процесс разрушения трубопроводов под воздействием внешней окружающей и внутренней среды называется коррозией.

Химической коррозией называется процесс разрушения всей поверхности металла при его контакте с химически агрессивным агентом.

Электрохимическая коррозия - это процесс разрушения металла, сопровождающийся образованием и прохождением электрического тока.

Биокоррозия трубопроводов вызывается активной жизнедеятельностью микроорганизмов а результате жизнедеятельности которых образуется сероводород.(сулфатвосстанавливающих бактерий)

Пассивные и активные способы защиты трубопроводов от коррозии.

ЗАЩИТА ТРУБОПРОВОДОВ ОТ ВНУТРЕННЕЙ КОРРОЗИИ

1 .Кардинальным средством борьбы с коррозионным повреждением стальных труб является замена их на трубы из композитных материалов: стеклопластиков, из армированных термопластов.

Полиэтиленовые трубы имеют в 7 раз меньшую массу, чем стальные. Для их монтажа не требуется тяжелого подъемно-транспортного оборудования. Они обладают большой эластичностью, высокой гладкостью, вследствие чего их пропускная способность увеличивается на 2-3%. Теплопроводность стеклопластика в 250 раз меньше, чем у металла, то есть он обладает повышенными теплоизоляционными характеристиками.

2 . Покрытие внутренний поверхности труб (лаки, краски. эпоксидные смолы итд)

3 . Эффективным методом защиты является ингибирование, так как ингибиторы тормозят процесс коррозионного зарождения трещин на поверхности металла. Кроме того, многие ингибиторы способны проникать в вершину зародившейся трещины и сдерживать ее развитие. (ингибитор коррозии-бактерицид СНПХ-6418)

ЗАЩИТА ТРУБОПРОВОДОВ ОТ ВНЕШНЕЙ КОРРОЗИИ

Способы защиты трубопроводов от наружной коррозии подразделяются на пассивные и активные.

Пассивные способы защиты предусматривают изоляцию наружной поверхности трубы от контакта с грунтовыми водами и от блуждающих электрических токов, которая осуществляется с помощью противокоррозионных диэлектрических покрытий, обладающих водонепроницаемостью, прочным сцеплением с металлом, механической прочностью. Для изоляции промысловых трубопроводов применяют покрытие на битумной основе и на основе полимеров.



Битумная мастика для покрытий содержит минеральный наполнитель или резиновую крошку для повышения ее вязкости в горячем состоянии и увеличения механической прочности покрытия. Для повышения прочности и долговечности битумных покрытий используют бризол и стекловолокнистые материалы.

Покрытия на основе полимеров представляют собой полиэтиленовые или полихлорвиниловые пленки с применением клея. Ленту пленки наматывают на очищенный и загрунтованный трубопровод.

Активные способы защиты трубопроводов от наружной коррозии предусматривают создание такого электрического тока, в котором весь металл трубопровода, несмотря на неоднородность его включений, становится катодом, а анодом является дополнительно размещенный в грунте металл. Существуют два вида активной защиты трубопроводов от наружной коррозии - протекторная и катодная. При протекторной защите рядом с трубопроводом размещают более активный металл (протектор), который соединяют с трубопроводом изолированным проводником. Протекторы изготовляют из цинка, алюминия или магниевых сплавов. При катодной защите с помощью источника постоянного тока (катодной станции) (рис.9). создают разность потенциалов между трубопроводом и размещенными рядом с трубопроводом кусками металла (обычно обрезки старых труб, металлолом) так, что на трубопровод подается отрицательный заряд, а на куски металла -- положительный. Таким образом, дополнительно размещаемый в грунте металл как в протекторной, так и в катодной защите, является анодом и подвергается разрушению, а наружная коррозия трубопровода не происходит.

НЕФТЯНЫЕ ЭМУЛЬСИИ И ИХ СВОЙСТВА

Скважинная продукция представляет собой смесь газа, нефти и воды. Вода и нефть при этом образуют эмульсии.

Эмульсией называется дисперсная система, состоящая из 2-х (или нескольких) жидких фаз, т.е. одна жидкость содержится в другой во взвешенном состоянии в виде огромного количества микроскопических капель (глобул).

Жидкость, в которой распределены глобулы, называются дисперсионной средой или внешней фазой.

Жидкость, которая распределена в дисперсионной среде, называется дисперсной или внутренней фазой.

Существуют два основных типа эмульсий: дисперсии масла в воде (М/В) и дисперсии воды в масле (В/М).

Нефтяные эмульсии:

1. Первый тип – прямые эмульсии, когда капли нефти (неполярная жидкость), являются дисперсной фазой и распределены в воде (полярная жидкость) – дисперсионной среде. Такие эмульсии называются «нефть в воде» и обозначаются Н/В.

2. Второй тип – обратные эмульсии, когда капельки воды (полярная жидкость) – дисперсная фаза – размещены в нефти (неполярная жидкость), являющейся дисперсионной средой. Такие эмульсии называются «вода в нефти» и обозначаются В/Н.

Причины образования нефтяных эмульсий.

Эмульсией называется система двух взаимно нерастворимых жидкостей одна из которых содержится в другой во взвешенном состоянии в виде капелек (глобул). Основной причиной образования нефтяных эмульсий является энергия турбулентного потока, снижение температуры, наличие природных эмульгаторов.

Высокие перепады давления, пульсация газа, наличие штуцирующих устройств, задвижек, поворотов трубопровода способствуют повышению турбулентности потока и интенсивному диспергированию воды в нефти. Отложения парафина на стенках трубопровода влияют на образование эмульсий, уменьшая его сечение, увеличивают скорость потока и усиливают диспергирование воды в нефти.

Интенсивность перемешивания нефти с водой также влияет на образование и стойкость эмульсии. Замечено, что при механизированных способах добычи наиболее устойчивые водонефтяные эмульсии которые образуются при использовании электроцентробежных насосов (перемешивание продукции в рабочих колесах)

Для образования эмульсий недостаточно только перемешивания двух жидкостей, необходимо ещё и наличие в нефти природных эмульгаторов - смолы, асфальтены, парафин, мех. примеси. Они образуют на поверхности эмульсионных глобул броню, которая препятствует слиянию капель и не дает самопроизвольно разделятся на нефть и воду.

Необходимость подготовки нефти и газа к транспорту на промыслах.

ü Нефть на месторождениях обезвоживают и обессоливают для снижения транспортных расходов, так как вода является балластом и её нет необходимости транспортировать.

ü Для предотвращения образования стойких эмульсий.

ü Для предохранения магистральных трубопроводов от коррозии.

ü Для поддержания пластового давления.

ü В газовых сепараторах от газа отделяется газовый и водный конденсат, что снижает возможность гидратообразования.

ü Отделившееся газ используют как топливо, для собственных нужд (печи, котельные установки).

Способы разрушения нефтяных эмульсий.

Условно можно выделить 4 группы методов разрушения нефтяных эмульсий:

Механические;

Химические;

Электрические;

Термические.

Каждый из методов приводит к слиянию и укрупнению капель воды, что способствует более интенсивной потере агрегативной устойчивости и расслоению эмульсии.

ХИМИЧЕСКИЕ МЕТОДЫ

Применение реагентов-деэмульгаторов является самым эффективным методом разрушения нефтяных эмульсий (НЭ). Устойчивость нефтяных эмульсий определяется образованием на поверхности капель дисперсной фазы адсорбционных оболочек с высокой структурной вязкостью из высокомолекулярных ПАВ, присутствующих в нефти и воде – природных эмульгаторов. Для разрушения нефтяных эмульсий необходимо разрушить структурно-механический барьер на поверхности капель. Разрушить такой барьер можно введением в систему более поверхностно-активных веществ, чем природные эмульгаторы. Такие вещества называются реагентами-деэмульгаторами.

Водорастворимые отечественные деэмульгаторы типа: проксанол (185, 305) и проксамин (385).

Нефтерастворимые отечественные деэмульгаторы: дипроксамин (157).

Импортные реагенты-деэмульгаторы:

Водорастворимые: дисольван 4411(ФРГ), R-11(Япония);

Нефтерастворимые: дисольван (4490), сепарол 5084 (ФРГ), виско-3 (Италия), серво 5348 (Голландия), доуфакс (США), С-V-100 (Япония).

В настоящее время в условиях месторождений «СН-МНГ» приимущесвенно используются реагенты СНПХ и дисольван.

ДЕЭМУЛЬГИРОВАНИЕ ПОД ДЕЙСТВИЕМ ЭЛЕКТРИЧЕСКОГО ПОЛЯ

Под действием электрического поля капли воды поляризуются, вытягиваются вдоль силовых линий поля и начинают направленно двигаться. Если электрическое поле будет переменным, то направление движения капель будет постоянно изменяться, капли будут испытывать деформацию При столкновении таких диполей оболочки разрываются, частицы сливаются, укрупняются и оседают под действием сил тяжести

МЕХАНИЧЕСКИЕ МЕТОДЫ

К механическим способам разрушения эмульсии относятся: отстаивание, центрифугирование и фильтрование.

Отстаивание

Применимо к свежим нестойким эмульсиям, способным расслаиваться на нефть и воду вследствие разности плотностей компонентов, составляющих эмульсию. Нефтяная эмульсия вместе с необходимым количеством деэмульгатора и пластовой водой подается в отстойник (может быть резервуар).

Центрифугирование

При центрифугировании вода и механические примеси выделяются из нефти под действием центробежной силы

Разделение водонефтяных эмульсий в центрифугах. Однако практического применения для деэмульгирования нефтей не нашел из-за малой пропускной способности центрифуг и высоких эксплуатационных затрат.

Фильтрация

Нестойкие эмульсии успешно расслаиваются при пропускании их через фильтрующий слой, который может быть из гравия, битого стекла, древесины и металлических стружек, стекловаты и др. материалов.

Данный метод самостоятельного применения не находит из-за громоздкого оборудования, малой производительности, необходимости часто менять фильтры, но встречается в сочетании с термохимическими методами.

ТЕПЛОВЫЕ МЕТОДЫ

При нагревании нефтяных эмульсий бронирующие слои глобул, состоящие из парафина и асфальто-смолистых веществ разрушаются, что способствует разделению нефти и воды .

Токсичность вредных веществ, применяемых при подготовке нефти.

Нефть -это жидкость от чёрного до темно- коричневого цвета, класс опасности 4. ПДК в воздухе раб.зоны до 300 млг/мЗ.

Нефть и углеводородные газы являются наркотическими ядами. Токсичность нефтей,нефт.газов возрастает при содержании в них сернистых соединений. Даже кратковременное вдыхание этих паров при концентрации выше ПДК может привести к замедлению пульса, понижению кровяного давления, потери сознания. Сырая нефть попадая на кожу человека сушит её, вызывает зуд, красноту. Деэмульгатор СНХП -жидкость светло-жёлтого цвета, класс опасности 3. ПДК - 5 млг/мЗ по метанолу. 50 млг/мЗ по толуолу.

Раздражает слизистую оболочку глаз и верхние дыхательные пути. Действует как наркотическое вещество.

В нефтяной и газовой промышленности при неправильной организации труда и производства и при несоблюдении определенных профилактических мероприятий может иметь место вредное воздействие на человека нефтяных паров, газов и других веществ, применяемых или сопутствующих производственному процессу.

Токсичность жидких нефтепродуктов проявляется в основном тогда, когда они переходят в парообразное состояние.

■ Пары нефти и продуктов ее переработки, а также углеводородные газы действуют главным образом на центральную нервную систему. Признаки отравления этими веществами чаще всего проявляются в головокружении, сухости во рту, головной боли, тошноте, сердцебиении, общей слабости и потери сознания. Удушающее действие на организм этих веществ выражается в затрудненности дыхания, головокружении, потери сознания.

Нефть может вызывать острые или хронические отравления, если в ней содержатся ароматические углеводороды или сероводород. При длительном соприкосновении работающих с сырой нефтью может развиться кожное заболевание.

■ Бензин наиболее токсичный нефтепродукт. Концентрация паров бензина в воздухе, равная 30 - 40 г/м3, при вдыхании человеком в течение нескольких минут создает опасность для его жизни. При меньших концентрациях отравление происходит не сразу: в начале пострадавший ощущает, головокружение, сердцебиение, слабость, иногда возникает состояние опьянения, а затем наступает потеря сознания. Если такого пострадавшего своевременно не вывести на свежий воздух и не оказать необходимую помощь, он может умереть.

Хронические отравления бензином возможны при длительном контакте работающего с относительно небольшими концентрациями паров этого нефтяного продукта и выражаются в постоянной головной боли, головокружении и других нервных расстройствах.

При воздействии на кожу человека бензин обезжиривает ее и может вызвать кожные заболевания- дерматиты и экземы.

■ Керосин действует на организм человека значительно слабее, чем бензин. Хронические отравления парами керосина возможны при длительном контакте с ними.

■ Мазут и смазочные масла оказывают вредное влияние на кожу человека.

■ Метан - газ, входящий в состав попутного нефтяного и природного газов. Он не имеет ощутимого запаха, не ядовит. При содержании в воздухе около 10% метана человек испытывает недостаток кислорода, а при большем содержании может наступить удушье.

■ Сероводород - бесцветный газ с сильным характерным запахом тухлых яиц. Он тяжелее воздуха и содержится в нефти и природных газах некоторых месторождений. Сероводород сильный яд, действующий на нервную систему и оказывающий значительное раздражение дыхательный путей и глаз человека. Ощутимый запах сероводорода наблюдается при концентрациях 0,0014 - 0,0023 мг/л и сильный - при концентрации 0,0033 мг/л.

Воздействие различных концентраций сероводорода на организм человека выражается в следующем: при содержании сероводорода во вдыхаемом воздухе в количестве 0,01 - 0,015 об % через несколько часов появляются симптомы легкого отравления; при содержании 0,02% - через 5-8 минут появляется сильное раздражение глаз, носа и горла; при содержании 0,05 - 0,07% - через час наступает тяжелое отравление, а при содержании 0,1-0,32% - быстрое смертельное отравление.

Характер и степень нарушения нормальной деятельности организма зависят не только от токсических свойств данного вещества, но и от концентрации его и продолжительности воздействия на человека.

■Предельно-допустимые концентрации вредных веществ в воздухе (ПДК).

Санитарные нормы.

После того как скважина пробурена и освоена необходимо начать добывать из нее нефть. Хотя нужно отметить, что не из всех даже эксплуатационных скважин добывается нефть. Существуют так называемые нагнетательные скважины. В них наоборот закачивается только не нефть, а вода. Это необходимо для эксплуатации месторождения в целом и об этом мы поговорим попозже. Наверное, у многих из Вас отложились в памяти кадры из старых советских фильмах о первых добытчиках Сибирской нефти: буровая установка, сверху бьет фонтан нефти, кругом бегают радостные люди и умываются первой нефтью. Нужно сказать, что с того времени много что изменилось. И если сейчас возле буровой вышки появится фонтан нефти, то возле нее будет бегать много людей, но только они не будут радоваться, а они больше будут озабочены тем, как предотвратить этот экологически вредный выброс. В любом случае то, что было показано на экране – это нефтяной фонтан. Найденная нефть, находится под землей под таким давлением, что при прокладке к ней пути в виде скважины, она устремляется на поверхность. Как правило, фонтанируют скважины только в начале своего жизненного цикла, т.е. сразу после бурения. Через некоторое время давление в пласте снижается и фонтан иссякает. Конечно, если бы на этом прекращалась эксплуатация скважины, то под землей оставалось бы более 80% нефти. В процессе освоения скважины в нее опускается колонна насосно-компрессорных труб (НКТ). Если скважина эксплуатируется фонтанным способом, то на поверхности устанавливают специальное оборудование – фонтанную арматуру. Не будем разбираться во всех деталях этого оборудования. Отметим только, что это оборудование необходимо для управления скважиной. С помощью фонтанной арматуры можно регулировать добычу нефти – уменьшать или совсем остановить. После того, когда давление в скважине уменьшится, и скважина начнет давать совсем мало нефти, как посчитают специалисты, ее переведут на другой способ эксплуатации. При добыче газа фонтанный способ является основным. Газлифтный способ добычи нефти. После прекращения фонтанирования из-за нехватки пластовой энергии переходят на механизированный способ эксплуатации скважин, при котором вводят дополнительную энергию извне (с поверхности). Одним из таких способов, при котором вводят энергию в виде сжатого газа, является газлифт. Газлифт (эрлифт) - система, состоящая из эксплуатационной (обсадной) колонны труб и опущенных в нее НКТ, в которой подъем жидкости осуществляется с помощью сжатого газа (воздуха). Иногда эту систему называют газовый (воздушный) подъемник. Способ эксплуатации скважин при этом называется газлифтным. По схеме подачи от вида источника рабочего агента - газа (воздуха) различают компрессорный и бескомпрессорный газлифт, а по схеме действия - непрерывный и периодический газ лифт. В затрубное пространство нагнетают газ высокого давления, в результате чего уровень жидкости в нем будет понижаться, а в НКТ - повышаться. Когда уровень жидкости понизится до нижнего конца НКТ, сжатый газ начнет поступать в НКТ и перемешиваться с жидкостью. В результате плотность такой газожидкостной смеси становится ниже плотности жидкости, поступающей из пласта, а уровень в НКТ будет повышаться. Чем больше будет введено газа, тем меньше будет плотность смеси и тем на большую высоту она поднимется. При непрерывной подаче газа в скважину жидкость (смесь) поднимается до устья и изливается на поверхность, а из пласта постоянно поступает в скважину новая порция жидкости. Дебит газлифтной скважины зависит от количества и давления нагнетания газа, глубины погружения НКТ в жидкость, их диаметра, вязкости жидкости и т.п. Конструкции газлифтных подъемников определяются в зависимости от числа рядов насосно-компрессорных труб, спускаемых в скважину, и направления движения сжатого газа. По числу спускаемых рядов труб подъемники бывают одно- и двухрядными, а по направлению нагнетания газа - кольцевыми и центральными (см. рис. 14.2.). При однорядном подъемнике в скважину спускают один ряд НКТ. Сжатый газ нагнетается в кольцевое пространство между обсадной колонной и насосно-компрессорными трубами, а газожидкостная смесь поднимается по НКТ, или газ нагнетается по насосно-компрессорным трубам, а газожидкостная смесь поднимается по кольцевому пространству. В первом случае имеем однорядный подъемник кольцевой системы (см. рис. 14.2, а), а во втором - однорядный подъемник центральной системы (см. рис. 14.2.б). При двухрядном подъемнике в скважину спускают два ряда концентрически расположенных труб. Если сжатый газ направляется в кольцевое пространство между двумя колоннами НКТ, а газожидкостная смесь поднимается по внутренним подъемным трубам, то такой подъемник называется двухрядным кольцевой системы (см. рис. 14.2.в,). Наружный ряд насосно-компрессорных труб обычно спускают до фильтра скважины. При двухрядном ступенчатом подъемнике кольцевой системы в скважину спускают два ряда насосно-компрессорных труб, один из которых (наружный ряд) ступенчатый; в верхней части - трубы большего диаметра, а в нижней - меньшего диаметра. Сжатый газ нагнетают в кольцевое пространство между внутренним и наружным рядами НКТ, а газожидкостная смесь поднимается по внутреннему ряду. Если сжатый газ подается по внутренним НКТ, а газожидкостная смесь поднимается по кольцевому пространству между двумя рядами насосно-компрессорных труб, то такой подъемник называется двухрядным центральной системы (см. рис. 14.2.г). Недостатком кольцевой системы является возможность абразивного износа соединительных труб колонн при наличии в продукции скважины механических примесей (песок). Кроме того, возможны отложения парафина и солей в затрубном пространстве, борьба с которыми в нем затруднительна. Преимущество двухрядного подъемника перед однорядным в том, что его работа происходит более плавно и с более интенсивным выносом песка из скважины. Недостатком двухрядного подъемника является необходимость спуска двух рядов труб, что увеличивает металлоемкость процесса добычи. Поэтому в практике нефтедобывающих предприятий более широко распространен третий вариант кольцевой системы - полуторарядный подъемник (см. рис. 14.2.д,), который имеет преимущества двухрядного при меньшей его стоимости. Использование газлифтного способа эксплуатации скважин в общем виде определяется его преимуществами. 1. Возможность отбора больших объемов жидкости практически при всех диаметрах эксплуатационных колонн и форсированного отбора сильнообводненных скважин. 2. Эксплуатация скважин с большим газовым фактором, те. использование энергии пластового газа. З. Малое влияние профиля ствола скважины на эффективность работы газлифта, что особенно важно для наклонно направленных скважин, т.е. для условий морских месторождений и районов освоения Севера и Сибири. 4. Отсутствие влияния высоких давлений и температуры продукции скважин, а также наличия в ней мехпримесей (песка) на работу скважин. 5. Гибкость и сравнительная простота регулирования режима работы скважин по дебиту. 6. Простота обслуживания и ремонта газлифтных скважин и большой межремонтный период их работы при использовании современного оборудования. 7. Возможность применения одновременной раздельной эксплуатации, эффективной борьбы с коррозией, отложениями солей и парафина, а также простота исследования скважин. Указанным преимуществам могут быть противопоставлены недостатки 1. Большие начальные капитальные вложения в строительство компрессорных станций 2. Сравнительно низкий коэффициент полезного действия (КПД) газлифтной системы. З. Возможность образования стойких эмульсий в процессе подъема продукции скважин. Исходя из указанного выше, газлифтный (компрессорный) способ эксплуатации скважин, в первую очередь, выгодно использовать на крупных месторождениях при наличии скважин с большими дебитами и высокими забойными давлениями после периода фонтанирования. Далее он может быть применен в наклонно направленных скважинах и скважинах с большим содержанием мехпримесей в продукции, т.е. в условиях, когда за основу рациональной эксплуатации принимается межремонтный период (МРП) работы скважин. При наличии вблизи газовых месторождений (или скважин) с достаточными запасами и необходимым давлением используют бескомпрессорный газлифт для добычи нефти. Эта система может быть временной мерой - до окончания строительства компрессорной станции. В данном случае система газлифта остается практически одинаковой с компрессорным газлифтом и отличается только иным источником газа высокого давления. Газлифтная эксплуатация может быть непрерывной или периодической. Периодический газлифт применяется на скважинах с дебитами до 40-60 т/сут или с низкими пластовыми давлениями. Высота подъема жидкости при газлифте зависит от возможного давления ввода газа и глубины погружения колонны НКТ под уровень жидкости. Технико-экономический анализ, проведенный при выборе способа эксплуатации, может определить приоритет использования газлифта в различных регионах страны с учетом местных условий. Так, большой МРП работы газлифтных скважин, сравнительная простота ремонта и возможность автоматизации предопределили создание больших газлифтных комплексов на Самотлорском, Федоровском, Правдинском месторождениях в Западной Сибири. Это дало возможность снизить необходимые трудовые ресурсы региона и создать необходимые инфраструктуры (жилье и т.д.) для рационального их использования.