20.06.2019

Лунный аполло с заклепками кабина из фольги. Программа «Аполлон».Трудный путь к Луне. Были испытания в космосе


20 июля 1969 года двое землян, Нил Армстронг и Базз Олдрин прилунились в своем лунном модуле космического корабля "Аполлон" в море Спокойствия на Луне. А начало было дано 12 сентября 1961 года, когда президент США Джон Кеннеди в своей речи объявил стране и миру, что до конца текущего десятилетия Америка высадит на Луне человека.Пропустив дважды впереди себя Советский Союз (запуск первого искусственного спутника Земли и полет первого космонавта) руководство Соединенных Штатов,страны с самой мощной экономикой и занимающей ведущие позиции в технике и технологии, не могло допустить еще одного чувствительного поражения.
Надо признать,что глава СССР Хрущёв получил от президента США Кеннеди предложение о совместной программе высадки на Луну, но, подозревая попытку выведать секреты советской ракетной и космической техники или по каким-то другим причинам, он отказался.
Сегодня, оглядываясь назад,поражаешься размаху и прекрасной организации огромного комплекса выполненных мероприятий.Конечно же, такое могла позволить себе только очень богатая страна имеющая колоссальный промышленный потенциал, талантливых инженеров и способных менеджеров. Большим преимуществом США перед СССР было создание НАСА. В Советском Союзе функции НАСА были распылены между министерствами и профильными отделами ЦК КПСС, т.е. уровень организации и координации работ был на довольно низком уровне.
С 1961 года в США начались полеты к Луне "Рейнджеров". Программа «Рейнджер» (англ. Ranger) - серия непилотируемых космических миссий США по исследованию Луны в 1961-1965 гг., отработка различных траекторий подлета к Луне и первая попытка США получить изображения Луны с близкого расстояния. Аппараты передавали изображения Луны до момента столкновения. На каждом «Рейнджере» было по шесть телекамер: две камеры F-канала (full) с разными углами обзора и 4 камеры P-канала (partial). Последнее изображение было получено между 2,5 и 5 секундами перед столкновением с высоты около 5 км для канала F и между 0,2 и 0,4 секундами до столкновения с высоты около 600 м для канала P.

Космический аппарат «Рейнджер» (1961-1965) (NASA)

Первые полеты Рейнджеров были неудачными. И только начиная с Рейнджера 7, запущенного 28 июля 1964, были переданы первые изображения высокого разрешения лунного моря. Он достиг Луны 31 июля. Первое изображение было получено с высоты 2110 км. Были переданы 4308 фотографий высокого качества на последних 17 минутах полёта. Последнее изображение перед столкновением имело разрешение 0,5 метра. После 68,6 часов полёта, Рейнджер 7 врезался в область между морем Облаков и океаном Бурь (впоследствии названную Море Познанное - Mare Cognitum). Удачными были и последние два полета Рейнджеров 8 и 9 выполненные в феврале-марте 1965 года.
Для определения степени метеоритной опасности в!965 году были проведены 3 запуска спутников "Пегас". Разработаны под руководством NASA. Для вывода спутников на орбиту были использованы испытательные запуски экспериментальных ракет-носителей «Сатурн I». При запуске спутник (в сложенном положении) находился внутри макета основного блока (отсек экипажа + двигательный отсек) космического корабля «Аполлон». На орбите макет корабля сбрасываелся и «крылья» спутника разворачивались (размах 29,3м).Каждое крыло спутника состояло из 7 панелей, на прилегающей к центральной секции спутника панели,- которая вдвое короче остальных, смонтировано 16 детекторов метеорных частиц (по 8 с каждой стороны), на остальных шести - по 32 детектора (16 с каждой стороны).
Пегас в "упакованном" виде.

Для выполнения проекта по картографированию поверхности Луны и выбору места посадки НАСА объявило конкурс на производство космического аппарата, который выиграла компания Boeing Co. Ею были произведены 8 аппаратов, из которых только 5 были отправлены на орбиту Луны, а остальные использовались для испытаний. Конструкция всех аппаратов была одинакова, с незначительными модификациями
Все 5 миссий, в 1966-1967 гг были успешными, и 99 % поверхности Луны было сфотографировано с разрешением 60 м или лучше. Первые 3 миссии были запущены на орбиты низкого наклонения, тогда как 4 и 5 миссия - на высокие полярные орбиты. Лунар орбитер-4 сфотографировал полностью видимую сторону Луны и 95 % её обратной стороны, а Лунар орбитер-5 завершил съемку обратной стороны и выполнил снимки со средним (20 м) и высоким (2 м) разрешением для 36 выбранных областей Луны.

Лунар орбитер (NASA). В центре видны камеры высокого и среднего разрешения.
Кроме фотокамер на Лунар орбитере были установлены радиомаяк для изучения гравитационного поля Луны и детекторы метеорных частиц, которые позволяли узнать с каким количеством метеоров придётся столкнутся будущим миссиям «Аполлонов» на своём пути к Луне.

Для отработки мягкой посадки на Луну была осуществлена программа беспилотных аппаратов "Сервейер". Всего было произведено 5 успешных посадок при двух аварийных. При помощи панорамной телевизионной камеры, которыми были укомплектованы все Сервейеры, были получены около 86 500 снимков поверхности Луны, солнца и планет после посадки на Луну.

Аппарат Сервейер.

Аппарат Сервейер-6, после работы на одном месте, совершил перелет на несколько метров в сторону и снова мягко прилунился по команде с Земли. Сервейеры 3, 4 и 7 были укомплектованы ковшом-захватом для зачерпывания грунта.

Параллельно шла подготовка астронавтов на специально разработанных для тренировочных целей двухместных космических кораблях "Джемини". В ходе программы были отработаны методы сближения и стыковки, впервые в истории осуществлена стыковка космических аппаратов. Было произведено несколько выходов в открытый космос, установлены рекорды длительности полёта. Суммарное время полётов по программе составило более 41 суток. Суммарное время выходов в открытый космос составило около 10 часов. Опыт, полученный в ходе программы Джемини, был использован при подготовке и осуществлении программы Аполлон.

Два аппарата Джемини на орбите.Снимок одного из них выполнен со второго.

10 января 1962 года НАСА опубликовала планы строительства ракеты-носителя «Сатурн C-5». На первой ее ступени должны были быть установлены пять двигателей F-1, на второй ступени - пять двигателей J-2, и на третьей - один J-2. С-5 должна была выводить на траекторию к Луне полезную нагрузку массой 47 тонн.
Ракета «Сатурн-5» остаётся самой грузоподьемной, наиболее мощной, самой тяжелой и самой большой из созданных на данный момент человечеством ракет, выводивших полезную нагрузку на орбиту - детище выдающегося конструктора ракетной техники Вернера фон Брауна, она могла вывести на низкую околоземную орбиту 141 т и на траекторию к Луне 47 т полезного груза (65,5 т вместе с 3-й ступенью носителя). «Сатурн-5» использовалась для реализации программы американских лунных миссий (в том числе с её помощью была осуществлена первая высадка человека на Луну 20 июля 1969 года)
В начале 1963 года НАСА окончательно выбрала схему пилотируемой экспедиции на Луну (основной корабль остаётся на орбите Луны, посадку же на нее совершает специальный лунный модуль) и дало ракете-носителю «Сатурн C-5» новое имя - «Сатурн-5».

Сатурн-5 на старте.

Двигатели большой мощности F-1 установленные на первой ступени ракеты-носителя Сатурн-5 первоначально были разработаны Рокетдайн в соответствии с запросом ВВС США от 1955 года о возможности создания очень большого ракетного двигателя. Однако НАСА, созданное в этот период времени, оценило пользу, которую может принести двигатель такой мощности, и заключила с Рокетдайн контракт на завершение его разработки. Испытания компонентов F-1 были начаты уже в 1957 году. Первое огневое испытание полностью скомпонованного тестового F-1 было совершено в марте 1959 года.

Установка двигателей F-1 на ступень S-IC РН Сатурн-5.

Специально для испытаний двигателей были созданы дорогостоящие стенды, позволившие произвести доводку двигателей, с тем чтобы при запуске космических кораблей не было малейших сбоев. Это то, чего не смог себе позволить Советский Союз, очень уж дорогое это удовольствие. Но экономия на испытаниях тоже дорого стоит: все четыре огромные ракеты Н-1 потерпели крушение. На авось не получилось.

Огневые испытания двигателя F-1 на базе ВВС Эдвардс.

Семь лет разработок и испытаний двигателей F-1 выявили серьёзные проблемы с нестабильностью процесса горения, которые иногда приводили к катастрофическим авариям. Работы по устранению этой проблемы первоначально шли медленно, поскольку она проявлялась периодически и непредсказуемо. В конечном итоге инженеры разработали технику подрыва небольших зарядов взрывчатых веществ (которые они называли «бомбами») внутри камеры сгорания во время работы двигателя, что позволило им определить как именно работающая камера отвечает на флуктуации давления. Конструкторы теперь могли быстро экспериментировать с различными форсуночными головками, для выбора наиболее устойчивого варианта. Над этими задачами работали с 1959 по 1961 годы. В окончательной конструкции горение в двигателе было настолько стабильно, что он мог самостоятельно гасить искусственно вызванную нестабильность за десятую долю секунды.

Вернер фон Браун с гордостью позирует у своего детища.

J-2 - жидкостной ракетный двигатель (ЖРД) компании Рокетдайн являлся важной частью программы НАСА «Аполлон» - пять двигателей использовались на второй ступени РН Сатурн-5 и один двигатель использовался на третьей ступени. На время создания являлся наиболее мощным двигателем, который использовал жидкие водород и кислород в качестве компонентов топлива. Высокие энергетические и технические показатели этого двигателя послужили одним из слагаемых успеха миссии Аполлон.

Двигатель J-2.

Отличительной особенностью J-2 на время создания являлась возможность его повторного включения, что применялось на третьей ступени S-IVB лунной ракеты Сатурн-5. Эта особенность двигателя позволяла сначала выполнить завершение вывода полезной нагрузки на низкую опорную орбиту, а через некоторое время - выполнить разгон к Луне.

В программе «Аполлон» основными производителями космической техники были: - трёхступенчатая ракета-носитель «Сатурн V», (111 метров высотой и 10 метров в диаметре), построенная компанией «Боинг» (первая ступень), производителем «Северо-американская авиация» (двигатели и вторая ступень) и компанией «Douglas Aircraft» (третья ступень). «Северо-американская авиация» также предоставила команду для обслуживания модулей, в то время как «Авиастроительная компания Грумана» конструировала лунный посадочный модуль. IBM, Массачусетский технологический институт и General Electric предоставили инструменты и оборудование.

Вид сверху на район стартового комплекса № 39 показывает здание вертикальной сборки (в центре), с центром управления запусками справа.
Для освоения этой новой ракеты в Космическом Центре Кеннеди за 800 млн долл. был построен новый центр - стартовый комплекс № 39. Он включает в себя ангар для четырёх ракет «Сатурн V», здание вертикальной сборки (объёмом 3 664 883 м³); систему транспортировки из ангара к стартовой площадке с возможностью перемещения 5440 тонн; 136-метровую подвижную обслуживающую систему и центр управления. Сооружение начато в ноябре 1962 года, площадки запуска были завершены к октябрю 1965 г., здание вертикальной сборки было готово в июне 1965 г. и инфраструктура - после 1966 г. С 1967 по 1973 год из стартового комплекса № 39 были запущены 13 аппаратов серии «Сатурн V».

Корабль «Аполлон» состоял из двух основных частей - соединённых командного и служебного отсеков, в которых команда проводила большую часть полёта, и лунного модуля, предназначенного для посадки и взлёта с Луны двух астронавтов.
Командный отсек разработан компанией North American Rockwell (США) и имеет форму конуса со сферическим основанием. Диаметр основания - 3920 мм, высота конуса - 3430 мм, угол при вершине - 60°, номинальный вес - 5500 кг.
Командный отсек является центром управления полётом. Все члены экипажа в течение полёта находятся в командном отсеке, за исключением этапа высадки на Луну. Командный отсек, в котором экипаж возвращается на Землю - всё, что остаётся от системы «Сатурн-5» - «Аполлон» после полёта на Луну. Служебный отсек несёт основную двигательную установку и системы обеспечения корабля «Аполлон».
Командный отсек имеет герметическую кабину с системой жизнеобеспечения экипажа, систему управления и навигации, систему радиосвязи, систему аварийного спасения и теплозащитный экран.

Командный и служебный отсеки "Аполлона" на лунной орбите.

Лунный модуль корабля «Аполлон» разработан компанией «Grumman» (США) и имеет две ступени: посадочную и взлётную. Посадочная ступень, оборудованная самостоятельной двигательной установкой и посадочными опорами, используется для спуска лунного корабля с орбиты Луны и мягкой посадки на лунную поверхность, а также служит стартовой площадкой для взлётной ступени. Взлётная ступень, с герметичной кабиной экипажа и собственной двигательной установкой, после завершения исследований стартует с поверхности Луны и на орбите стыкуется с командным отсеком. Разделение ступеней осуществляется при помощи пиротехнических устройств.

Лунный модуль на поверхности Луны.

Аполлон-7 , стартовавший 11 октября 1968, был первым пилотируемым космическим кораблём по программе Аполлон. Это был одиннадцатидневный полёт на орбите Земли, целью которого были комплексные испытания командного модуля и командно-измерительного комплекса.
Первоначально следующим пилотируемым полётом по программе Аполлон должна была быть максимально возможная на земной орбите имитация режимов работы и условий полёта к Луне, а следующий запуск должен был провести аналогичные испытания на лунной орбите, совершив первый пилотируемый облёт Луны. Но одновременно в СССР проходили испытания «Зонда» двухместного пилотируемого космического корабля Союз 7К-Л1, который предполагалось использовать для пилотируемого облёта Луны. Угроза того, что СССР обгонит США в пилотируемом облёте Луны, заставила руководителей проекта переставить полёты, несмотря на то, что лунный модуль ещё не был готов для испытаний.
21 декабря 1968 года был запущен Аполлон-8, и 24 декабря он вышел на орбиту Луны , совершив первый в истории человечества пилотируемый облёт Луны.
3 марта 1969 года состоялся запуск Аполлона-9 , в ходе этого полёта была произведена имитация полёта на Луну на земной орбите. Некоторые специалисты НАСА после успешных полётов кораблей «Аполлон-8» и «Аполлон-9» рекомендовали использовать «Аполлон-10» для первой высадки людей на Луну. Руководство НАСА сочло необходимым предварительно провести ещё один испытательный полёт.
18 мая 1969 года отправлен в космос Аполлон-10 , в этом полёте к Луне была проведена «генеральная репетиция» высадки на Луну. Программа полёта корабля предусматривала все операции, которые предстояло осуществить при высадке, за исключением собственно прилунения, пребывания на Луне и старта с Луны.
16 июля 1969 года стартовал Аполлон-11. 20 июля в 20 часов 17 минут 42 секунды по Гринвичу лунный модуль прилунился в Море Спокойствия. Нил Армстронг спустился на поверхность Луны 21 июля 1969 года в 02 часа 56 минут 20 секунд по Гринвичу, совершив первую в истории человечества высадку на Луну .
14 ноября 1969 года состоялся запуск Аполлона-12 , и 19 ноября была осуществлена вторая высадка на Луну.
31 января 1971 года стартовал Аполлон-14 . 5 февраля 1971 лунный модуль совершил посадку.
26 июля 1971 года взлетел Аполлон-15 . 30 июля лунный модуль совершил посадку
16 апреля 1972 года был запущен Аполлон-16 . 21 апреля лунный модуль совершил посадку
7 декабря 1972 года - старт Аполлона-17 . 11 декабря лунный модуль совершил посадку. Собрано 110,5 кг лунных пород. В ходе этой экспедиции произошла последняя на сегодня высадка на Луну. Астронавты вернулись на Землю 19 декабря 1972.

Я поделился с Вами информацией, которую "накопал" и систематизировал. При этом ничуть не обеднел и готов делится дальше, не реже двух раз в неделю. Если Вы обнаружили в статье ошибки или неточности - пожалуйста сообщите. Мой электронный адрес: [email protected]. Буду очень благодарен.

Каждый раз читая российские форумы в которых затрагивается тема полётов человека на Луну, я наталкиваюсь на абсолютное невежество среди форумчан (в т. ч. и среди технически образованных людей). В рунете распространено мнение, что лунный модуль, спроектированный и построенный фирмой Grumman Aerospace Corporation для высадки человека на поверхность Луны в рамках программы «Аполлон», сделан чуть-ли не из фольги. Мол толщина стенок его кабины настолько тонкая (наиболее часто говорят о трёх слоях фольги), что её можно пробить ногой, а прочность конструкции обеспечивается внутренним давлением. Это заблуждение среди отечественных читателей тянется с 1976 года, и базируется на неверной интерпретации фразы астронавта Джеймса Макдивитта (James Alton McDivitt), произнесённой им на одной из пресс-конференций перед полётом космического корабля «Аполлон-9». Изначально она была неверно интерпретирована советским писателем-фантастом и журналистом Владимиром Степановичем Губаревым, который написал популярную в СССР книгу «Космические мосты» (издана в 1976 году в Москве издательством «Молодая Гвардия»). Владимир Губарев пишет (цитата из книги):
«Р. Швейкарт должен быть очень осторожен. Одно неверное движение, и он повредит лунную кабину. Стенки её настолько тонки и непрочны, что человек может пробить их ногой, - заявил перед стартом Д. Макдивитт. - На Земле стенки лунной кабины во многих местах может повредить даже случайно уронённая отвёртка...»

Другой журналист, не менее популярный популяризатор космонавтики, коллега Губарева - Ярослав Кириллович Голованов пишет в известной книге «Правда о программе «APOLLO» (практически копирует текст своего коллеги, добавляя при этом своё мнение, которое является по-сути мнением дилетанта):
«- Швейкарт должен быть очень осторожен, - предупреждал Макдивитт. - Одно неверное движение, и он повредит лунный модуль. Стенки его настолько тонки и непрочны, что человек может пробить их ногой. На Земле стенки лунного отсека может повредить даже случайно оброненная отвёртка…
Я две недели рассматривал лунную кабину, которая стояла в зале, где разместилась пресса во время полета «Союза-19» и «Аполлона» в Хьюстоне. «Паучок» сделан из металлической фольги. Не из такой, конечно, в которую заворачивают шоколадные конфеты, но все-таки, если выбирать из двух определений: металлический лист или металлическая фольга - фольга точнее. В вакууме жесткость этой конструкции увеличивалась за счет внутреннего надува, но все-таки она оставалась весьма субтильной.» ()


Взлётная ступень лунного модуля LM-12 космического корабля «Аполлон-17». Фотография NASA AS17-149-22857

Мнение Ярослава Голованова о конструкции, «сделанной из фольги», и «увеличивающей свою жёсткость в вакууме» выглядит особенно нелепым, если посмотреть фотографии лунного модуля LTA-1, сделанные в Cradle Of Aviation Museum, расположенном в городе Ист-Гарден-Сити на Лонг-Айленде, штат Нью-Йорк:

LTA-1 (Lunar Test Article 1) представляет собой первый экземпляр лунного модуля (прототип), построенный в 1966 году, который конструктивно подобен серийным образцам, предназначенным для полётов в космос. До LTA-1 фирма Grumman Aerospace Corporation строила лишь полномасштабные макеты лунного модуля (т. н. Mock-Up"s: M-1, M-5, TM-1). Конструктивно эти макеты были выполнены из металла и дерева, предназначенные для представления заказчику (NASA), отработки компоновочных решений по размещению различного вспомогательного оборудования и тренировок астронавтов. Но силовая конструкция LTA-1, а также все системы (двигательные установки, их ПГС, электрооборудование и т. д.) были выполнены по рабочим чертежам с соблюдением всех технологических процессов. Данный экземпляр был предназначен для отработки процесса изготовления, сборки и дальнейшей отладки лунного модуля, когда ещё велось проектирование, а также для статических, динамических и электрических испытаний:


Стыковка взлётной и посадочной ступени лунного модуля LTA-1 в комнате для испытаний на кондуктивные электромагнитные помехи на предприятии Grumman Aerospace Corporation, город Бетпейдж, Лонг-Айленд, штат Нью-Йорк. Фотография NASA S67-22164

Основное конструктивное отличие LTA-1 от серийных образцов летавших в космос - передний люк, предназначенный для выхода и входа экипажа из взлётной ступени лунного модуля. На LTA-1 он круглой формы. Начиная с LTA-8 и на всех серийных образцах лунного модуля, по требованию астронавтов, люк был выполнен прямоугольной формы. Проведённые на борту «летающей лаборатории» NASA (переделанный топливозаправщик Boeing KC-135A Stratotanker) эксперименты показали, что в условиях лунной гравитации астронавтам было гораздо удобнее протискиваться в скафандре с ранцевой системой жизнеобеспечения PLSS именно через люк прямоугольной формы). В 1974 году, после завершения программы «Аполлон», LTA-1 был передан на хранение в Национальный музей авиации и космонавтики Смитсоновского института, расположенном в городе Вашингтон (округ Колумбия), а в июне 1998 года передан для реставрации и дальнейшей экспозиции в Cradle Of Aviation Museum, где и находится в настоящее время:

Лунный модуль космического корабля «Аполлон» конструктивно состоит из двух ступеней: посадочной и взлётной. Посадочная ступень оборудована жидкостным ракетным двигателем (ЖРД) для осуществления схода с орбиты искусственного спутника Луны, выполнения захода на посадку и мягкого прилунения. Посадка осуществляется на четырёхножное шасси с тарельчатыми опорами. Перегрузка при прилунении снижается за счёт укорачивания ног шасси, которые представляют собой телескопические штанги. Кинетическая энергия при ударе о лунную поверхность поглощается сминаемым заполнителем сотовой конструкции из алюминиевого сплава. Экипаж, состоящих из двух астронавтов (командир и второй пилот), находится в герметичной кабине взлётной ступени, которая установлена сверху над посадочной. Спуск астронавтов на поверхность Луны осуществляется по лестнице, закреплённой на одной из телескопических ног посадочного шасси, расположенной со стороны переднего люка. Взлётная ступень оборудована ЖРД для взлёта с поверхности (стартовым столом на этом этапе служит посадочная ступень) и выхода на орбиту искусственного спутника Луны. Также взлётная ступень оборудована реактивной системой управления (РСУ). РСУ предназначена для управления не только взлётной ступенью, но и всем лунным модулем (когда он находится в посадочной конфигурации) по шести степеням свободы. ЖРД РСУ могут работать в группе или отдельно - непрерывно или импульсно. Т. к. взлётная ступень вмещала в себя экипаж, то её конструкция представляет наибольший интерес в рамках рассматриваемого массового заблуждения.

Основная конструкция взлётной ступени лунного модуля представляет собой полумонококовую конструкцию, выполненную из хорошо сваривающегося дюралюминиевого сплава 2219 (основной легирующий элемент медь) и высокопрочного деформируемого алюминиевого сплава 7075-T6 (основной легирующий элемент - цинк), имеющие изотропные характеристики. Основная конструкция состоит из трёх главных частей: кабины экипажа, центральной секции и заднего отсека оборудования:

Герметизируются только кабина экипажа и центральная секция. Эти две части представляют собой сварную и кованную конструкцию, сформированную оболочкой цилиндрической формы и подкрепленую прикованными по окружности стрингерами, сформированными из листового дюралюминия, а также поперечными фрезерованными лонжеронами, к которым крепятся элементы конструкции взлётной ступени лунного модуля (балки, соединительные кронштейны и т. д.). В цилиндрической части кабины экипажа над рабочим местом командира сделан проём стыковочного иллюминатора, усиленный по периметру. Передняя часть кабины экипажа образованна плоскими фрезерованными панелями из листового дюралюминия, также подкреплёнными стрингерами и лонжеронами на сгибах. В передней части кабины экипажа находятся два треугольных проёма для иллюминаторов переднего обзора, усиленные по периметру, и между ними, ниже, проём для переднего люка (круглой или прямоугольной формы).
Согласно техническим отчётам по лунному модулю (архивы NTRS), толщина стенок оболочки кабины экипажа и центральной секции взлётной ступени лунного модуля доходит до 0,065 дюймов (1,651 мм). Это значение на порядок превосходит толщину фольги (в большинстве стран общепринятым определением фольги является значение толщины листового металла до 0,2 мм), и толще обшивки сверхзвуковых пассажирских самолётов Ту-144 (1,2 мм) и Concorde (1,5 мм), которые эксплуатировались в более жёстких условиях, чем лунный модуль: аэродинамический нагрев при полётах на больших сверхзвуковых скоростях в стратосфере, циклические напряжения в герметичной конструкции фюзеляжа из-за постоянных перепадов давления, аэродинамические воздействия (изгиб, крутка) и т. д. В процессе эксплуатации самолётов Ту-144 и Concorde случаев «пробивания ногой обшивки» зарегистрировано не было.
В отдельных местах (ненапряжённых), с целью уменьшения веса конструкции, толщина стенок уменьшена методом химического фрезерования до 0,012 дюймов (0,3 мм).
К основной конструкции взлётной ступени лунного модуля крепится двигательная установка, состоящая из жёстко закреплённого в центральной секции взлётного ЖРД Rocketdyne RS-18 (разработанного на основе двигателя Bell 8247), двух топливных баков для него: с левого борта от центральной секции с помощью поддерживающих стержневых балок устанавлен сферический бак горючего («Аэрозин-50»), с правого борта от центральной секции аналогично установлен сферический бак окислителя (четырёхокись азота).
К задней части центральной секции, а также к кабине экипажа через кронштейны крепятся стержневые балки, держащие четыре блока РСУ с шестнадцатью ЖРД Marquardt R-4D (сгруппированы по четыре двигателя). Четыре топливных бака цилиндрической формы с полусферическими днищами расположены симметрично со стороны левого и правого борта центральной секции. Топливные компоненты аналогичны используемым в основной двигательной установке. Между баками с горючим и окислителем для ЖРД РСУ с каждой стороны установлены шарообразные баки с гелием для вытеснительной системы этих двигателей. К верхней части центральной секции крепятся два сферических бака с водой, а также блоки передающих антенн.
Вытеснительный газ (гелий) для основной двигательной установки также хранится в сферических баках. Распожены они в заднем отсеке оборудования вместе с двумя модулями редуцирования давления гелия, управляющим клапаном основной двигательной установки (управляет подачей топливных компонентов, вытесняемых давлением наддува гелием, в камеру сгорания взлётного ЖРД RS-18) и управляющий клапан с перекрёстным управлением для ЖРД РСУ. Также в заднем отсеке оборудования над сферическими баками с гелием расположены два сферических бака с газообразным кислородом для системы жизнеобеспечения экипажа. На специальной выносной панели заднего отсека оборудования крепятся блоки систем радиоэлектронного оборудования лунного модуля отвечающие за радиосвязь, работу бортовых систем (сигнализация, предупреждение) и блоки бортовой цифровой вычислительной машины (БЦВМ), отвечающей за навигацию. Все системы связаны между собой многожильными кабелями и проводами, проходящими по всей поверхности основной конструкции взлётной ступени лунного модуля. Питание электроэнергией осуществляется за счёт двух серебряно-цинковых аккумуляторных батарей.
Чтобы защитить основную конструкцию взлётной ступени лунного модуля и все системы описанные выше от воздействия космического пространства (перепады температуры в вакууме, микрометеориты, воздействие струй ракетных двигателей), применяются термоизоляционное покрытие и микрометеоритная защита, а также специальная термозащитная краска, наносимая на микрометеоритную защиту.
Термоизоляционное покрытие представляет собой многосегментное покрытие из специальных многослойных одеял, каждый сегмент которых натягивается на каркас основной конструкции взлётной ступени. Крепление осуществляется с помощью специальных шпилек*, которые крепятся либо к специальным кронштейнам, либо к силовому набору (к стрингерам и лонжеронам), обеспечивая минимальный зазор 25,4 мм между внутренней стороной одеяла и внешней стороной оболочки кабины экипажа и центральной секции, а также на ферменную конструкцию, окружающую топливные баки главной двигательной установки и задний отсек оборудования. Каждое одеяло состоит из набора следующих слоёв (если считать начиная с внутренней части): один слой алюминизированного каптона (плёнка из полиамида разработки компании DuPont, толщина 0,5 мм), десять слоёв алюминизированного майлара (плёнка на основе синтетического полиэфирного волокна разработки компании DuPont, толщина каждого слоя 0,15 мм), пятнадцать слоёв алюминизированного каптона (толщина каждого слоя 0,5 мм). Количество слоёв одеял термоизоляционного покрытия может варьироваться в зависимости от места нахождения сегмента. В районе воздействия струй ЖРД РСУ сверху вышеперечисленных слоёв накладывается дополнительное термоизоляционное покрытие, состоящее из одного слоя никелевой фольги (толщина 0,5 мм), сетки из инконеля, и инконелевого покрытия толщиной 1,25 мм. Одеяла между собой стыкуются внахлёст и удерживаются с помощью специальных скоб. Стыки заклеиваются липкими лентами:


Схема установки ферменного каркаса внешнего корпуса на основную конструкцию взлётной ступени лунного модуля


Схема установки термоизоляционного покрытия на основную конструкцию взлётной ступени лунного модуля

Микрометеоритная защита представляет собой внешнюю оболочку взлётной ступени лунного модуля и состоит из тонких листов из алюминиевого сплава толщиной до 0,5 мм, устанавливаемая поверх одеял термоизоляционного покрытия:


Схема установки микрометеоритной защиты (внешняя оболочка) на термоизоляционное покрытие взлётной ступени лунного модуля

Её раскрой по секторам идентичен. Крепление осуществляется с помощью тех же специальных шпилек, с помощью которых к основной конструкции взлётной ступени лунного модуля крепится термоизоляционное покрытие. Шпильки над одеялами имеют продолжение, что обеспечивает минимальный зазор 25,4 мм между ними и листами защиты. Стыки между листами заклеиваются липкой лентой.
Во избежание вспучивания термоизоляционного покрытия и микрометеоритной защиты из-за резкого падения окружающего давления во время набора ракетой-носителем высоты, в одеялах и листах проделаны оконтованные вентиляционные отверстия, через которые происходит выравнивание давления.
В районе воздействия струй ЖРД РСУ микрометеоритная защита покрывается специальной термозащитной краской чёрного цвета (ей покрыта большая часть микрометеоритной защиты кабины экипажа).
Если посмотреть на многочисленные фотографии взлётной ступени лунного модуля, то для обывателя создаётся впечатление, что внешняя оболочка из тонких листов алюминия, местами проклеенная липкой лентой, и есть герметичная обочка, которую «легко пробить ногой», т. к. она «сделана из фольги». Это заблуждение было наглядно продемонстрировано Ярославом Головановым в известной для любителей космонавтики книге.

P. S.: Подробный фотоотчёт (Walk Around, 57 фотографий взлётной ступени и 49 фотографий посадочной ступени) по лунному модулю LTA-1 можно посмотреть

В 25 часов 00 минут 53 секунды полётного времени «Аполлон-11» преодолел ровно половину расстояния от Земли до Луны,
пролетев 193 256 км. На снимке: Олдрин
во время первого осмотра лунного модуля «Орел», после перестроения отсеков.
Вскоре после этого путём включения основного двигателя на 2,9 секунды была проведена промежуточная коррекция траектории № 2 (в действительности она была первой). На снимке: Внутри лунного модуля «Орел» во время полета к Луне Аполлона-11. Возле иллюминатора видна 16-мм кинокамера, на которую снято большинство лунных фильмов в этой экспедиции (остальные сняты телекамерой).

Вечером состоялась запланированная 35-минутная телетрансляция. Зрители увидели Землю с расстояния 239 000 км, астронавты показали свои рабочие места, «кухню», набор продуктов и процесс приготовления пищи.

В 75 часов 41 минуту 23 секунды полётного времени «Аполлон-11» скрылся за западным краем диска Луны. В момент потери радиосигнала корабль находился в 572 км от Луны, его скорость составляла 2,336 км/с. На снимке: Обратная сторона Луны

Включив маршевый двигатель на торможение, астронавты перевели «Аполлон-11» на орбиту искусственного спутника Луны.
На картинке: Аполлон-11 на окололунной орбите.


Пока связи не было, астронавты разглядывали открывавшиеся перед ними пейзажи обратной стороны Луны и много фотографировали. На снимке: Обратная сторона Луны.

Вскоре они увидели первый восход Земли над лунным горизонтом, а когда связь восстановилась, доложили в ЦУП, как прошёл манёвр. Хьюстон сообщил им, что они находятся на эллиптической орбите, близкой к расчётной.На снимке: Восход Земли над лунным горизонтом.

В иллюминаторы корабля была видна поверхность Луны, испещрённая многочисленными кратерами.


Была проведена проверка работы средств связи. Коллинз всё это время оставался в командном модуле, поэтому впервые в ходе полёта во время радиопереговоров использовались позывные обоих кораблей — «Колумбия» и «Орёл». На снимке: Восход Земли, зрелище доступное только на орбите спутника Луны.

Коллинз сообщил в ЦУП, что пепельный свет Луны настолько ярок, что можно читать книгу. На снимке: «Аполлон-11» подлетает к Морю Смита

Во время второго витка экипаж провёл телетрансляцию, показав места, над которыми корабль будет пролетать перед тем, как «Орёл» начнёт снижение.

В начале 13-го витка, когда «Аполлон-11» находился над обратной стороной Луны, «Колумбия» и «Орёл» расстыковались. На снимке: Лунный модуль «Орёл» отделяется от командного модуля «Колумбия» для спуска на Луну.

Лунный модуль «Орёл» в самостоятельном полёте.


Армстронг и Олдрин на борту лунного модуля «Орёл»


Коллинз отвёл «Колумбию» сначала на небольшое расстояние, а затем на 1300 м.

Командный модуль на лунной орбите с Майклом Коллинзом на борту

Командный модуль «Колумбия» остаётся на орбите пока «Орёл» готовится к посадке на Луну.


В конце 13-го витка, над обратной стороной Луны, на 29,8 секунды был включён двигатель посадочной ступени лунного модуля, «Орёл» перешёл на орбиту снижения с апоселением 105,9 км и периселением 15,7 км

Он летел опорами посадочной ступени вперёд и иллюминаторами вниз, чтобы астронавты могли отслеживать ориентиры на поверхности. Поэтому на снимке на фоне лунной поверхности ещё виден удаляющийся командный модуль (возле большого кратера).
Армстронг заметил, что один из ориентиров, кратер Маскелайн W, они пролетели примерно на 3 секунды раньше, чем предполагалось. Это означало, что они сядут дальше расчётной точки.

В 102 часа 33 минуты 05 секунд полётного времени вблизи периселения орбиты снижения (примерно в 400 км к востоку от запланированного района посадки) был включён двигатель посадочной ступени лунного модуля, начался этап торможения.

Через восемь с половиной минут после начала торможения, на высоте чуть менее 2 км, начался этап приближения к точке посадки

На высоте около 460 м Армстронг увидел, что автопилот ведёт корабль в точку на ближнем краю большого кратера, окружённого полем валунов до 2—3 метров в поперечнике (позднее было установлено, что это кратер Уэст, диаметром 165 м).
На высоте примерно 140 метров командир перевёл компьютер в полуавтоматический режим.

Когда лунный модуль пролетал над кратером, командир начал искать место, пригодное для посадки, и выбрал относительно ровную площадку между небольшими кратерами и полем валунов.

В На чём бы на Луну слетать? Различные варианты лунного модуля «Аполлона».

Внешний вид лунного модуля корабля «Аполлон» наверно знаком почти каждому на этой планете. Относительно невзрачный, больше напоминающий творение кубистов, именно он стал для нас одним из символов покорения космоса. Интересно посмотреть, как бы он мог выглядеть, если в конкурсе на создание лунного модуля победила не фирма Grumman Corporation, а кто то иной.

Для начала хочется отметить, что проработка концепции лунного посадочного модуля началась ещё в 1959 году, хотя первый конкурс на создание модуля датируется 1962 годом. В то время окончательно не было решено, при помощи какого метода будет осуществлён полёт на Луну. Выделялись два основных варианта: Оrbit rendezvous - полёт осуществляется при помощи разделения корабля на посадочную часть и часть остающуюся на орбите и вариант Direct ascent предполагал полёт на одном неразделяемом корабле. Разные фирмы выступали за разные подходы, всего в первом конкурсе участвовало 11 фирм, из них 9 представили свои предложения.

1. Лунный посадочный модуль от Convair для полёта по варианту Оrbit rendezvous. Один из основных конкурентов Grumman, в отличие от многих других участников проектирование был доведен до стадии постройки макета в реальный размер и проработке внутреннего устройства.


Полноразмерный макет лунного посадочного модуля от Convair.


Предполагаемое внутреннее устройство лунного посадочного модуля от Convair.

2. Лунный посадочный модуль от Republic для полёта по варианту Оrbit rendezvous. Как по мне, один из самых милых вариантов посадочного модуля.

3. Лунный посадочный модуль от Lockheed для полёта по варианту Оrbit rendezvous. Внутреннее фирменное наименование CL-625.


Кликабельно.

4. Лунный посадочный модуль от General Dynamics для полёта по варианту Earth orbit rendezvous, в котором корабль для полёта на Луну и его экипаж выводились на орбиту Земли разными ракетами, после стыковки экипаж переходил на лунный корабль и продолжал полёт. Это позволило бы использовать большую массу и провести высадку на луну трёх, а не двух человек.


Метод высадки астронавтов достаточно необычен и опасен.


Старт возвращаемой части.


Иные варианты конструкции модуля от General Dynamics.

5. Лунный корабль от Martin для полёта по варианту Direct ascent. Запуск предлагался на одном из вариантов ракеты Nova.


Высадка на Луну из этого корабля так же довольно нетривиальная задача.

6. Лунный корабль от McDonnell Douglas для полёта по варианту Direct ascent. Интересно, что это вариант полёта всего на 2 человека.

7. Ранний дизайн лунного посадочного модуля от Grumman.


Селениты. Начало. не всегда посадка проходит хорошо.

8. Лунный посадочный модуль от Chance Vought для полёта по варианту Оrbit rendezvous. Благодаря округлым формам напоминает о советских кораблях.


Кликабельно.

9. Лунный посадочный модуль от Boeing для полёта по варианту Оrbit rendezvous.

10. Дизайн посадочного модуля, разработанного в NASA, в качестве примера выполнения требований к конкурсу.

Победителем конкурса 62 года был выбран проект фирмы Grumman, вариант от Convair рассматривался как запасной. В 1964 году McDonnell, Chance Vought, Hughes и Lockheed попробовали выступить с проектом лунного модуля, разработанного совместными усилиями, но NASA это не заинтересовало.

Источники:
secretprojects.co.uk
nassp.sourceforge.net
ntrs.nasa.gov
spaceart1.ning.com

Часть корабля «Аполлон», построенный для американской программы «Аполлон» компанией Grumman Corporation для экипажа из двух человек с целью доставки с лунной орбиты на поверхность Луны и обратно. Шесть таких модулей успешно приземлились на Луне в 1969-1972 годах.

В каком-то смысле это был первый настоящий космический корабль в мире, поскольку он был способен перемещаться только в космосе, конструктивно и аэродинамически неспособный к полёту сквозь атмосферу Земли.

Его разработка сталкивалась с несколькими препятствиями, что задержало его первый беспилотный полёт на срок около десяти месяцев, а его первый полёт состоялся примерно на три месяца. Несмотря на это, в конце концов данный модуль стал самым надёжным компонентом системы «Аполлон»/«Сатурн» и значительно превышал её проектные требования, что было задействовано для поддержания жизнеобеспечения и двигательных ресурсов, позволив спасти астронавтов после взрыва и отказа систем командного модуля в полёте Аполлон-13 .

Модуль состоит из двух ступеней. Посадочная ступень, оборудованная самостоятельной двигательной установкой и шасси, используется для снижения лунного корабля с орбиты Луны и мягкой посадки на лунную поверхность, и также служит стартовой площадкой для взлётной ступени. Взлётная ступень, с герметичной кабиной для экипажа и самостоятельной двигательной установкой, после завершения исследований стартует с поверхности Луны и на орбите стыкуется с командным отсеком. Разделение ступеней осуществляется при помощи пиротехнических устройств.

Взлётная ступень

Взлётная ступень лунного модуля имеет три основных отсека: отсек экипажа, центральный отсек и задний отсек оборудования. Герметизируются только отсек экипажа и центральный отсек, все остальные отсеки лунного корабля негерметизированы. Объём герметической кабины 6,7 м³, давление в кабине 0,337 кг/см², атмосфера - чистый кислород. Высота взлётной ступени 3,76 м, диаметр 4,3 м. Конструктивно взлётная ступень состоит из шести узлов: отсек экипажа, центральный отсек, задний отсек оборудования, связка крепления ЖРД, узел крепления антенн, тепловой и микрометеорный экран. Цилиндрический отсек экипажа диаметром 2,35 м, длиной 1,07 м (объёмом 4,6 м³) полумонококовой конструкции из хорошо сваривающихся алюминиевых сплавов.

Два рабочих места для астронавтов оборудованы пультами управления и приборными досками, системой привязи астронавтов (они располагались стоя), двумя окнами переднего обзора, окном над головой для наблюдения за процессом стыковки, телескопом в центре между астронавтами. Для выхода на поверхность Луны производилась полная разгерметизация кабины, так как шлюзовая камера отсутствовала. Срок автономного существования модуля (ограниченный, в первую очередь, ресурсом систем жизнеобеспечения и электропитания) составлял порядка 75 часов.

Характеристики взлётной ступени:

  • Масса, включая топливо: 4670 кг
  • Атмосфера кабины: 100 % кислород, давление 33 kPa
  • Вода: два бака по 19,3 кг
  • Охладитель: 11,3 кг раствора этиленгликоль-вода.
  • Температурный контроль: один активный сублиматор (теплообменник) «вода-лёд».
  • Двигатели системы ориентации (ДСО): масса топлива: 287 кг
  • Число и тяга ДСО: 16 x 445 N в четырёх сборках.
  • Топливо ДСО: N 2 O 4 /Aerozine 50
  • Удельный импульс ДСО: 2,84 км/с.
  • Взлётный двигатель, масса топлива: 2353 кг
  • Взлётный двигатель, тяга: 15,6 kN
  • Взлётный двигатель, топливо: N 2 O 4 /Aerozine 50
  • Взлётный двигатель, система наддува: 2 x 2,9 кг гелиевых бака, давление 21 MPa
  • Удельный импульс: 3,05 км/с (311 «секунд»)
  • Тяговооруженность на взлете: 2,124
  • Характеристическая скорость (delta V) взлётной ступени: 2220 м/с.
  • Батареи: две 28-32 volt, 296 ампер-часов, серебряно-цинковые; 56,7 кг каждая.
  • Бортовая сеть: 28 вольт постоянного тока, 115 вольт, 400 Гц - переменного тока

Кабина лунного модуля. Непосредственно под рабочим местом пилота- люк для выхода на поверхность Луны.

Посадочная ступень

Посадочная ступень лунного модуля в виде крестообразной рамы из алюминиевого сплава несёт на себе в центральном отсеке двигательную установку с посадочным ЖРД фирмы STL.

В четырёх отсеках, образованных рамой вокруг центрального отсека, установлены топливные баки, кислородный бак, бак с водой, гелиевый бак, электронное оборудование, подсистема навигации и управления, посадочный радиолокатор и аккумуляторы.

Четырёхногое убирающееся шасси, установленное на посадочной ступени, поглощает энергию удара при посадке корабля на поверхность Луны разрушающимися сотовыми патронами, установленными в телескопических стойках ног шасси; дополнительно удар смягчается деформацией сотовых вкладышей в центрах посадочных пят. Три из четырёх пят снабжены гибким металлическим щупом, направленным вниз и раскрывающимся наподобие рулетки, сигнализирующим экипажу момент выключения ЖРД при контакте с лунной поверхностью (синяя лампа «lunar contact»). Шасси находятся в сложенном состоянии до отделения лунного корабля от командного отсека; после отделения по команде экипажа лунного корабля пиропатроны перерезают чеки у каждой ноги и под действием пружин шасси выпускается и становится на замки. Так же как взлётная ступень, посадочная ступень окружена тепловым и микрометеорным защитным экраном из многослойного майлара и алюминия. Высота посадочной ступени 3,22 м, диаметр 4,3 м.

Характеристики посадочной ступени:

  • Масса, включая топливо: 10 334 кг
  • Запас воды: 1 бак, 151 кг
  • Масса топлива и окислителя: 8165 кг
  • Тяга двигателя: 45,04 kN, дросселирование 10 % - 60 % от полной тяги.
  • Компоненты топлива: N 2 O 4 /Aerozine 50 (UDMH/N 2 H 4)
  • Бак наддува: 1 x 22 кг бак, газ наддува-гелий, давление 10,72 kPa.
  • Удельный импульс: 3,05 км/с.
  • Характеристическая скорость взлётной ступени (delta V): 2470 м/с.
  • Батареи: 4 (Apollo 9-14) или 5 (Apollo 15-17) 28-32V, 415 A-h, серебряно-цинковые, масса каждой 61,2 кг.

Полеты Лунных модулей (LM)

Модуль Дата Полет Масса, кг NSSDC_ID NORAD ID Примечание
LTA-10R 9 ноября 1967 года Аполлон-4 - - - макет
LM-1 22 января 1968 года Аполлон-5 - 1968-007B -
LM-2 не летал - - - - Национальный Музей Авиации и Космонавтики, Вашингтон
LTA-2R 4 апреля 1968 года Аполлон-6 - - - макет
LTA-B 21 декабря 1968 года Аполлон-8 9 026,0 - - макет весовой
LM-3 3 марта 1969 года Аполлон-9 - 1969-018D -
LM-4 18 марта 1969 года Аполлон-10 13 941,0 1969-043C -
LM-5 16 июля 1969 года Аполлон-11 15 065,0 1969-059C -
LM-6 14 ноября 1969 года Аполлон-12 15 116,0 1969-099C -
LM-7 11 апреля 1970 года Аполлон-13 15 196,0 1970-029C -
LM-8 31 января 1971 года Аполлон-14 15 277,0 1971-008C -
LM-9 не летал - - - - Космический Центр Кеннеди (Центр Аполло-Сатурн-5) мыс Канаверал
LM-10 26 июля 1971 года Аполлон-15 16 434,0 1971-063C -
LM-11 16 апреля 1972 года Аполлон-16 16 428,0 1972-031C -
LM-12 7 декабря 1972 года Аполлон-17 16 448,0 1972-096C -
LM-13 не летал - - - - Музей авиации, Лонг-Айленд, Нью-Йорк.
LM-14 не летал - - - - Институт Франклина, Филадельфия
LM-15 не летал - - - - Недостроен, разобран

Примечания

Библиография

  • Kelly, Thomas J. (2001). Moon Lander: How We Developed the Apollo Lunar Module (Smithsonian History of Aviation and Spaceflight Series). Smithsonian Institution Press. ISBN 1-56098-998-X .
  • Baker, David (1981). The History of Manned Space Flight . Crown Publishers. ISBN 0-517-54377-X
  • Brooks, Courtney J., Grimwood, James M. and Swenson, Loyd S. Jr (1979)