29.06.2019

Основы расчета и конструирования деталей машин. Детали машин и основы конструирования. Образование производных машин на базе унификации


Учреждение образования

«БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

ДЕТАЛИ МАШИН И ОСНОВЫ КОНСТРУИРОВАНИЯ

Учебное пособие по курсовому проектированию для студентов специальностей

1-08 01 01, 1-36 01 08, 1-36 05 01, 1-36 06 01, 1-36 07 01, 1-43 01 06, 1-46 01 01, 1-46 01 02, 1-47 02 01, 1-48 01 01, 1-48 01 02, 1-48 01 04,

1-48 01 05, 1-48 02 01, 1-57 01 01, 1-57 01 03

очной и заочной форм обучения

УДК 621.80076.50 ББК 34.441

Составители:

доцент А.Ф. Дулевич, ассистент С.А. Осоко, ассистент А.М. Лось, доцент Ф.Ф. Царук, доцент С.Е. Бельский

Рецензенты:

Доктор техн. наук, заведующий кафедрой «Сопротивление материалов и деталей машин» БГАТУ А.Н. Орда;

кандидат техн. наук, доцент кафедры метрологии и стандартизации БГУИР А.Г. Архипенко;

Детали машин и основы конструирования: Учеб. пособие по курсовому проек-

1-48 01 02, 1-48 01 04, 1-48 01 05, 1-48 02 01, 1-57 01 01, 1-57 01 03 оч. и заоч.

форм обучения /Сост. А.Ф. Дулевич и др. – Мн.: БГТУ, 2005. – 160 с.

ISBN 985-434-297-2.

В пособии излагаются методики и последовательность кинематического и силового расчета привода, проектного и проверочного расчета основных механических передач, валов, подшипников и шпоночных соединений, вопросы выбора конструкций основных элементов редуктора и нормирования точности геометрических параметров деталей и их сопряжений, а также основные требования к оформлению конструкторской документации курсового проекта.

УДК 621.80076.50ББК 34.441

ВВЕДЕНИЕ

Для развития навыков проектирования и приложения теоретических знаний предпочтительны объекты, которые не только широко распространены и имеют большое практическое значение, но

и не подвержены в обозримом будущем моральному старению. Этими свойствами в полной мере обладают объекты, изучаемые в курсе «Детали машин и основы конструирования», они также присущи всем современным машинам, механизмам, приборам, эксплуатирующимся в любых условиях – от глубин океана до космоса.

Курс «Детали машин и основы конструирования» является общетехнической дисциплиной, которую изучает большое количество студентов высших учебных заведений.

Обучение методике конструирования механических приводов технологического оборудования, а также деталей и сборочных единиц, встречающихся в большинстве машин, невозможно без изучения чертежей существующих конструкций, узлов и деталей.

Это пособие в систематизированном виде содержит наиболее распространенные типовые конструкции соединений узлов и деталей машин, что позволит студентам успешно выполнить графическую часть курсовых и дипломных проектов.

Материал в пособии представлен в том порядке, в котором он изучается в учебных дисциплинах по учебному плану. В качестве иллюстраций приведены, по возможности, простые схемы, содержащие основные черты конструкции и позволяющие понять условия работы

и расчета деталей. Конструкцию деталей студенты дополнительно изучают на лабораторных занятиях и при курсовом проектировании.

1. ОБЩИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КУРСОВОГО ПРОЕКТА

1.1. Цели и задачи проектирования

Целью выполнения курсового проекта (КП) является приобретение первых инженерных навыков по расчету и конструированию типовых механизмов, узлов и отдельных деталей машин, на основе ранее полученных теоретических знаний по общеобразовательным и общетехническим дисциплинам.

Основными задачами курсового проекта являются:

ознакомление с научно-технической литературой по теме курсового проекта;

изучение известных аналогичных машин и механизмов с анализом их достоинств и недостатков;

выбор оптимального варианта конструкции с учетом требований технического задания;

выбор материала и выполнение необходимых проектных и проверочных расчетов с целью обеспечения технических характеристик проектируемого объекта;

выбор и обоснование необходимой точности изготовления деталей и узлов, шероховатости поверхностей, допусков и посадок размеров, форм и расположения;

выполнение графической части КП в соответствии с требованиями ЕСКД.

1.2. Основные этапы разработки конструкторской документации

В соответствии с требованиями ГОСТ 2.103 «Стадии разработки» предусмотрены следующие этапы разработки конструкторской документации:

техническое задание;

техническое предложение;

эскизный проект;

технический проект;

рабочая конструкторская документация.

Техническое задание (ТЗ) выдается заказчиком.

Техническое предложение (ТП) разрабатывается на основании ТЗ исполнителем по согласованию с заказчиком и в него входит: со-

вокупность документов по обоснованию технической и техникоэкономической целесообразности разработки изделия с учетом требований ТЗ. ТП утверждается заказчиком исполнителем.

Эскизный проект предполагает разработку комплекса документации, дающей общее представление о конструкции и принципе работы устройства в целом и техническом решении его отдельных деталей и узлов. Эскизный проект является основой для дальнейшей разработки технического проекта и рабочей конструкторской документации.

Технический проект – совокупность конструкторских документов, которые должны содержать окончательные технические решения, дающие полное представление об устройстве разрабатываемого изделия, и исходные данные для разработки рабочей документации.

Технический проект после согласования и утверждения в установленном порядке служит основанием для разработки рабочей конструкторской документации.

Рабочая конструкторская документация предназначена для изготовления деталей и узлов, которые должны выполнять свои функции и обеспечивать работоспособность устройства в целом.

Ограниченность времени, отводимого на выполнение курсового проекта, приводит к необходимости совмещать и сокращать объем разрабатываемой документации.

На основании расчетов, перечень и содержание которых указаны в задании на проектирование, определяется конструкция устройства и разрабатывается общий вид изделия в виде эскизного проекта.

На основании эскизного проекта, с учетом внесенных при дальнейшей проработке уточнений и изменений, на листе ватмана карандашом либо на компьютере (по согласованию с преподавателем) выполняется сборочный чертеж устройства. Кроме сборочного чертежа устройства студенты выполняют сборочный чертеж привода, узлов и рабочие чертежи деталей, оговариваемые в задании на курсовое проектирование.

Все расчеты, описания и приложения оформляются в виде пояснительной записки к курсовому проекту, которая выполняется в соответствии с ГОСТ 2.105 и СТП 05-11.

1.3. Основные требования к эскизному проекту

На основании результатов кинематического и прочностного расчетов на миллиметровой бумаге, в масштабе 1:1, выполняется эскизный проект. Он начинается с нанесения осевых линий валов с уче-

том межосевых расстояний и диаметров вершин и размеров зубчатых колес. Вычерчивают валы по посадочному диаметру внутреннего кольца подшипника без обозначения их размеров по длине, наносят габаритные размеры предварительно выбранных подшипников. Детали механизма следует располагать в корпусе компактно, более полно используя его пространство.

В дальнейшем прорабатывают конструкции отдельных деталей, выбирают способы соединения их с другими элементами механизма. При этом необходимо определить:

способы установки валов в подшипниках;

крепление зубчатых колес на валах, подшипников – на валах и в корпусе;

способы регулировки зазоров в подшипниках;

способы и устройства для смазки подшипников и передач;

виды и конструктивное оформление несущих деталей.

Конструкция проектируемого механизма должна обеспечивать возможность его сборки и разборки, свободный доступ для регулировки, настройки отдельных узлов и замены деталей. Предпочтителен узловой метод сборки, при котором отдельные детали собираются в узлы, а из них собирается механизм. Например, на валу монтируются зубчатые колеса, подшипники качения, дистанционные втулки, а затем собранный узел устанавливается в корпусе.

Тип и способ изготовления корпусных деталей выбирается в зависимости от объемов производства. При серийном производстве целесообразно корпуса выполнять литыми, штампованными или прессованными (из пластмасс), а при индивидуальном или мелкосерийном производстве – сварными или сборными. При проектировании разъемного корпуса необходимо предусмотреть элементы, обеспечивающие фиксацию взаимного положения корпусных деталей и соосность отверстий под подшипники.

При выборе конструкции необходимо изучить известные технические решения и выполнить их анализ, максимально использовать унифицированные детали и узлы. Для повышения технологичности и уменьшения трудоемкости изготовления конструкции следует сокращать номенклатуру используемых стандартных и нормализованных деталей и узлов, а также используемых материалов. Везде, где возможно, следует применять в деталях форму тел вращения, технологически более простую в изготовлении.

Для наиболее удачного размещения деталей и узлов рекоменду-

ется рассмотреть несколько вариантов конструкции проектируемого устройства. При этом возможны существенные изменения первоначально разработанной конструкции и выполненных расчетов. В качестве окончательного варианта конструктивного решения выбирается наиболее удачная эскизная проработка проектируемого устройства, обеспечивающая минимальные массово-геометрические параметры и максимальную экономичность в эксплуатации.

1.4. Требования к сборочному чертежу механизма

Сборочный чертеж механизма выполняется на основании его эскизного проекта карандашом на листе формата А1. Либо с использованием средств компьютерной графики (по согласованию с преподавателем). Чертеж должен содержать минимальное необходимое число проекций, видов, разрезов, сечений и невидимых линий, дающих полное представление о его конструкции и принципе работы. Допускается на сборочном чертеже упрощенно показывать крепежные детали, резьбы и ее элементы (фаски, сбег, недорезы), а также не показывать мелкие фрагменты деталей и соединений: фаски, проточки, скругления и углубления. При использовании большого количества крепежных деталей одного типа и размера можно подробно изобразить только одно место соединения, а остальные показать штрихпунктирными линиями. На чертеже показать следующие фрагменты методом сечений, выносок или невидимыми линиями: на виде сверху бобышки под крышки подшипников и стенку основания корпуса; отверстие под фундаментный болт; установку болтов крепления крышки корпуса к основанию корпуса у подшипников (d 1 ) и прочие болты (d 2 ); крепление крышки подшипника к корпусу (d 3 ); крепление смотровой крышки к корпусу (d n ); установку смотровой крышки, рым–болта, сливного отверстия, маслоуказателя, отдушины, штифта; зубчатое или червячное зацепление; шпоночное соединение; конструкцию подшипников и крышку подшипников с уплотнениями в них; способ смазки зацепления и подшипников; уровень масла.

Сборочный чертеж кроме графического изображения разрабатываемого изделия, должен содержать необходимые размеры, уровень смазки в корпусе, номера позиций спецификации узлов (сборочных единиц) и деталей, входящих в изделие, технические требования к сборке и регулировке, его техническую характеристику.

К размерам, указываемым на сборочном чертеже, относятся: га-

баритные, межосевые, посадочные, установочные и присоединительные (размеры опорной поверхности, ее толщина, размещение в ней крепежных отверстий и их диаметр, длина и посадочный диаметр входных и выходных валов), размеры для транспортировки, а также справочные.

Номера позиций спецификации выполняют на полках линийвыносок, которые располагаются параллельно основной надписи вне контура изображения детали (узла), и группируют в колонку или строчку по возможности на одной линии. Для группы крепежных деталей, относящихся к одному соединению, допускается использовать одну линию-выноску. В этом случае полки для номеров позиций располагают колонкой и соединяют тонкой линией.

Технические требования помещают на поле чертежа над основной надписью в виде столбца, по ширине не превышающего основной надписи. Каждая позиция технических требований нумеруется и начинается с новой строки. Запись ведется сверху вниз. Технические требования содержат сведения, не отраженные на чертеже. К ним относятся:

указания размеров, относящихся к справочным;

предельные отклонения размеров, формы и расположения поверхностей, которые должны быть выдержаны при сборке;

требования к точности монтажа (допустимые осевые и радиальные зазоры, биения и т.п.);

указания о маркировке и клеймении;

правила транспортировки и хранения;

особые условия эксплуатации;

тип смазки подвижных соединений;

способы стопорения резьбовых соединения;

требования по обработке (покраске) поверхностей;

требования по обкатке изделия и защите (ограждении) опасных мест.

Техническая характеристика размещается на свободном поле

чертежа (отдельно от технических требований), имеет самостоятельную нумерацию и снабжается заголовком «Техническая характеристика». Она содержит дополнительные сведения об изделии. Например, для редуктора может содержать сведения о передаваемой мощности, передаточном числе, частоте вращения валов, крутящем моменте на выходном валу и т.д.

К сборочному чертежу прилагается текстовой документ – спецификация, которая выполняется в соответствии с ГОСТ 2.108 на листах формата А4 и оформляется в виде приложения к пояснительной записке. Форма первого листа спецификации представлена в приложении 7 рис. 4.

В соответствии с ГОСТ 2.108 в спецификации предусмотрено 8 разделов, однако в курсовом проекте обычно достаточно 3–4 раздела: «Документация», «Сборочные единицы», «Детали», «Стандартные изделия», «Материалы». Указанные наименования разделов записываются в графе «Наименование».

В графе «Поз.» спецификации указывают порядковый номер составного элемента разработанного устройства. Этот номер соответствует позиции элемента на сборочном чертеже. В графе «Формат» указывают форматы документов, обозначения которых записывают в графе «Обозначение». В графе «Зона» указывают обозначения зоны, в которой находится номер позиции. Разбивка чертежа на зоны производится по ГОСТ 2.104. В графе «Обозначение» указывают шифр чертежа элементов изделия. Для стандартных изделий эта графа не заполняется. В графе «Наименование» указывают наименование изделий; для стандартных изделий, кроме наименования, указывают условное обозначение в соответствии со стандартом.

1.5. Требования к чертежу общего вида привода

Чертеж общего вида привода выполняется на основании расчетов всех передач привода и сборочного чертежа механизма карандашом либо выводится на графопостроителе с помощью вычислительной техники на листе формата А1 (по согласованию с преподавателем). На чертеже общего вида привода должна быть показана рама, смонтированные на ней все составные элементы, привода (электродвигатель, редуктор, натяжные устройства, опоры открытых передач) и приводной вал рабочего органа привода на опорах. Рама выполняется в виде сварной конструкции из стандартных профилей (швеллер, уголок, тавр, двутавр, лист, полоса). Число изображений должно быть минимальным (как правило, два: вид сверху и вид сбоку, позволяющий более полно показать конструкции приводного вала и рамы привода, опор, натяжных устройств, муфты и т.д.), но достаточным для получения представления об изделии в целом. Чертеж общего вида выполняется с упрощениями, которые устанавливаются ГОСТ 2.109

на оформление чертежей, но при этом должна быть понятна конструкция устройства, взаимодействие составных частей и принцип работы привода. При использовании большого количества крепежных деталей одного типа и размера подробно изобразить только одно место соединения, а остальные показать штрихпунктирными линиями. На чертеже показать следующие фрагменты методом сечений, выносок или линиями невидимого контура: конструкция рамы привода и расположение ее составных частей; крепления рамы к фундаменту; крепление электродвигателя, редуктора и опор к раме; конструкции муфты, натяжных устройств, опор открытых передач и приводного вала привода; крепление элементов открытых передач к валам; вид открытых передач.

Чертеж общего вида привода кроме графического изображения должен содержать необходимые размеры, номера позиций сборочных единиц и деталей привода, технические требования по монтажу и регулировке, техническую характеристику привода, схемы расположения болтов крепления рамы к фундаменту и крепления всех элементов привода к раме.

К размерам, указываемым на чертеже общего вида, относятся: габаритные; межосевые; посадочные; наибольшие размеры элементов открытых передач привода; установочные и присоединительные (размеры опорных поверхностей рамы и сборочных единиц, установленных на раме, расстояние между крепежными болтами и их расположение относительно осей сборочных единиц и границ рамы, высоту рамы и размещения осей валов всех передач привода относительно рамы).

Для возможности монтажа привода на чертеже справа над основной надписью в уменьшенном масштабе выполняются схемы расположения болтов крепления рамы к фундаменту и крепления элементов привода (двигателя, редуктора, опор открытых передач и рабочего приводного вала) к раме. На схемах указать: места расположения отверстий под болты, их диаметр и количество; оси электродвигателя, редуктора, всех валов, в том числе и рабочего вала привода, с текстовыми надписями, а также координатные размеры между ними.

Номера позиций спецификации выполняют на полках линийвыносок, требования к которым аналогичны изложенному в п. 1.4.

К чертежу общего вида привода прилагается текстовой документ – спецификация, которая оформляется аналогично изложенному

в п.1.4.

В.В. Коробков

Детали машин
и основы конструирования
(Курс лекций)

Новосибирск

УДК 621.81

Правообладатели

Автором настоящего учебного пособия является доцент кафедры общетехнических дисциплин НВВКУ, служащий РА В.В. Коробков, инженер-механик, к.т.н., доцент, бронзовый медалист ВДНХ СССР, изобретатель СССР.

Мультимедиа продукт «Детали машин и основы конструирования» © 2006, созданный Новосибирским высшим военным командным училищем (военным институтом), г. Новосибирск, защищен российским и международным законодательством в области авторских прав и интеллектуальной собственности.

Не допускается копировать с коммерческой целью настоящий мультимедийный продукт или какие-либо его части, продавать, сдавать в аренду или в прокат, перепроектировать, перекомпилировать, дизассемблировать, изменять, дополнять и модифицировать, а также создавать производные продукта без письменного согласия правообладателей.

Инструкция


  1. Для выбора отдельной лекции подвести курсор снизу к её цветному названию в Содержании (стр. 3) и, удерживая клавишу (при этом курсор примет форму руки с вытянутым указательным пальцем), нажать левую клавишу мыши.

  2. В конце каждой лекции, после списка контрольных вопросов, имеется значок < >, нажатие на который аналогично предыдущему возвращает Вас на страницу « с одержание».

  3. Передвижение по тексту внутри лекции осуществляется обычным для редактора Word способом (скроллинг с правой стороны страницы; клавиши < Page Up > и < Page Down >; <  > и <  >).

^

Предисловие

Тема 1. Общие сведения о деталях машин

Лекция № 1. Общие сведения о деталях машин

Тема 2. Механические передачи

Лекция № 2. Ремённые передачи

^

Лекция № 3. Цепные передачи

Лекция № 4. Общие сведения о зубчатых передачах

Лекция № 5. Цилиндрические и конические зубчатые передачи

Лекция № 6. Червячные передачи

^

Лекция № 7. Червячные передачи (продолжение)

Лекция № 8. Планетарные и волновые передачи

Тема 3. Валы и подшипники

Лекция № 9. Валы и оси

Лекция № 10. Подшипники скольжения

Лекция № 11. Подшипники качения

^

Тема 4. Соединения деталей

Лекция № 12. Неразъёмные соединения

Лекция № 13. Резьбовые соединения

Лекция № 14. Разъёмные соединения
для передачи крутящего момента

^

Тема 5. Корпусные детали механизмов,
смазочные и уплотняющие устройства

Лекция № 15. Корпусные детали,
смазочные и уплотняющие устройства

Тема 6. Муфты механических приводов

Лекция № 16. Механические муфты

Тема 7. Упругие элементы машин

^

Лекция № 17. Упругие элементы машин

Приложение 1. Основные понятия о допусках и посадках

Приложение 2. Система отверстия (Поля допусков)

Предисловие

Настоящее издание курса лекций представляет собой учебное пособие по учебному курсу «Детали машин и основы конструирования», читаемому в Новосибирском высшем военном командном училище (военном институте)  НВВКУ.

Курс лекций нацелен на формирование базовых знаний, необходимых курсантам для успешного последующего изучения многоцелевых гусеничных и колесных машин, их конструкции и рабочих процессов, происходящих в них при обычных и экстремальных условиях. В свою очередь, Курс лекций базируется на знаниях, полученных курсантами при изучении естественнонаучных и общепрофессиональных дисциплин: высшей математики, физики, теоретической механики, теории механизмов и машин, инженерной графики, сопротивления материалов, материаловедения, а также общего устройства боевых машин и принципов работы основных систем, механизмов и узлов.

Учебное пособие имеет в основном военно-прикладную направленность. При изложении учебного материала даются ссылки на примеры применения изучаемых типовых изделий в многоцелевых гусеничных и колесных машинах, средствах технического обслуживания и паркового оборудования.

В лекциях изложена основная часть теоретического материала. Они отражают состояние вопроса в целом, содержат классификацию и обобщения, систематизирующие знания обучаемых, а также включают конкретные сведения и указания, направленные на решение практических задач. Расчётная часть максимально приспособлена к использованию современных вычислительных средств, табличные данные в основном заменены эмпирическими регрессионными формулами, имеющими высокую степень корреляции (как правило не ниже 0,9) и легко решаемыми с применением инженерных калькуляторов. Из выводов расчетных зависимостей исключены громоздкие математические преобразования, а расчетные схемы и формулы представлены в виде, удобном для вычислений. Основное внимание обращается на физический смысл и размерность входящих в зависимость величин, а также на выбор основных параметров и расчетных коэффициентов.


^

Тема 1. общие сведения о деталях машин

Лекция № 1. общие сведения о деталях машин


Вопросы, изложенные в лекции:



  1. Общие сведения о деталях машин. Требования к деталям машин.


Предмет и дисциплина «Детали машин».
^ Детали машин - прикладная научная дисциплина, изучающая общеинженерные методы проектирования (расчета и конструирования) элементов машин и механизмов. Изучение машин и их проектирование базируется на известных фундаментальных законах природы.

Курс « д етали машин и основы конструирования» является заверша-ющим в общеинженерной подготовке курсантов высших общевойсковых и танковых командных институтов.

Цель курса - создать теоретическую базу для последующего изучения конструкции многоцелевых гусеничных и колесных машин (МГКМ), их эксплуатации и ремонта с учетом критериев работоспособности, надежно-сти и технологичности.

Задача курса - изучение типовых конструкций элементов механизмов общепромышленного и военного применения, основных принципов их ра-боты и методов проектирования, включая расчет параметров и конструк-тивные особенности. В результате изучения дисциплины курсанты должны:

^ Иметь представление:

о принципах проектирования деталей и узлов боевых машин и авто-мобилей;

о влиянии материалов и технологичности конструкций на эффектив-ность и эксплуатационные качества БМП и БТР.

Знать:

характерные виды разрушения и основные критерии работоспособ-ности узлов и агрегатов БМП и БТР.

Уметь:

производить оценку работоспособности механизмов бронетанкового вооружения, выполнять расчеты при проектировании типовых деталей и узлов ВВТ;

оценивать достоинства и недостатки конструкции узлов и агрега-тов боевых машин;

конструировать узлы и агрегаты боевых машин.

Внимательный анализ состава самых различных машин (транспорт-ных, военных, сельскохозяйственных, технологических и т.п.) показывает, что все они включают значительное количество однотипных деталей узлов и механизмов. По этой причине курс деталей машин посвящен изучению наиболее общих элементов машин, способов их расчета и конструирования. Это, в свою очередь, обусловливает важность данного курса не только в свете прикладного применения, но также и с точки зрения развития техни-ческой культуры будущего офицера, поскольку техническая культура - это одна из многочисленных граней общечеловеческой культуры.

Объем курса составляет 180 часов; из них учебных занятий с преподавателем (аудиторных) 116 часов - лекций 32 часа, практических, лабораторных и самостоятельных занятий под руководством преподавателя 84 часа, включая 36 часов курсового проектирования.

Литература для изучения:


  1. Детали машин и подъемное оборудование: Учеб. пособие для выс-ших общевойсковых и танковых училищ /Мельников Г.И., Леоненок Ю.В. и др. - М.: Воениздат, 1980. - 376 с.

  2. Гузенков П.Г. Детали машин: Учеб. пособие для студентов втузов.- 3-е изд., перераб. и доп.- М.: Высш. школа, 1982.- 351 с.

  3. Куклин Н.Г. и др. Детали машин: Учебник для техникумов / Н.Г. Куклин, Г.С. Куклина, В.К. Житков. – 5-е изд., перераб. и допол. – М.: Илекса, 1999.- 392 с.

  4. Иванов М.Н. Детали машин: Учеб. для вузов. - М.: Высшая школа, 1991. - 383 с.

  5. Соловьев В.И. и др. Курсовое проектирование деталей машин. Методич. рекомендации / В.И. Соловьев, В.В. Коробков, Л.П. Соловьева, И.С. Кацман. изд. 2-е. - Новосибирск: НВОКУ, 1995. - 151 с.

  6. Соловьева Л.П., Соловьев В.И. Курсовое проектирование деталей машин: Учебно-справ. пособие. - Новосибирск: НВОКУ, 1994. - 56 с.

  7. Шейнблит А.Е. Курсовое проектирование деталей машин: Учеб. пособие. - М.: Высшая школа, 1991. - 432 с.

Общие сведения о деталях машин. Требования к
деталям машин.
Основные определения.

^ Машина (от латинского machina ) - механическое устройство, выполняющее движения с целью преобразования энергии, материалов или информации.

Основное назначение машин - частичная или полная замена производ-ственных функций человека с целью повышения производительности, облегчения человеческого труда или замены человека в недопустимых для него условиях работы.

В зависимости от выполняемых функций машины делятся на энерге-тические, рабочие (транспортные, технологические, транспортирующие), информационные (вычислительные, шифровальные, телеграфные и т.п.), машины-автоматы, сочетающие в себе функции нескольких видов машин, включая информационные.

Агрегат (от латинского aggrego - присоединяю)- укрупненный унифи-цированный элемент машины (например, в автомобиле: двигатель, топли-воподающий насос), обладающий полной взаимозаменяемостью и выполня-ющий определенные функции в процессе работы машины.

Механизм - искусственно созданная система материальных тел, предназначенная для преобразования движения одного или нескольких тел в требуемое (необходимое) движение других тел.

Прибор - устройство, предназначенное для измерений, производ-ственного контроля, управления, регулирования и других функций, связан-ных с получением, преобразованием и передачей информации.

^ Сборочная единица (узел) - изделие или часть его (часть машины), составные части которого подлежат соединению между собой (собира-ются) на предприятии изготовителе (смежном предприятии). Сборочная единица имеет, как правило, определенное функциональное назначение.

Деталь - наименьшая неделимая (не разбираемая) часть машины, агрегата, механизма, прибора, узла.

Сборочные единицы (узлы) и детали делятся на узлы и детали общего и специального назначения.

Узлы и детали общего назначения применяются в большинстве совре-менных машин и приборов (крепежные детали: болты, винты, гайки, шай-бы; зубчатые колеса, подшипники качения и т.п.). Именно такие детали изу-чаются в курсе деталей машин.

К узлам и деталям специального назначения относятся такие узлы и детали, которые входят в состав одного или нескольких типов машин и при-боров (например, поршни и шатуны ДВС, лопатки турбин газотурбинных двигателей, траки гусениц тракторов, танков и БМП) и изучаются в соответ-ствующих специальных курсах (например, таких как "Теория и конструкция ДВС", "Конструкция и расчет гусеничных машин" и др.).

В зависимости от сложности изготовления детали, в свою очередь, делятся на простые и сложные. Простые детали для своего изготовления требуют небольшого числа уже известных и хорошо освоенных технологи-ческих операций и изготавливаются при массовом производстве на станках-автоматах (например, крепежные изделия - болты, винты, гайки, шайбы, шплинты; зубчатые колеса небольших размеров и т.п.). Сложные детали имеют чаще всего достаточно сложную конфигурацию, а при их изго-товлении применяются достаточно сложные технологические операции и используется значительный объем ручного труда, для выполнения которого в последние годы все чаще применяются роботы (например, при сборке-сварке кузовов легковых автомобилей).

По функциональному назначению узлы и детали делятся на:

1.Корпусные детали, предназначенные для размещения и фиксации подвижных деталей механизма, для их защиты от действия неблагоприят-ных факторов внешней среды, а также для крепления механизмов в составе машин и агрегатов. Часто, кроме того, корпусные детали используются для хранения эксплуатационного запаса смазочных материалов.

2. Соединительные для разъемного и неразъемного соединения (на-пример, муфты – устройства для соединения вращающихся валов; болты винты шпильки гайки – детали для разъемных соединений; заклепки – детали для неразъемного соединения).

3. Передаточные механизмы и детали, предназначенные для пере-дачи энергии и движения от источника (двигателя) к потребителю (испол-нительному механизму), выполняющему необходимую полезную работу.

В курсе деталей машин рассматриваются в основном передачи вращательного движения: фрикционные, зубчатые, ременные, цепные и т.п. Эти передачи содержат большое число деталей вращения: валы, шкивы, зубчатые колеса и т.п.

Иногда возникает необходимость передавать энергию и движение с преобразованием последнего. В этом случае используются кулачковые и рычажные механизмы.

4. Упругие элементы предназначены для ослабления ударов и вибра-ции или для накопления энергии с целью последующего совершения меха-нической работы (рессоры колесных машин, противооткатные устройства пушек, боевая пружина стрелкового оружия).

5. Инерционные детали и элементы предназначены для предотвра-щения или ослабления колебаний (в линейном или вращательном движе-ниях) за счет накопления и последующей отдачи кинетической энергии (ма-ховики, противовесы, маятники, бабы, шаботы).

6. Защитные детали и уплотнения предназначены для защиты внут-ренних полостей узлов и агрегатов от действия неблагоприятных факторов внешней среды и от вытекания смазочных материалов из этих полостей (пы-левики, сальники, крышки, рубашки и т.п.).

7. Детали и узлы регулирования и управления предназначены для воздействия на агрегаты и механизмы с целью изменения их режима работы или его поддержания на оптимальном уровне (тяги, рычаги, тросы и т.п.).

Основными требованиями, предъявляемыми к деталям машин, явля-ются требования работоспособности и надежности . К деталям, непосред-ственно контактирующим с человеком-оператором (ручки и рычаги управления, элементы кабин машины, приборные щитки и т.п.), кроме названных предъявляются требования эргономичности и эстетичности .

Работоспособность и надежность изделий.
Работоспособность - состояние изделия, при котором в данный момент времени его ос-новные параметры находятся в пределах, уста-новленных требованиями нормативно-технической документации и необходимых для выполнения его функциональной задачи .

Работоспособность количественно оценивается следующими показа-телями:

1 . Прочность - способность детали выдерживать заданные нагрузки в течение заданного срока без нарушения работоспособности.

2. Жесткость - способность детали выдерживать заданные нагрузки без изменения формы и размеров.

3. Износостойкость - способность детали сопротивляться изнаши-ванию.

4. Стойкость к специальным воздействиям - способность детали сохранять работоспособное состояние при проявлении специальных воз-действий (теплостойкость, вибростойкость, радиационная стойкость, кор-розионная стойкость и т.п.).

Неработоспособное состояние наступает вследствие отказа.

Отказ - событие, нарушающее работоспособность. Отказы делятся на постепенные и внезапные; полные и частичные; устранимые и неустра-нимые.

Надежность - свойство изделия выполнять заданные функции, сох-раняя свои показатели в пределах, установленных требованиями норма-тивно-технической документации, при соблюдении заданных условий ис-пользования, обслуживания, ремонта и транспортирования .

Свойство надежности количественно оценивается следующими пока-зателями: наработкой на отказ (среднее время работы изделия между двумя, соседними по времени отказами), коэффициентом готовности или коэффициентом технического использования (отношение времени работы изделия к сумме времен работы, обслуживания и ремонта в течение задан-ного срока эксплуатации), вероятностью безотказной работы и некото-рыми другими.

Проектирование и расчет типовых изделий.
Проектирование изделия – разработ-ка комплекта документации, необходимой для его изготовления, наладки и эксплуата-ции в заданных условиях и в течение заданного срока.

Такой комплект технической документации включает:

1. Комплект конструкторской документации (регламентируется комплексом стандартов ЕСКД).

2. Комплект технологической документации (регламентируется комплексом стандартов ЕСТД).

3. Комплект эксплуатационной документации (регламентируется комплексом стандартов ЕСКД). Последний включает формуляры, техни-ческие описания, инструкции по эксплуатации, инструкции по техничес-кому обслуживанию, плакаты, макеты и т.п.

4. Комплект ремонтной документации - ремонтные карты, ремонтно-технологические документы и т.п.

При проектировании решаются следующие основные задачи:

1. Обеспечение заданных параметров изделия для работы в заданных условиях.

2. Обеспечение минимальных затрат на производство заданного коли-чества изделий при сохранении заданных эксплуатационных параметров для каждого выпущенного изделия.

3. Сведение к минимуму эксплуатационных затрат при сохранении заданных эксплуатационных параметров изделия.

При решении каждой из основных задач приходится находить реше-ние целого ряда частных задач на разных этапах проектирования. При этом различные требования к изделию зачастую вступают в противоречие между собой. Искусство конструктора как раз и состоит в том, чтобы принять решение, максимизирующее положительный эффект от разрабатываемого изделия.

Процесс проектирования изделия состоит из многих этапов (состав-ление технического задания, расчет, конструирование, изготовление и испытание опытных образцов, разработка технологической документации, разработка эксплуатационной документации и т.п.), одними из главных среди которых являются расчет и конструирование.

В машиностроении основным является расчет деталей на прочность, который обычно выполняется в двух вариантах: 1) проектный расчет , и 2) проверочный расчет .

Целью проектного расчета является установление необходимых раз-меров узлов и деталей, соответствующих заданным нагрузкам и условиям работы. В этом случае расчет выполняется исходя из основного условия прочности:

p <[ p ] , (1.1)

где р - наиболее опасные напряжения (нормальные, изгибающие, касательные или контактные) из действующих в детали, а [р] - напряжения того же вида, допускаемые для материала, из которого планируется изготав-ливать деталь. Допускаемые напряжения для материала детали определяют как результат деления предельных для данного материала напряжений на выбранный (или заданный нормативной документацией) коэффициент запаса прочности:

, (1.2)

где под предельным напряжением p l в зависимости от условий работы детали понимается чаще всего либо предел прочности р в ( в или в ), либо предел текучести р т ( т или т ), либо предел выносливости р r ( r или r ); в частном случае это может быть предел выносливости при симметричном цикле нагружения р -1 ( -1 или -1 ). При этом допускаемый коэффициент запаса назначается либо нормативными документами (международные и государственные стандарты, ведомственные нормали и правила), либо из условия безотказной работы изделия в течение заданного нормативного срока его эксплуатации (указывается в техническом задании на разрабатываемое изделие).

Проверочный расчет в зависимости от поставленной задачи обычно выполняется в одном из двух вариантов: 1) определение предельно допустимых параметров (нагрузки, деформации, температуры нагрева и т.п.) в критической ситуации или 2) определение параметров, явившихся причиной разрушения детали, в процессе экспертизы аварий и катстроф. Проверочный расчет выполняется, исходя из условия

, (1.3)

где p – действующий параметр; p n – предельный параметр. Или же при проверочном расчете определяется действующий (фактический) коэффициент запаса по проверяемому параметру:

(1.4)

Для нормально работающей детали величина нормативного и фактического коэффициентов запаса обычно больше единицы, а фактический коэффициент запаса по величине больше нормативного.

В первой части лекции кратко очерчен круг вопросов, исследуемых прикладной научной дисциплиной «Детали машин», представлены объем, цели и задачи учебного курса « д

Во второй ее части определены основные элементы машин, изложены главные требования к ним и даны основные понятия и определения, касающиеся эксплуатационных качеств изделий (машин, механизмов и приборов).

Третья часть лекции раскрывает смысл и содержание понятия «проектирование». Здесь же представлены базовые положения расчета типовых изделий.

Материал настоящей лекции служит основой при изучении всех последующих разделов курса « д етали машин и основы конструирования».

Вопросы для самоконтроля:


  1. Каков круг вопросов, исследуемых научной дисциплиной «Детали машин»?

  2. Почему эту дисциплину называют прикладной научной дисциплиной?

  3. Что изучается в курсе «Детали машин и основы конструирования»?

  4. Что понимается в деталях машин под термином «машина», в чем ее назначение?

  5. Какие виды машин Вы можете назвать в зависимости от их функционального назначения?

  6. Какие элементы машин вы знаете?

  7. В чем разница между механизмом и прибором?

  8. Может ли быть агрегат механизмом или механизм агрегатом? В чем заключается разница между ними?

  9. Чем отличается сборочная единица от механизма и агрегата?

  10. Назовите основные отличительные особенности детали. Приведите примеры.

  11. Назовите основные отличительные особенности агрегата. Приведите примеры.

  12. Какие функции могут выполнять узлы и детали в машине?

  13. Какие основные требования, предъявляемые к элементам машин?

  14. Что понимается под термином «работоспособность»? Какими показателями она характеризуется?

  15. Какое событие нарушает работоспособность?

  16. Что понимается под термином «надежность»? Какими показателями она характеризуется?

  17. Что понимается под термином «проектирование изделия»?

  18. Наличие каких комплектов документации позволяет утверждать, что проектирование изделия выполнено полностью?

  19. Какие основные задачи решаются в процессе проектирования?

  20. Назовите главный вид расчета деталей, выполняемый в процессе проектирования?

  21. В чем разница между проектным и проверочным расчетом? Какие критерии используются при этих видах расчета?

Введение

Машина – устройство предназначенное для выполнения требуемой полезной работы, связанной с процессом производства или же с преобразованием энергии или информации.

Механизм - система подвижных соединений тел предназначенных для преобразования движения.

По характеру рабочего процесса и назначения машины делятся на четыре класса:

Первый класс - машины-двигатели, преобразующие виды энергии в механическую (ДВС, турбины и т.п.).

Второй класс - машины преобразователи, преобразующие механическую энергию, полученную от машины двигателя в другой вид (электромашина-генератор тока).

Третий класс – машины орудия (рабочие машины) для технологических процессов, связанных с изменением форм, свойств материалы

Четвертый класс - транспортирующие машины (автомобили, тракторы, конвейеры, подъемные краны и т.п.)

Отдельную группу составляют машины-автоматы, которые без участия человека выполняют все рабочие ми вспомогательные операции технологического процесса.

Машина состоит из деталей.

Деталь - такая часть машины, которую изготавливают без сборочных операций.

По назначению детали условно делятся:

Детали соединений (болты, винты, шестерни, звездочки, шкивы. Валы и муфты и т.п.)

Детали установочные сборочных единиц (картеры, корпуса и др.).

Узел представляет законченную сборочную единицу, состоящую из ряда деталей, имеющих общее функциональное назначение.

Сборочная единица - изделие, состоящее из нескольких деталей, соединенных между собой с помощью сборочных или монтажных операций и имеющих общее функциональное назначение (подшипник, редуктор и др.)

Изучение взаимодействия этих деталей, критериев их работоспособности, выбор материалов - основа курса «Детали машин».

Во второй части курса «Основы конструирования» изучаются рациональные принципы и приемы расчета и конструирования, как отдельных деталей, узлов так и машины в целом.


Конструирование это творческий процесс, в результате которого из различных бесполезных деталей получается полезная машина или механизм необходимый людям.

К какой же конструкции машины необходимо стремиться? В связи с этим интересны требования высказанные конструктором самолетов Яковлевым.

Машина должна соответствовать пяти принципам- быть полезной, прочной, простой, понятной, приятной. И в хорошей конструкции всегда можно найти в той или иной мере выражение отмеченных принципов. В самолете, Эйфелевой, телевизионной Останкинской башне можно обнаружить привлекательность пол форме, рациональность геометрических соотношений в сочетании с законами сопромата т.п.

Основные критерии работоспособности и расчета деталей машин – прочность, жесткость, износостойкость, коррозийная стойкость, теплостойкость, виброустойчивость.



Прочность способность детали сопротивляться разрушению или возникновению недопустимых пластических деформаций. Прочность бывает статическая и усталостная.

Жесткость – способность детали сохранять форму и размеры под нагрузкой.

Износостойкость – свойство материала оказывать сопротивление изнашиванию.

Изнашивание – процесс постепенного изменения размеров детали в результате трения.

Коррозионная стойкость – способность сопротивляться влиянию коррозии.

Коррозия – процесс постоянного разрушения поверхностных слоев материала в результате окисления.

Теплостойкость – способность детали работать в диапазоне заданных температур в течение заданного срока службы.

Виброустойчивость – способность детали не разрушаться при работе в определенном диапазоне вибрации.

Кроме того конструкция деталей должна допускать изготовление их из недорогих материалов, отвечать принципам унификации и взаимозаменяемости.

Все основные требования в конечном счете можно свести к двум требования_ машина должна быть надежной и экономичной.

Под надежностью понимают свойство деталей машины выполнять функции сохраняя свои эксплутационные характеристики во времени. Различают три периода от которых зависит надежность: конструирование, изготовление, эксплуатация машины.

Недостаточно продуманная на этапе проектирования конструкция не может быть надежной при её использовании.

Не обеспечение при изготовлении машины требований конструктора приведет к снижению надежности машины.

Можно хорошо сконструированную и хорошо изготовленную машину сделать малонадежной если не соблюдать заложенные конструктором требования по правилам эксплуатации, обслуживанию и т.п.

Надежность включает понятия:

Безотказность;

Ремонтопригодность;

Долговечность.

Безотказность- свойство машины сохранять работоспособность в течении определенного времени. Основным показателем является –вероятность безотказной работы. Количественная оценка базируется на статистических данных, которые собираются в период экспериментальной отработки и эксплуатации машины. Вероятность всегда меньше единицы. В соответствии с положениями теории о вероятности проявления нескольких независимых событий надежность сложного изделия равна произведению надежности отдельных элементов. Из этого можно сделать вывод:

Надежность сложной машины всегда будет меньше надежности самой надежной детали входящей в конструкцию машины;

Чем больше деталей, тем меньше надежность.

Так, если машина состоит из 100 сборочных единиц, надежность каждой из которых составляет 0,99 , то надежность машины F(t)= 0,99 100

Отказом, в общем виде, это нарушение работоспособности машины. Отказы следует отличать от неисправности, когда не обеспечивается хотя бы один показатель машины, но сохраняется её основная функция (автомобиль гремит, но везет). При этом необходимо иметь ввиду, что редкие отказы машины еще не показатель высокой надежности, так как в конечном виде не страшен сам отказ, а страшны его последствия (Чернобыль, падение самолета и т.п.)

В теории надежности используются в связи с отказами два понятия: функциональная и параметрическая надежность.

Функциональная - это когда машина продолжает выполнять свои основные функции (спущенное колесо, пробит бензобак и т.п.)

Параметрическая – когда в результате отказа машина не выполняет определенных параметров, которые необходимы для её полноценного функционирования.

Ремонтопригодность - характеризуется вероятностью восстановления работоспособности машины в заданное время и средним временем восстановления.

Чаще всего не страшен сам по себе отказ, как важно его быстрое устранение.

Требование повышения ремонтопригодности машины диктуется в любой отрасли промышленности, но в некоторых стоит на первом месте, потому что задержка в устранении отказа ведет к потере качества, а иногда и к аварии.

T p = T 1 + T 2 ,

T 1 -время поиска отказа; T 2 -время устранения отказа.

Для практики важно уменьшение обеих составляющих. Но часто время восстановления занимает в несколько десятков раз меньше, чем поиск, для которого требуется высокая квалификация и приборы. Для сокращения времени поиска необходимы схемы поиска неисправности, диагностики.

Сокращение времени восстановления достигается блочным ремонтом, резервированием, взаимозаменяемостью и т.п.

Долговечность-свойство машины сохранять работоспособность до наступления предельного состояния, т.е. состояния при котором дальнейшая эксплуатация невозможна. Количественно показателем надежности является ресурс или срок службы.

Обработка большой статистики надежности различных объектов выявили для всех систем единую качественную зависимость вероятности отказов от времени эксплуатации.

Выделяются три стадии рис.


Из рассмотренного выше можно сформулировать кратко требование к идеальной машине.

Машина должна в целом быть равнопрочной, равнонадежной, иметь ресурс, совпадающий с моральным ресурсом, когда машину не экономично ремонтировать и восстанавливать, а дешевле отправить в металлолом.

Блок 1. Соединения деталей

Детали, составляющие машину, связаны между собой тем или иным способом. Эти связи можно разделить на подвижные (шарниры, подшипники, зацепления) и неподвижные (резьбовые, сварные, шпоночные). Неподвижные связи в технике называют соединениями.

По признаку разъемности все виды соединений можно разделить на разъемные и неразъемные. Разъемные соединения позволяют разъединять детали без их повреждения. К ним относятся резьбовые, штифтовые, клеммовые, шпоночные, шлицевые и профильные соединения. Неразъемные соединения не позволяют разъединить детали без их повреждения. Применение неразъемных соединений обусловлено технологическими и экономическими требованиями. К этой группе соединений относятся заклепочные, сварные и соединения с натягом.

Основным критерием работоспособности и расчета соединений является прочность. Необходимо стремиться к тому, чтобы соединение было равнопрочным и с соединяемыми деталями.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Московский государственный университет

путей сообщения (МИИТ)

МЕХАНИЧЕСКИЙ ПРИВОД

Курсовой проект по дисциплине

«Детали машин и основы конструирования»

Пояснительная записка

СТ. КПДМ. 008 П3

Руководитель Гвоздев В. Д. / /

Исполнитель

студент гр. ТДМ-311 Кузьмина В.Ф. / /

Введение

1. Техническая характеристика привода

2. Кинематический и силовой расчеты привода

3. Описание конструкции редуктора

4. Расчет клиноременной передачи

5. Расчет зубчатых колес

6. Проектный расчет цилиндрической шевронной передачи

7. Проверочный расчет шевронной зубчатой передачи

8. Конструкция и проектный расчет валов

9. Конструкция и расчет размеров зубчатых колес

10. Выбор смазочных материалов

11. Конструирование и расчет размеров корпуса редуктора

12. Проверочный расчет валов

13. Проверочный расчет подшипников качения

14. Конструирование подшипниковых узлов

15. Выбор муфт

16. Расчет на усталостную прочность

17. Расчет шпоночных соединений

Список литературы

Введение

привод редуктор конструирование зубчатый

Механический привод разрабатывается в соответствии со схемой, приведенной на рисунке 1.

Рисунок 1 - Схема привода: 1 - электродвигатель; 2 - ременная передача; 3 -цилиндрический редуктор; 4 - муфта; 5 - барабан

Механический привод работает по следующей схеме: вращающий момент с электродвигателя (1) через ременную передачу (2) передаётся на быстроходный вал редуктора (3). Редуктор понижает число оборотов и увеличивает вращающий момент, который через муфту (4) передается на исполнительный механизм (5). Редуктор состоит из одной ступени. Ступень выполнена в виде шевронной цилиндрической передачи.

Достоинством данной схемы привода являются малые обороты и большой момент на выходном валу редуктора.

Исходные данные для расчёта:

1. Синхронная частота вращения электродвигателя n сх = 1500 мин -1 ;

2. Частота вращения на выходе n б = 180 мин -1 ;

3. Вращающий момент на выходе T б = 312 Нм;

4. Срок службы привода L г = 4000 ч;

Переменный характер нагружения привода задан гистограммой, изображённой на рисунке 2.

Рисунок 2 -Гистограмма нагружения привода: Относительная нагрузка: k 1 =1 ; k 2 =0,8 ; k 3 =0,5 . Относительное время работы: l 1 =0,2 ; l 2 =0,6 ; l 3 =0,2 . Характер нагрузки: спокойная.

1. Техническая характеристика привода

1.1 Электродвигатель 4А132 S 4 ГОСТ 19523-81

Мощность Р ДВ = 7,5 кВт;

Частота вращения вала n ДВ = 1455 мин -1 ;

Величина скольжения S = 3% ;

Отношение пускового момента к номинальному;

Диаметр вала двигателя d = 38мм.

1.2 Муфта упругая втулочно-пальцевая 500-40- I 1 ГОСТ 21424-75

Номинальный вращающий момент: Т = 500 Н м;

Допускаемая частота вращения: n = 3800 мин -1 ;

Диаметр на вал электродвигателя: d 1 = 38 мм;

Диаметр на вал редуктора: d 2 = 40 мм;

Внешний диаметр муфты: D = 170 мм;

Рабочая длина на валу редуктора: l = 80 мм.

1.3 Одноступенчатый цилиндрический шевронный редуктор

КПД редуктора: з ред = 0,96;

Передаточное число редуктора: u р = 2,69

Частота вращения валов редуктора: n Б = 485 мин -1 , n Т = 180 мин -1

Вращающие моменты на валах: Т Б = 119,5 Н м, Т Т = 315,15 Н м;

Габариты редуктора:

Длина: 355 мм,

Ширина: 408 мм,

Высота: 260 мм.

1.4. Привод.

КПД привода: з пр = 0,89;

2. Кинематический и силовой расчёты привода

2.1 Определяем КПД привода

з пр = з р.п · з ред · з м з п (1)

з р.п = 0,95;

где з пр - КПД привода;

з р.п - КПД ременной передачи;

з ред - КПД редуктора;

з м - КПД соединительной муфты;

з п - КПД пары подшипников.

з пр = 0,95 · 0,97 · 0,98 0,99= 0,89.

Определяем КПД редуктора:

где з шп - КПД шевронной передачи

з n - КПД пары подшипников; з n = 0,99

2.2 Находим треб уемую мощность электродвигателя

2.3 Выбираем электродвигатель 4А132 S 4 ГОСТ 19523-81 , мощность которого

Р дв = 7,5 кВт

Величина скольжения

Частота вращения вала двигателя:

2.4 Вычисляем требуемое передаточное отношение привода

2.5 Производим разбивку передаточного отношения по ступеням привода

U ред == 2 ,69

2.6 В ычисляем частоты вращения валов

Вал двигателя: n дв =1455

Быстроходный вал редуктора:

Тихоходный вал:

2.7 Вычис ляем вращающие моменты на валах

Тихоходный вал редуктора:

Т тих =Т исп / з м = 312/0,99=315,15 Н м (9)

Быстроходный вал:

Т бх =(Т тих /U р)/ з р =(315/2,69)/(0,99 2)=119,5 Н м (10)

Вал двигателя:

Т дв =Т бх /(U р.п / з р.п)=119,5/(3/0,95)=37,93 Н м (11)

3 . Описание конструкции редуктора

Рисунок 3.- Конструкция редуктора.

Конструкцию редуктора составляет шевронная цилиндрическая передача.

В качестве опор быстроходного вала (13) используем подшипники роликовые радиальные с короткими цилиндрическими роликами легкой серии (34), так как они предназначены для восприятия радиальных и небольших осевых нагрузок; фиксируют положение вала относительно корпуса в двух осевых направлениях. Благодаря способности самоустанавливаться они допускают несоосность посадочных мест (перекосы) до 2 - 3є.

В качестве опоры тихоходного вала (8) принимаем подшипники радиальные легкой серии (33), так как они воспринимают радиальные и ограниченные осевые нагрузки, действующие в обоих направлениях вдоль оси вала. Подшипники допускают перекосы валов до 10"; по сравнению с подшипниками других типов имеют минимальные потери на трение; фиксируют положение вала относительно корпуса в двух направлениях, наиболее дешевые и распространенные на рынке.

Валы выполняем ступенчатыми, для удобства посадки на них деталей.

На тихоходном валу установлено шевронное колесо (7) . Шестерню выполняем за одно целое с валом, так как качество вала - шестерни (13) выше, а стоимость изготовления ниже, чем вала и насадной шестерни.

Подшипники закрепляются в корпусе (18) и крышками подшипниковых гнезд.

Наружные кольца подшипников быстроходного вала упираются в крышки подшипниковых гнезд быстроходного вала (11) и (13). В крышке (11) имеется отверстие для выхода хвостовика быстроходного вала и установлена резиновая армированная манжета (32) для предотвращения протекание масла через это отверстие.

Подшипниковые гнезда тихоходного вала закрываются крышками (10) и (5). В крышке (5) имеется отверстие для выхода хвостовика тихоходного вала и установлена резиновая армированная манжета (31) для предотвращения протекание масла через это отверстие.

Все крышки подшипниковых гнезд затягиваются винтами (20). Между крышками и корпусом установлены прокладки (4) и (9) для предотвращения протекания масла.

Корпус редуктора выполняем разъемным, состоящим из крышки и основания. Изготавливаем корпус литьем из серого чугуна СЧ 15.

Для установки редуктора на фундаментной плите или раме в основании корпуса (18) имеется четыре отверстия под фундаментные болты.

Для фиксации крышки и основания корпуса друг относительно друга, используется два конических штифта (30), устанавливаемых без зазора.

Для смазки зубчатых передач и подшипников редуктора используем масло И-30 А. Объем масла - 1,75 л.

Для заливки масла и осмотра редуктора, в крышке корпуса предусмотрено отверстие, закрываемое крышкой.

Для контроля уровня масла, в основании корпуса установлен жезловый маслоуказатель.

Для удаления масла и промывки редуктора в нижней части корпуса сделано отверстие, закрываемое пробкой с цилиндрической резьбой.

4 . Расчет клиноременной передачи

Определяем максимальный крутящий момент

Выбираем диаметр ведущего шкива из стандартного ряда: D 1 =135 мм

Определяем диаметр ведомого шкива.

D 1 =0,985 3,00 135=398,9 мм. (14)

Полученный результат округляем до стандартного значения.

Уточняем передаточные числа:

Следовательно, окончательно принимаем размеры шкивов полученных после округления.

Определяем межосевое расстояние

где h - высота ремня, мм

Длина ремня определится как

где - среднее значение.

Принимаем ближайшее стандартное значение l из ряда длин ремней. l = 1800 мм.

Корректируем межосевое расстояние

Определяем угол охвата малого шкива

Находим линейную скорость ремня

Определяем расчетную мощность передаваемую одним ремнем

где - мощность, передаваемая одним ремнем

0,91 - коэффициент угла обхвата

0,95 - коэффициент длины ремня

1,14 - коэффициент передаточного отношения ременной передачи

1,2 - коэффициент режима работы

Определяем требуемое число ремней в передаче

где =0,95 - коэффициент числа ремней

Принимаем z=4.

Рассчитываем силу предварительного натяжения одного ремня

Радиальная сила, действующая на выходной конец вала

Частота пробегов ремня

Конструкция шкивов и их размеры

Шкивы изготавливаем литыми из чугуна марки СЧ 15. Шкивы состоят из обода, на который надевают ремень, ступицы для установки шкива на вал. Шкив изготавливаем с диском, в котором предусматриваем отверстия круглой формы для уменьшения массы и удобства крепления шкива на станке при его механической обработке.

Ширина шкива

где z - число ремней.

Толщина обода (28)

Принимаем

Толщина диска (29)

Принимаем С=18 мм.

Диаметр ступиц (30)

Длина ступиц (31)

Принимаем

Диаметр выступов шкива (32)

5 . Расчёт зубчатых передач

5 .1 Выбор материалов

Принимаем для изготовления среднеуглеродистую конструкционную сталь с термообработкой нормализация или улучшение, что позволяет производить чистовое нарезание зубьев с высокой точностью после термообработки.

Такие колеса хорошо прирабатываются и не подвержены хрупкому разрушению при динамических нагрузках. Такой тип колес наиболее приемлем в условиях индивидуального и мелкосерийного производства.

Шестерня - сталь 45, термообработка - улучшение;

(192…240) НВ,НВ=230

Колесо - сталь 45, термообработка - нормализация;

(170…217)НВ,НВ=200

5 .2 Вычисление базового значения предела выносливости

а) для контактных напряжений

Для термообработки улучшение и нормализация

у н limb=2·HB+70 (33)

Для шестерни:

у н limb 1 = 2·230 + 70 = 530 МПа.

Для колеса:

у н limb 2 = 2·200 + 70 = 470 МПа

б) для напряжений изгиба

у 0 F limb= 1,8 НВ; (34)

у 0 F limb1= 1,8 · 230 = 414 МПа;

у 0 F limb2= 1,8 · 200 = 360 МПа.

5 .3 О пределение базового числа циклов переменных напряжений

N H 0 =30HBср 2,4 (35)

N HO 1 =30 216 2,4 =1,201 10 7 МПа

N HO 2 =30 194 2,4 =0,92 10 7 МПа

5 .4 Определение фактического числа циклов перемены напряжений

По контактным напряжениям:

по напряжениям изгиба:

где m - показатель степени кривой усталости. При твёрдости меньше 350НВ m = 6.

N FE 2 =N FE 1 =4,19 10 7

5 .5 Вычисление коэффициент а долговечности

по контактным напряжениям.

Для шестерни:

Так как N НЕ1 > N Н01 , то принимаем K HL 1 =1;

Для колеса:

Так как N НЕ2 > N Н02 , то принимаем K HL 2 =1.

по напряжениям изгиба.

Так как N FE 1 > 4 10 6 и N FE 2 > 4 10 6 , то принимаем K FL 1 =1 и K FL 2 =1.

5 .6 . Определение допускаемых контактных напряжений

Коэффициент запаса.

При термообработке нормализация и улучшение принимаем

Для шевронных передач

Так как, то принимаем МПа.

5 .7 Определение допускаемых напряжений изгиба

где - коэффициент, зависящий от вероятности безотказной работы. Принимаем = 1,75

Коэффициент, зависящий от способа изготовления заготовки, Для штамповки = 1,0

6 . Проектный расчет цилиндрической шевронной передачи

6 .1 Определение межосевого расстояния из условия обеспе чения контактной прочности зуба

Предварительно принимаем К Н = 1,2

Ш ba -ширина зубчатого венца;

Принимаем для прямозубой передачи Ш ba = 0,5

Принимаем ближайшее стандартное значение а W ГОСТ =125 мм

6 .2 Определение модуля зацепления

m n =(0,01…0,02)·а W =(0,01…0,02)·125=1,25…2,5 мм

принимаем m n =2,5 мм .

6 . 3 Определение основных параметров зубчатых колес

Назначаем угол наклона зубьев в = 30є

Определяем число зубьев шестерни и колеса б w

6 .4 Рассчитываем геометри ческие параметры зубчатых колес

Уточняем угол наклона зубьев:

Диаметры делительных окружностей:

Диаметры окружностей вершин:

d а1 =d 1 +2 m n = +2 2,5=73,965 мм (48)

d а2 =d 2 +2 m n = +2 2,5=186,034 мм (49)

Диаметры окружностей впадин:

d f 1 = d 1 - 2,5·m n = - 2,5·2,5 = 62,715 мм; (50)

d f 2 = d 2 - 2,5·m n = - 2,5·2,5 = 174,784 мм; (51)

Ширина зубчатого венца:

b 2 = Ш ba б w =0,5 125=63 мм (52)

b 1 =b 2 +5=63+5=68 мм (53)

6 .5 Вычисление окружной скорости в зацеплении

Назначаем 9 степень точности зубчатых колес по ГОСТ 1643-81

6 .6 Оп ределение коэффициента нагрузки

K H =K Hв ·K Hб ·K HV =1,04 1,1 1=1,144 ; (55)

где K Hб - коэффициент неравномерности нагрузки между зубьями;

K Hб =1,1

K HV - коэффициент динамической нагрузки,

K HV =1

К Hв =1,04

7 . Проверочный расчет шевронной зубчатой передачи

7 .1 Вычисляем фактические контактные напряжения

Принимаем b 2 = 70 мм, b 1 =75 мм; тогда у Н = 431 Мпа,

и уточняем Ш bd = b 2 /d 1 = 70/ = 1,01 .

7 .2 Определение коэффициент а нагрузки

Для отношения Ш bd = b 2 /d 1 = 70/ = 1,01 , при симметричном расположении колес относительно опор, К Н в = 1,04

7 . 3 Проверка зубьев на выносливость по напряжени ям изгиба

Для отношения Ш bd = b 2 /d 1 = 70/ = 1,01 , при симметричном расположении колес относительно опор, К Fв =1,10;

Принимаем К Fх = 1,1

Уточняем коэффициент нагрузки:

К F = К Fв · К Fх = 1,1· 1,1 = 1,21 ; (58)

Вычисляем коэффициент торцового перекрытия е б:

Определение коэффициента, учитывающего многопарность зацепления:

Определение коэффициента, учитывающего наклон контактной линии:

Определение эквивалентного числа зубьев:

Y F - коэффициент, учитывающий форму зуба;

Y F 1 = 3,70

Y F 2 = 3,6

Вычисление напряжения изгиба:

МПа < [у] F 1 ;

МПа < [у] F 2 ;

7 .4 Выполнение проверочного расчет а на статическую п рочность от действия перегрузок

Определение коэффициента перегрузки:

Определение контактного напряжения:

у Hmax = у H · = 431· = 649 МПа; (66)

Определение изгибных напряжений:

у Fmax 1 = у F 1 · К max = 49 · 2,27 = 111,3 МПа; (67)

у Fmax 2 = у F 2 · К max = 51 · 2,27 = 115,8 МПа. (68)

Для термообработки улучшение и нормализация:

[у] Hmax = 2,8 · у Т (69)

[у] Fmax = 0,8 · у Т (70)

где у Т - предел текучести материала.

Для колеса у Т = 340 МПа;

[у] H 2 max = 2,8 · 340 = 952 МПа > у Hmax ;

[у] F 2 max = 0,8 · 340 = 272 МПа > у F 2 max ;

Условие статической прочности выполняется.

8 . Конструкция и проектный расчет валов

Валы изготавливаем из стали 45. Назначаем термообработку улучшение.

8 .1 Расчет быстроходного вала

Для выполнения быстроходного вала принимаем ступенчатую конструкцию. Такой выбор облегчает установку подшипников и уплотнения на валу. Для уменьшения концентрации напряжений и облегчения изготовления вала, на переходных участках выполняем галтели, радиусом r = 1 мм. На концах вала выполняем фаску С =2,5 мм.

Конструкция быстроходного вала показана на рисунке 4.

Рисунок 4. - Быстроходный вал.

Определяем значение диаметра хвостовика быстроходного вала.

Полученный результат округляем до ближайшего большего значения из стандартного ряда. Принимаем d хв1 = 32 мм.

Принимаем длину хвостовика l хв = 80 мм.

Для соединения вала со шкивом ременной передачи используем шпоночное соединение.

Выбираем шпонку 10x8x70 ГОСТ 23360-78.

где h ш - высота шпонки

Принимаем t 1 =5 мм и h ш =8 мм.

d y 1 ?32 + (8 - 5) =35 мм. (73)

Принимаем d y 1 =35 мм под стандартное уплотнение.

Принимаем значение диаметра вала под подшипник d n 1 =35 мм. Примем роликовые радиальные с короткими цилиндрическими роликами легкой серии №2207 ГОСТ 8328-75.

Определяем диаметр вала под шестерню.

Из условия того, что подшипник упирается в заплечик вала, принимаем диаметр вала под шестерню больше d n 1 .

d ш1 = d n + 2·f + 2 = 35 + 2·2 + 2 = 41 мм, (74)

где f = 2 - размер фаски на внутреннем кольце роликоподшипника серии № 2207 ГОСТ 8328-75.

Для уменьшения количества точно обрабатываемых поверхностей, повышения жесткости шестерню выполняем вместе с валом

Выполняем фаску на шестерне n = 0,6 мм.

§ Диаметр хвостовика: n6.

§ Диаметр под подшипник: k6.

§ Хвостовика: Rа = 0,8 мкм.

§ Торцов заплечика вала, в которые упираются подшипники:

Rа = 2,5 мкм.

§ Шпоночного паза: Rа = 3,2 мкм.

§ Канавки, фаски,радиусы галтелей на валах: Rа = 6,3 мкм.

· Допуск перпендикулярности торца вала, чтобы уменьшить перекос колец подшипников и искажение геометрической формы дорожки качения внутреннего кольца подшипника: 0, 012

· Допуск цилиндричности посадочных поверхностей под подшипник, чтобы ограничить концентрацию давлений: 0,008

· Допуск соосности посадочной поверхности для шкива, чтобы снизить дисбаланс вала и деталей, установленных на этой поверхности:0,030

8 .2 Расчет тихоходного вала

Для выполнения тихоходного вала принимаем также ступенчатую конструкцию. Установку колеса на вал производим механической сборкой. Для уменьшения концентрации напряжений и облегчения изготовления вала, на переходных участках выполняем галтели, радиусом r = 1 мм. На концах вала выполняем фаску С =2,5 мм.

Конструкция тихоходного вала показана на рисунке 5.

Рисунок 5.- Тихоходный вал.

Определяем значение диаметра хвостовика тихоходного вала.

Принимаем d хв2 = 40 мм, согласно выбранной муфте.

Принимаем длину хвостовика l хв = 82 мм, равной длине посадочной поверхности муфты.

Для передачи вращения от хвостовика вала к муфте используем шпоночное соединение.

Длину шпонки принимаем на 10 мм меньше длины хвостовика вала.

Выбираем шпонку 12x8x70 ГОСТ 23360-78.

Находим значение диаметра вала под уплотнение.

где h ш - высота шпонки

t 1 - глубина шпоночного паза на хвостовике.

Принимаем t 1 =5 мм и h ш =12 мм.

d y 2 ?40 + (12 - 5) = 47 мм. (77)

Принимаем d y 2 =48 мм под стандартное уплотнение.

Принимаем значение диаметра вала под подшипник d n 2 =50 мм.Принимаем шарикоподшипники легкой серии № 210 ГОСТ 8338-75

Принимаем диаметр вала под колесо. Из условия того, что подшипник упирается в заплечик вала, принимаем диаметр вала под шестерню больше d n 2 .

d к2 = d n 2 + 2·f + 2 = 50 + 2·2 + 2 = 56 мм, (78)

где f = 2,5 - размер фаски на внутреннем кольце радиального шарикоподшипника № 210 ГОСТ 8338-75.

Полученный результат округляем до ближайшего большего значения из стандартного ряда. d к2 = 56 мм.

Для передачи вращения от зубчатого колеса к валу, используем шпоночное соединение.

Выбираем шпонку 16x10x90 ГОСТ 23360-78.

Определяем параметры шпоночного паза на диаметре вала под колесо.

t 1 = 6,0 мм - глубина шпоночного паза,

b = 16 мм - ширина шпоночного паза.

Определяем значение диаметра заплечика вала.

Из условия, что зубчатое колесо упирается в заплечик вала, выполняем диаметр заплечика вала больше диаметра вала под колесо.

d З2 = d к32 + 2 · f +2 = 56 + 2 · 2 + 2 = 63 мм, (79)

где f = 2 мм - фаска на зубчатом колесе.

Для выхода шлифовального круга изготавливаем канавку

d k = d n 2 -1=50-1=49 мм (80)

§ Диаметр хвостовика: n6.

§ Диаметр под уплотнение: d11.

§ Диаметр под подшипник: k6.

§ Диаметр под зубчатое колесо: p6.

§ Под зубчатое колесо: Rа = 0,8 мкм.

§ Хвостовика: Rа = 0,8 мкм.

§ Под подшипники: Rа = 1,25 мкм.

§ Под уплотнение: Rа = 0,32 мкм.

§ Торца заплечика вала, в который упирается зубчатое колесо:

Rа = 3,2 мкм.

§ Торца заплечика вала, в который упирается левый подшипник:

Rа = 1,6 мкм.

§ Шпоночных пазов: Rа = 3,2 мкм.

§ Канавки, фаски, радиусы галтелей: Rа = 6,3 мкм.

· Допуск перпендикулярности торца вала в месте установки подшипника, чтобы уменьшить перекос колец подшипников и искажение геометрической формы дорожки качения внутреннего кольца подшипника: 0, 025 мм.

· Допуск цилиндричности посадочной поверхности вала в месте установки на него зубчатого колеса, чтобы ограничить концентрацию давлений:0,010 мм.

· Допуск цилиндричности посадочных поверхностей под подшипник, чтобы ограничить концентрацию давлений: 0,005 мм.

· Допуск соосности посадочной поверхности для полумуфты, чтобы снизить дисбаланс вала и деталей, установленных на этой поверхности:0,041 мм.

· Допуск соосности посадочной поверхности под подшипник, чтобы ограничить перекос колец подшипников качения:

· Допуск симметричности шпоночного паза для обеспечения возможности сборки вала с устанавливаемой на нем деталью и равномерного контакте поверхностей шпонки и вала: 0,008мм.

· Допуск параллельности шпоночного паза: 0,002 мм.

9 . Конструирование и расчет размеров зубчатых колес

9.1 Конструирование шеврон ного колеса

Шестерню выполняем за одно целое с валом, так как качество вала шестерни оказывается выше, а стоимость изготовления ниже, чем вала и насадной шестерни.

d а1 = 73,965 мм,

d f 1 =62,715 мм,

l ст = b 2 +a= 75+38 = 113 мм, (81)

h=2,5m=2,5 2,5=6,25 мм. (82)

9 .2 Конструирование шевронного колеса тихоходного вала

Косозубое колесо изготавливаем свободной ковкой, с последующей токарной обработкой. Для упрощения этих технологических операций выполняем колесо в виде цельного диска.

Устанавливаем колесо на валу посадкой с натягом (H7/p6).

Поверхность под сопряжение с валом подвергаем шлифованию.

Для удобства монтажа шевронного колеса на вал выполняем фаску f = 2,5 мм. На вершинах зубьев принимаем фаску n = 1,25 мм. Ширину канавки определяем в зависимости от модуля m. Принимаем а=38 мм.

Конструкция шевронного колеса показана на рисунке 6.

Выполняем шевронное колесо с симметричной ступицей. Такое технологическое решение придает большую устойчивость колеса на валу и увеличивает жесткость самого вала.

Определяем диаметр ступицы d ст = 1,6·d в =1,6· 56 = 89,6 мм; (83)

Определяем длину ступицы l ст = b 2 +a= 70+38 = 108 мм;

Принимаем l ст = 108 мм;

Определяем толщину диска C=(0,3…0,35)(b 2 +a)=32,4…37,8. (84)

Принимаем С=33мм.

Определяем ширину торцов зубчатого венца: S=2,2m+0,05(b 2 +a)=5,5+5,4=9,9 мм. (85)

Рисунок 6. - Зубчатое колесо: d= мм, d а =186,034 мм, d f =174,784 мм;

§ Диаметр на вал: H7.

§ Диаметр окружности вершин: h9.

§ Ширина шпоночного паза: JS9.

§ Торцов шпоночного паза: Rа = 1,6 мкм.

§ Нерабочей поверхности шпоночного паза: : Rа = 3,2 мкм.

§ Посадочного отверстия: Rа = 1,6 мкм.

§ Торцовой поверхности колеса: Rа = 3,2 мкм.

§ Рабочих поверхностей зубьев: Rа= 1,25 мкм.

§ Свободные торцовые поверхности зубчатого колеса: Rа = 6,3 мкм.

· Допуск цилиндричности посадочного отверстия, чтобы ограничить концентрацию контактных напряжений: 0,015 мм.

· Допуск перпендикулярности торцовой поверхности колеса относительно оси вращения: 0,030 мм.

· Допуск симметричности шпоночного паза для обеспечения возможности сборки вала с устанавливаемой на нем деталью и равномерного контакте поверхностей шпонки и вала: 0,040мм.

· Допуск параллельности шпоночного паза: 0,010 мм.

10. Выбор смазочных материалов

Для смазывания деталей редуктора, применяем картерную смазку, которая осуществляется путём окунания зубчатых колёс в масло. Уровень масла устанавливаем так, чтобы косозубое колесо окуналось в него на высоту зуба.

При окружной скорости колеса тихоходной ступени v = 1,75 м/с, контактных напряжениях у Н = 431 МПа и рабочей температуре

Согласно , при заданной вязкости масла, выбираем его марку:

Определяем уровень масла:

h = (2 ? m … 0,25 ? d 2 T) = (2 ? 2,5 … 0,25 ? 181,034) = 5…45,25 мм; (86)

Принимаем h = 50 мм, для обеспечения окунания зуба косозубого колеса в масло.

Рассчитываем объем масляной ванны редуктора:

V = 0,6 P дв = 0,6 7,5 = 4,5 л. (87)

Для обеспечения окунания зуба косозубого колеса в масло при габаритных размерах картера:

Длина: 280мм,

Ширина: 125 мм,

и уровне масла h = 50 мм, принимаем объем масла V =1,75 л.

Во избежание утечки масла из редуктора на быстроходном и тихоходном валах со стороны хвостовиков устанавливаем резиновые армированные манжеты по ГОСТ 8752-79.

Для заливки масла в редуктор, контроля правильности зацепления и для внешнего осмотра деталей выполняем в крышке корпуса смотровое окно, закрываемое крышкой из стального листа. Определим толщину крышки: д к =(0,5…0,6) д=(0,5…0,6) 8=4…4,8 мм. Принимаем д к =4 мм. Для того, чтобы внутрь корпуса извне не засасывалась пыль под крышку ставим уплотняющую прокладку из прокладочного картона марки А толщиной 1 мм. В крышке отверстия располагаем пробковую отдушину.

Габаритные размеры крышки смотрового окна:

Длина A 1 = 110 мм,

Ширина В 1 = 100мм.

Габаритные размеры смотрового окна:

Длина А = 80 мм,

Ширина В = 70 мм.

Для закрепления крышки используем 4 болта М6х22. .

В боковой части корпуса выполняем отверстие под пробку для слива масла и промывки редуктора. Параметры пробки принимаем согласно :

d = М16х1,5; D = 26 мм; L = 25 мм; l = 19,6 мм; а = 3 мм.

Контроль за уровнем масла в картере осуществляется жезловым маслоуказателем, который вкручивается в крышку корпуса редуктора. Маслоуказатель имеет резьбу М16.

Для предотвращения протекания масла, плоскость разъёма основания и крышки корпуса смазываем спиртовым лаком.

11. Конструирование и расчет размеров корпуса редуктора

Корпус редуктора выполняем разъёмным, состоящим из основания и крышки. Плоскость разъёма проходит через оси валов.

Изготавливаем корпус литьем, из чугуна СЧ 15.

Основание и крышка закрепляются между собой болтами по фланцу для обеспечения герметичности. Для предотвращения протекания масла плоскость разъёма смазываем спиртовым лаком.

Для заливки масла и осмотра редуктора в крышке корпуса выполняем смотровое отверстие, закрываемое крышкой. Для удаления загрязнённого масла и промывки редуктора в нижней части корпуса выполняем сливное отверстие, закрываемое пробкой.

Для подъема и транспортирования крышки корпуса и редуктора в сборе применим проушины. Для крепления корпуса редуктора к раме в нижней части основания выполняем фланец с цилиндрическими отверстиями под крепёжные болты. Для фиксации при сборке крышки относительно основания выполняем два конических штифта, размеры которых определяем согласно :

Длина 26 мм,

Диаметр 8 мм,

Конусность 1:50.

Расчет размеров корпуса редуктора.

Толщина стенки крышки и корпуса:

д =0,025 а W +1=0,025 125+1=4,125 мм, (88)

д 1 =0,02 а W +1=0,02 125+1=3,50 (89)

Принимаем толщину стенки корпуса и крышки д = 8 мм.

Определяем толщину фланца крышки и верхнего фланца основания:

b = 1,5 д =1,5 8 = 12 мм; (90)

Определяем толщину нижнего фланца основания:

p = (2,25 ч 2,75) д = (2,25 ч 2,75) 8 = 18 ч 22 мм; (91)

Принимаем p = 20 мм.

Для увеличения жесткости корпуса, под бобышками отливаем ребра жесткости. Толщина ребер основания корпуса: m=(0,85ч1) д=6,8ч8 мм. (92)

Принимаем 8 мм.

Толщина ребер крышки: m 1 =(0,85ч1) д 1 =6,8ч8 мм. (93)

Принимаем 8 мм.

Диаметр фундаментных болтов.

d 1 = (0,03ч 0,036) · a w + 12 = (0,03ч 0,036) · 125 + 12 = 15,75 ч 16,5 мм. (94)

Принимаем d 1 = 16 мм.

Диаметр болтов у подшипников.

d 2 = (0,7 ч 0,75)·d 1 = (0,7 ч 0,75)·16 = 11,2 ч 12 мм, (95)

Принимаем d 2 = 12 мм.

Диаметр болтов на фланцах.

d 3 = (0,5 ч 0,6)·d 1 = (0,5 ч 0,6)·20 = 10 ч 12 мм, (96)

Принимаем d 3 = 10 мм.

Принимаем минимальный зазор между наружной поверхностью колеса и внутренней стенкой корпуса А = 8 мм.

12 . Проверочный расчет валов

Быстроходный вал

Силы, действующие в зацеплении = Н, = Н, ==982,5 Н. Нагрузка на вал от клиноременной передачи F в =1144 Н. В цилиндрической шевронной передаче силы, действующие на каждую половину шеврона, уравновешиваются.

Реакции опор:

в плоскости xz

в плоскости yz

=0; - F в + + - R y2

R y 2 = - F в + + =1115-1144+1450=1421 Н.

xoz :

2 участок. 0z 37

При z=37, =1733 37=64,1 10 3 Н мм;

3 участок. 37z 111

При z=37, =64,1 10 3 Н мм;

При z=111, =173364,1 10 3 Н мм;

4 участок. 037

При z " =0, =0;

При z " =37, =1733 37=64,1 10 3 Н мм;

Строим эпюры изгибающих моментов в плоскости yoz :

1 участок. 0z 90

F в z ,

При z=90, = - 1144 90= - 103 10 3 Н мм;

2 участок. 90z 127

При z=90, = - 1144 90= - 103 10 3 Н мм,

При z=127, = - 1144 127+1115 37= - 104 10 3 Н мм;

3 участок. 127z 201

При z=127, = - 1144 127+1115 37 - 982,5 = - 137,9 10 3 Н мм;

При z=201, = - 1144 201+1115 111+725 74 - 982,5 = - 86,4 10 3 Н мм;

4 участок. 0z ? 37

При z " =0, =0,

При z " =37, = - 1421 37= -52,5 10 3 Н мм.

Рисунок 7. - Расчетная схема ведущего вала

Тихоходный вал

Силы, действующие в зацеплении F r =1450 Н, F t =3466 Н, нагрузка на вал от муфты F м =125=125=2219 Н.

Реакции опор:

в плоскости xz :

в плоскости yz :

Строим эпюры изгибающих моментов в плоскости xoz :

1 участок. 0z 75.

При z=75, 10 3 Н мм;

2 участок. 75z 150

При z=75, 10 3 Н мм;

При z=150, 10 3 Н мм;

3 участок. 0z ? 130.

При z " =130, = 10 3 Н мм;

Строим эпюры изгибающих моментов в плоскости yoz :

1участок. 0z 75.

При z=75, 10 3 Н мм;

2 участок. 0z ? 75

Рисунок 8. - Расчетная схема ведомого вала

13 . Проверо чный расчет подшипников качения

Назначаем предварительно для быстроходного вала редуктора -подшипники роликовые радиальные с короткими цилиндрическими роликами легкой серии 2207 ГОСТ 8328-75, для тихоходного вала - шариковые радиальные однорядные легкой серии №210 ГОСТ 8338-75.

Расчёт подшипников качения быстроходного вала.

Подшипник роликовый радиальный с короткими цилиндрическими роликами 2207 ГОСТ 8328-75.

С 0 = 17600 Н;

Суммарные реакции:

= =2061 Н, (97)

= 2241 Н. (98)

Подбираем подшипник по более нагруженной опоре «2» т.к. , то X=1, Y=0.

K н (99)

где V=1 - коэффициент вращения, зависящий от того, какое кольцо подшипника вращается (при вращении внутреннего кольца V=1)

Коэффициент, учитывающий вид работы

K т =1 - температурный коэффициент

К н - коэффициент нагрузки.

Тогда =K н =1 1 2241 1,5 1 0,81=2723 Н

Где р - показатель степени, для роликоподшипников p=10/3

Расчет подшипников качения тихоходного вала

Подшипники шариковые радиальные однорядные легкой серии №210 ГОСТ 8338-75

С 0 = 19800 Н;

Суммарные реакции:

= Н.

Подбираем подшипник по более нагруженной опоре «3» т.к. , то X=1, Y=0.

K н

где V=1, K т =1, К н - коэффициент нагрузки.

=K н =1 1 3727 1,5 1 0,81=4528,3 Н

Условия подбора выполняются. L h =4000 ч.

14 . Конструирование подшипниковых узлов

В качестве опоры быстроходного вала принимаем подшипники роликовые радиальные с короткими цилиндрическими роликами легкой серии №2207 ГОСТ 8328-75. . Они предназначены для восприятия радиальных и небольших осевых нагрузок; фиксируют положение вала относительно корпуса в двух осевых направлениях. Благодаря способности самоустанавливаться они допускают несоосность посадочных мест (перекосы) до 2 - 3є.

В качестве опоры тихоходного вала принимаем подшипники радиальные легкой серии №210 ГОСТ 8338-75. .Они воспринимают радиальные и ограниченные осевые нагрузки, действующие в обоих направлениях вдоль оси вала. Подшипники допускают перекосы валов до 10"; по сравнению с подшипниками других типов имеют минимальные потери на трение; фиксируют положение вала относительно корпуса в двух направлениях.

На быстроходном валу устанавливаем подшипники 2207 ГОСТ 8328-75:

· диаметр установки на вал d п = 35 мм;

· диаметр установки в корпус D = 72 мм;

· ширина В = 17 мм;

· размер фасок r = 2 мм;

· грузоподъемность динамическая С = 31,9 кН;

· грузоподъемность статическая С 0 = 17,6 кН.

На тихоходном валу устанавливаем подшипники 210 ГОСТ 8338-75:

· диаметр установки на вал d п = 50 мм;

· диаметр установки в корпус D = 90 мм;

· ширина В = 20 мм;

· размер фасок r = 2 мм;

· грузоподъемность динамическая С = 35,1 кН;

· грузоподъемность статическая С 0 = 19,8 кН.

Подшипники устанавливаем на валы посадкой с натягом. Принимаем поле допуска для валов - k6. Установку подшипников в корпус осуществляем посадкой с зазором, с полем допуска отверстия корпуса - Н7.

Во избежание попадания в подшипник продуктов износа передач, а также излишнего полива маслом подшипники защитим маслозащитными кольцами.

Подшипники закрываем крышками глухими и сквозными, через которые проходят концы валов из чугуна СЧ 15. Крышки выполняем привертными. Со стороны хвостовиков быстроходного и тихоходного валов устанавливаем сквозные крышки с резиновыми армированными манжетами для уплотнения. Остальные крышки выполняем глухими. Фланец крышки выполняем круглой формы.

Принимаем:

· толщину крышек д = 6 мм;

· размер фаски с = 2 мм;

· крепежные болты М8х25;

· число болтов z = 4;

· диаметр крышки:

Быстроходного вала D = 110 мм;

Тихоходного вала D = 130 мм.

Болтовые соединения уплотняем прокладками из маслостойкой резины.

1 5 . Выбор муфт

Для соединения тихоходного вала редуктора с валом рабочего органа используется муфта. Размер муфты выбираем по диаметру вала и расчётному вращающему моменту.

Согласно :

Т Р = к · Т НОМ = 1,5 · 315,15 = 472 Н·м. (101)

Принимаем для соединения валов муфту упругую втулочно-пальцевую 500-40-I2 ГОСТ 21424 - 75.

Номинальный вращающий момент: Т = 500 Н·м,

Диаметр на вал редуктора: d 2 = 40 мм,

Внешний диаметр муфты: D = 170 мм,

Рабочая длина на валу редуктора: l = 82 мм,

Допускаемая частота вращения n=3600 мин -1 ,

Радиальное смещение - 0,3 мм,

Угловое смещение - 1?.

16 . Расчет валов на усталостную прочность

Определяем расчетные коэффициенты запаса прочности при расчёте на выносливость согласно :

Где S у - запас прочности по нормальным напряжениям;

S ф - запас прочности по касательным напряжениям;

[S] - необходимый запас прочности вала при совместном действии нормальных и касательных напряжений.

Принимаем [S] = 2,5.

где у -1 - предел выносливости вала из углеродистой стали при симметричном цикле перемены нормальных напряжений;

К у - эффективный коэффициент концентрации нормальных напряжений;

е у - масштабный коэффициент для нормальных напряжений;

в - коэффициент учёта влияния шероховатости поверхности.

Принимаем в=0 ,95 .

Ш у - коэффициент, учитывающий влияние асимметрии цикла.

Принимаем Ш у = 0,15. .

у m - среднее значение напряжения цикла перемены нормальных напряжений; у m =0, так как F a =0.

у v - амплитуда цикла перемены нормальных напряжений, равная наибольшему напряжению изгиба в рассматриваемом сечении.

где ф -1 - предел выносливости вала из углеродистой стали при симметричном цикле перемены касательных напряжений;

К ф - коэффициент концентрации напряжений при кручении

Ш ф - коэффициент, учитывающий влияние асимметрии цикла.

Принимаем Ш ф = 0,1.

ф m и ф v - среднее и амплитудное значения напряжения цикла перемены касательных напряжений;

W к - момент сопротивления сечения кручению;

М к - крутящий момент.

Нормальные напряжения изменяются по симметричному циклу, а касательные - по отнулевому.

Уточнённый расчёт состоит в определении коэффициентов запаса прочности S для опасных сечений вала и сравнения с требуемым значением запаса прочности.

Тихоходный вал. Вал изготавливаем из стали 45, назначаем термообработку - улучшение. .

у -1 = 0,43 · 750 = 323 МПа.

ф -1 = 0,58 · 323 = 188 МПа.

Рисунок 9.

Опасными являются сечения:

2-2 , 6-6, 8 - 8 - скругление шпоночного паза;

3-3, 4-4, - галтельный переход;

4-4, - место установки подшипников с гарантируемым натягом;

5-5 - колесо;

7 - 7 - место установки зубчатого колеса, шпоночный паз;

9 - 9 - канавка.

Сечение 7 - 7.

Концентрация напряжений обусловлена наличием шпоночной канавки и напрессованного на вал зубчатого колеса. d=56 мм, b=16 мм, t 1 =6 мм,

Ш в =0,15 , Ш ф =0,1 .

а) Шпоночная канавка: =1,77; .

б)Посадка ступицы колеса с гарантированным натягом:

Сравнивая значения для случая (а) и (б), отмечаем, что наиболее нагружен вал в случае (б). По нему и ведем расчет

Суммарный изгибающий момент:

Момент сопротивления изгибу:

Момент сопротивления кручению:

Коэффициент запаса прочности по нормальным напряжениям:

Коэффициент запаса прочности по касательным напряжениям:

Сечение 4 - 4 .

Концентрация напряжений обусловлена посадкой подшипника с гарантированным натягом.

; Ш у =0,15 , Ш ф =0,1 .

Изгибающий момент:

Полярный момент сопротивления:

Амплитуда нормальных напряжений:

Амплитуда и среднее напряжение цикла касательных напряжений:

Коэффициенты запаса прочности

Расчёт быстроходного вала (рисунок 13).

Вал изготовлен из стали 45, термообработка улучшение.

Рисунок 10.

Предел прочности стали 45равен .

Предел выносливости при симметричном цикле перемены нормальных напряжений:

у -1 = 0,43 · 750 = 324 МПа.

Предел выносливости при симметричном цикле перемены касательных напряжений:

ф -1 = 0,58 · 324= 188 МПа.

Опасными являются сечения:

1-1- место установки муфты, шпоночный паз;

2-2 - скругление шпоночного паза;

3-3, 6-6, 10-10 - галтельный переход;

4-4, 12-12 - канавки под упорные кольца;

5-5, 11-11 - место установки подшипников с гарантируемым натягом;

7-7, 9-9 - полушевроны;

8-8 - проточка между шевронами.

Определяем напряжения, действующие в этом сечении:

Где W и - момент сопротивления сечения изгибу;

М и - изгибающий момент;

Определяем отношение, согласно :

Определяем запас прочности при изгибе:

Определяем касательные напряжения:

Определяем отношение:

Определяем запас прочности при кручении:

Определяем запас прочности при совместном действии напряжений изгиба и кручения:

Условия прочности выполняются.

17 . Расчет шпоночных соединений

Материал шпонок - сталь 45 нормализованная. Используем призматические шпонки со скруглёнными торцами по ГОСТ 23360-78.

Напряжения смятия:

Согласно , допускаемое напряжение смятия при стальной ступице = 120 - 140 МПа, и при чугунной = 60 - 80 МПа.

Быстроходный вал:

d ХВ = 32 мм; b = 10 мм; h = 8 мм; t 1 = 5 мм; l ШП = 70 мм; Т Б = 119500 Н мм; чг = 60 - 80 МПа.

Тихоходный вал.

Шпонка зубчатого колеса:

d В = 56 мм; b = 16 мм; h = 10 мм; t 1 = 6 мм; l ШП =90 мм; Т Т =315150 Н мм; = 100 МПа (материал колеса - сталь 45).

Шпонка муфты:

d ХВ = 40 мм; b = 12 мм; h = 8 мм; t 1 = 5 мм; l ШП =80 мм; Т Т =315150 Н мм; чг = 60…80 МПа.

Условия прочности соблюдаются.

Список литературы

1. П.Ф.Дунаев, О.П.Леликов. Конструирование узлов и деталей машин. М.: Издательский центр «Академия», 2003. - 496 с. ISBN 5-7695-1041-2 2. Курсовое проектирование деталей машин: учебное пособие/ Под ред. С.А.Чернавского. - М.: ООО ТИД «Альянс», 2005. - 416 с.

3. Иванов. М.Н. Учеб. для студентов втузов/Под ред. В. А. Финогенова. - 6-е изд., перераб. - М.: Высш. школа., 2000. - 383 с.: ил. ISBN 5-06-003537-9

4. Логин В.В. Расчет механического привода. Методические указания. - М.МИИТ, 1997 - 108 с.

Размещено на Allbest.ru

...

Подобные документы

    Расчет одноступенчатого горизонтального цилиндрического редуктора с шевронной передачей. Выбор привода, определение кинематических и энергосиловых параметров двигателя. Расчет зубчатой передачи, валов, ременной передачи. Конструирование корпуса редуктора.

    курсовая работа , добавлен 19.02.2015

    Конструкция зубчатого колеса и червячного колеса. Кинематический расчет привода, выбор электродвигателя, определение передаточных чисел, разбивка по ступеням. Расчет прямозубой цилиндрической передачи. Проверочный расчет подшипников тихоходного вала.

    курсовая работа , добавлен 22.07.2015

    Расчет цилиндрического редуктора с косозубыми зубчатыми колесами. Привод редуктора осуществляется электродвигателем через ременную передачу. Кинематический расчет привода. Расчет ременной передачи. Расчет тихоходной цилиндрической зубчатой передачи.

    курсовая работа , добавлен 09.01.2009

    Кинематический и силовой расчет привода. Расчет зубчатых колес редуктора. Предварительный расчет валов редуктора. Конструктивные размеры корпуса редуктора, шестерни, колеса. Первый этап компоновки редуктора. Проверка прочности шпоночных соединений.

    курсовая работа , добавлен 17.05.2012

    Энергетический и кинематический расчёт привода. Клиноременная и зубчатая передачи, выбор электродвигателя. Конструирование основных деталей зубчатого редуктора. Расчет валов на статическую и усталостную прочность. Проверка долговечности подшипников.

    курсовая работа , добавлен 08.03.2009

    Силовой и кинематический расчет привода. Расчет закрытой зубчатой с цилиндрическими косозубыми колёсами и открытой ременной передач. Выбор смазочных материалов для передач и подшипников. Обоснование посадок и квалитетов точности для сопряжения привода.

    курсовая работа , добавлен 14.04.2012

    Разработка конструкции одноступенчатого цилиндрического редуктора привода галтовочного барабана для снятия заусенцев после штамповки. Энергетический, кинематический и силовой расчеты привода, валов. Эскизная компоновка редуктора, проверочный расчет.

    курсовая работа , добавлен 27.06.2011

    курсовая работа , добавлен 09.05.2011

    Кинематический расчет привода электродвигателя. Расчет цепной и зубчатой передач, их достоинства. Выбор и расчет муфты: определение смятия упругого элемента и пальцев муфты на изгиб. Конструирование рамы привода, крепления редуктора к ней. Расчет шпонок.

    курсовая работа , добавлен 15.01.2014

    Выбор типа ковшей, способов их загрузки и разгрузки, определение конструктивно-кинематических параметров элеватора. Выбор натяжного устройства и типоразмера тягового органа. Кинематический расчет привода. Конструирование корпуса элеватора и рамы привода.

ДЕТАЛИ МАШИН И ОСНОВЫ КОНСТРУИРОВАНИЯ Раздел 1. Основные понятия Раздел 2. Механические передачи Раздел 3. Валы и опоры Раздел 4. Соединения. Допуски и посадки

1. 1 ОБЩИЕ СВЕДЕНИЯ ЛЕКЦИЯ 1 План: 1. 1. Введение. 1. 2 Основные понятия. Классификация деталей машин. 1. 3. Основные критерии работоспособности и расчета деталей машин. 1. 4. Понятие о надежности машин.

1. 1. Введение ТИПОВЫЕ ГОРНЫЕ МАШИНЫ и МЕХАНИЗМЫ 1. Экскаватор 2. Проходческий комбайн. 3. Буровой станок 4. Проходческий комплекс. 5. Погрузочная машина. 6. Ленточный транспортер.

Рисунок 1. Экскаватор: 1 - привод ходового механизма; 2 привод поворотного механизма; 3 - привод исполнительного органа; 4 - привод напорного механизма

Рисунок. 2. Проходческий комбайн: 1 - привод исполнительного органа; 2 - привод гусеничного хода; 3 – привод конвейера

Рисунок 3. Буровой станок: 1 – буровой инструмент; 2 – механизм подачи; 3 – вращатель с электромотором; 4 – бурильные трубы

Рисунок 4. Проходческий комплекс: 1 – привод ходового механизма; 2 – привод исполнительного механизма; 3 – привод погрузочного механизма

Рисунок 5. Погрузочная машина: 1 - привод рабочего органа; 2 - привод транспортера; 3 – привод гусеничного хода

Специфические условия эксплуатации: влажность и запыленность; абразивность разрушаемого массива; химическая активность шахтных вод; опасность обрушения горных пород на машину; случайный характер изменения прочностных свойств горных пород на различных участках горного массива; неравномерность перемещения машины; случайность изменения размеров и объема погружаемого материала; случайный характер поступления материала и его распределение на ленте конвейера и т. д. и т. п.

1. 2 Введение 1. 2. ОСНОВНЫЕ ПОНЯТИЯ. КЛАССИФИКАЦИЯ ДЕТАЛЕЙ МАШИН, ДЕТАЛИ МАШИН–это наука, в которой рассматри ДЕТАЛИ МАШИН ваются основы расчета и конструирования деталей и узлов общего назначения. Механизм искусственно созданная система тел, Механизм предназначенная для преобразования движения одного из них или нескольких в требуемые движения других тел. Машина механизм или сочетание механизмов, Машина которые служат для облегчения или замены труда человека и повышения его производительности.

Деталь - это часть машины, изготовленная без применения сборочных операций. Узел - крупная сборочная единица, имеющая вполне определенное функциональное назначение. Классификация деталей и узлов общего назначения: 1) соединительные детали; 2) механические передачи; 3) детали, обслуживающие передачи. Соединения: - неразъемные: заклепочные, сварные, клеевые; с натягом; - разъемные: резьбовые; шпоночные; шлицевые.

Передачи: - передачи зацеплением (зубчатые, червячные, цепные) ; - передачи трением (ременные, фрикционные). Детали, обслуживающие передачи: Детали, обслуживающие передачи - валы; - подшипники; - муфты; - смазочные устройства; - уплотнения; - корпусные детали.

1. 2 1. 3. Основные критерии работоспособности и расчета деталей машин Работоспособность деталей оценивают по следующим критериям: прочность; жесткость; износостойкость; теплостойкость; вибрационная устойчивость.

1. 2 Пути повышения надежности: . Ø - основы надежности закладываются конструктором при проектировании изделия. Плохо продуманные, не отработанные конструкции не надежны. Большую роль здесь играет стандартизация, унификация и т. д. ; Ø - улучшение качества производства конструкции; Ø - уменьшение напряженности деталей (рационально применять высокопрочные материалы, различные виды термической обработки, которые увеличивают нагрузочную способность зубчатых передач до 2… 4 раз); Ø - применение хорошей смазки; Ø - установка предохранительных устройств; Ø - должный контроль ОТ; Ø - резервирование.

Практическое занятие № 1 КИНЕМАТИЧЕСКИЙ РАСЧЕТ ПРИВОДА Последовательность расчета: 1. Определить к. п. д привода. 2. Найти требуемую мощность двигателя. 3. Подобрать марку электродвигателя. 4. Найти общее передаточное число привода. 5. Разбить передаточное число привода по ступеням. 6. Вычислить частоту вращения каждого из валов привода. 7. Определить крутящие моменты на каждом из валов привода. 8. Составить сводную таблицу параметров привода.

ИСХОДНЫЕ ДАННЫЕ: Вращающий момент на тихоходном (четвёртом) валу привода: ТТ = 1639 Н∙м; Частота вращения тихоходного вала привода: nт = 25, 1 об/мин; Синхронная частота вращения двигателя nэ. д. синхр = 1000 об/мин. Данный привод состоит из: открытой передачи (плоскоремённой), двух закрытых передач (цилиндрического двухступенчатого редуктора с косозубой быстроходной ступенью и прямозубой тихоходной ступенью) и муфты.

): , 1. Определяем требуемую мощность на тихоходном валу привода 2. Вычисляем КПД привода, используя значения из таблицы 1: 0, 96∙ 0, 97∙ 0, 99=0, 894. 3. Находим требуемую мощность двигателя

, к. Вт. 4. По таблице 2 выбираем электродвигатель 4 АМ 132 S 6 У 3 (с учётом значения nэ. д. синхр и условия Рном ≥ Рэ. д): Рном=5, 5 к. Вт; nэ. д. ас=965 об/мин; dэ. д=38 мм; ℓ=80 мм. 5. Находим общее передаточное отношение привода

, . 6. Производим разбивку общего передаточного отношения привода между его ступенями (открытой передачей, быстроходной передачей редуктора и тихоходной передачей редуктора). Ориентировочно принимаем iоткр (ремён) = 1, 6 (руководствуясь таблицей 3 и местоположением передачи в приводе), тогда получаем передаточное отношение редуктора:

Т. к. редуктор состоит из двух ступеней, то в соответствии с рекомендациями таблицы 4 вычисляем передаточное отношение тихоходной и быстроходной ступеней редуктора:

Полученное значение округляем ближайшего стандартного по ряду Ra 20: u т. ред. (цил. прям)=4, 5. до округляем до u б. ред. (цил. косоз)=5, 6. Уточняем передаточное отношение ременной передачи:

На основании произведённых расчетов составляем сводную таблицу параметров привода (таблица 5. 2): Передаточное отношение ΙΙ nΙΙ 631 TΙΙ 70 nΙΙΙ 113 TΙΙΙ 380 25, 1 TΙV Значен ие TΙ nΙV Обозна чение 965 ΙV Значен ие nΙ ΙΙΙ Обозна чение Ι КПД Значен ие № Обозна чение Крутящий момент, Н·м Значен ие Частота вращения, об/мин Обозна чение Номер вала Т а б л и ц а 5. 2 – Параметры привода 47, 7 uоткр 1, 53 ηрем 0, 96 u б. ред 5, 6 ηцил. кос 0, 97 u т. ред 4, 5 1642 ηцил. пр×ηму 0, 97∙ 0, 99 ф

ДЕТАЛИ МАШИН и ОСНОВЫ КОНСТРУИРОВАНИЯ Раздел – МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ ОБЩИЕ СВЕДЕНИЯ ЗУБЧАТЫЕ ПЕРЕДАЧИ ЛЕКЦИЯ 2 ЛЕКЦИЯ 3 КОНИЧЕСКИЕ ПЕРЕДАЧИ ЛЕКЦИЯ 6 ЧЕРВЯЧНЫЕ ПЕРЕДАЧИ ЛЕКЦИЯ 7 ЛЕКЦИЯ 4 РЕДУКТОРЫ ЛЕКЦИЯ 9 РЕМЕННЫЕ ПЕРЕДАЧИ ЛЕКЦИЯ 10 ЦЕПНЫЕ ПЕРЕДАЧИ ЛЕКЦИЯ 11 ЛЕКЦИЯ 8 ЛЕКЦИЯ 5

2. 1 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ ЛЕКЦИЯ 2 ОБЩИЕ СВЕДЕНИЯ План: 2. 1. Назначение и классификация механических передач. 2. 2. Основные параметры механических передач.

2. 2 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 2. 1. Назначение и классификация механических передач Механические устройства, применяемые для пере дачи энергии от источника к потребителю с изменени ем угловой скорости или вида движения, называют механическими передачами. Применение привода обусловлено: 1. Число оборотов рабочего органа значительно отличается от числа оборотов электродвигателя. 2. При малом числе оборотов двигатель имеет низкий к. п. д. 3. Двигатель имеет вращательное движение, а рабочий орган требует поступательного и наоборот. 4. От одного электродвигателя можно передавать движение нескольким рабочим органам, имеющим разные скорости.

МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ Классификация механических передач: По способу передачи движения: 1) трением (фрикционные, ременные); 2) передачи зацеплением (зубчатые, червячные, винтовые, цепные). По способу соединения звеньев передачи: 1) передачи непосредственного контакта (зубчатые, червячные, винтовые, фрикционные); 2) передачи гибкой связью (ременные, цепные).

2. 3 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 2. 2. ОСНОВНЫЕ ПАРАМЕТРЫ МЕХАНИЧЕСКИХ ПЕРЕДАЧ Любая передача состоит из ведущего 1 (его параметры условились обозначать нечетными индексами) и ведомого (четные индексы) звеньев.

2. 4 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ ОСНОВНЫЕ ПАРАМЕТРЫ МЕХАНИЧЕСКИХ ПЕРЕДАЧ 1. мощность на входе Р 1 и на выходе Р 2 ; 2. быстроходность n 1, n 2 ; 3. коэффициент полезного действия η 4. передаточное отношение i: ;

3. 1 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ ЛЕКЦИЯ 3 ЗУБЧАТЫЕ ПЕРЕДАЧИ План: 3. 1. Достоинства, недостатки, области применения, классификация зубчатых передач. 3. 2. Геометрические параметры цилиндрических зубчатых передач. 3. 3. Особенности геометрии косозубых цилиндрических колес.

МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 3. 1. ДОСТОИНСТВА, НЕДОСТАТКИ, Об. ЛАСТИ ПРИМЕНЕНИЯ, КЛАССИФИКАЦИЯ ЗУБЧАТЫХ ПЕРЕДАЧ Зубчатая передача – это передача, движение в которой передается с помощью зацепления пары зубчатых колес. Меньшее из колес называют шестерней, а большее – колесом. Термин « зубчатое колесо» относится как к шестерне, так и колесу. Параметры шестерни отмечают индексом 1, а колеса – 2, например число зубье z 1 и z 2.

МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ Достоинства зубчатых передач: § возможность передачи практически любых мощностей (до 50000 к. Вт и более) при весьма широком диапазоне окружных скоростей (до 30. . . 150 м/с); § постоянство передаточного отношения; § компактность, надежность и высокую усталостную прочность пе редачи; § высокий КПД (95… 98 %)) при высокой точности изготовле ния и монтажа, низкой шероховатости рабочей поверхности зубьев, жидкой смазке и передаче полной мощности; § простота обслуживания и ухода; § сравнительно небольшие силы давления на валы и их опоры; § возможность изготовления из самых разнообразных материалов, металлических и неметаллических.

МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ Недостатки зубчатых передач: § ограниченность передаточного отношения; § являются источником вибрации и шума, особенно при низком качестве изготовления и монтажа и значительных скоростях; § при больших перегрузках возможна поломка деталей; § относительная сложность изготовления высокоточных зубчатых колес. ОБЛАСТИ ПРИМЕНЕНИЯ 1 ое место по распространению во всех отраслях народного хозяйства.

МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ КЛАССИФИКАЦИЯ ЗУБЧАТЫХ ПЕРЕДАЧ 1. По взаимному расположению осей валов колес: § цилиндрические; § конические; § винтовые и гипоидные. 2. По наклону зубьев: § прямозубые; § косозубые; § шевронные; § с круговым зубом. 3. По форме профиля: § эвольвентные; § с зацеплением Новикова.

МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ КЛАССИФИКАЦИЯ ЗУБЧАТЫХ ПЕРЕДАЧ 4. По конструктивному исполнению: § открытые; § закрытые. 2. В зависимости от характера движения осей зубчатых колес: § оси колес неподвижны; § оси колес подвижны (планетарные); § волновые. 3. В зависимости от окружной скорости колес: § тихоходные; § среднескоростные; § высокоскоростные.

3. 5 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 3. 2. Геометрические параметры цилиндрических передач Эвольвентное зацепление обеспечивает высокую прочность зубьев, простоту и удобство измерения параметров зацепления, взаимозаменяемость зубчатых колес при любых передаточных отношениях. Основная теорема зацепления: Модуль зацепления, мм Угол зацепления

3. 7 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ Геометрические параметры цилиндрических передач диаметр делительной окружности диаметр выступов зубьев диаметр впадин зубьев высота головки зуба высота ножки зуба высота зуба межосевое расстояние

3. 8 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 3. 3. Особенности геометрии косозубых цилиндрических колес окружной шаг окружной модуль диаметр делительной окружности

Практическое занятие № 2 ВЫБОР МАТЕРИАЛА ПЕРЕДАЧ Последовательность расчета: 1. Выбрать материал шестерни (червяка) и колеса опираясь на теоретический материал: 1 группа с твёрдостью НВ ≤ 350 (термообработка – нормализация и улучшение); 2 группа с твёрдостью НВ > 350 (термообработка – объёмная или поверхностная закалка, нитроцементация, цианирование, азотирование). Обосновать выбор. 2. Выписать механические свойства выбранных материалов, вид термообработки. 3. Определить допускаемые контактные напряжения как для шестерни, так и для колеса. 4. Определить допускаемые изгибные напряжения как для шестерни, так и для колеса.

ПРИМЕР ВЫБОРА МАТЕРИАЛА ЗУБЧАТЫХ ПЕРЕДАЧ И ОПРЕДЕЛЕНИЯ ДОПУСКАЕМЫХ КОНТАКТНЫХ [σH] И ИЗГИБНЫХ [σF] НАПРЯЖЕНИЙ Данный привод включает в себя две зубчатые передачи входящие в состав редуктора: быстроходная передача редуктора – цилиндрическая косозубая; тихоходная передача редуктора – цилиндрическая прямозубая. Косозубая зубчатая передача 1. Выбираем материалы со средними механическими характеристиками, исходя из условия для зубчатых колёс с косыми зубьями (НВср1 – НВср2) ≥ 70… 80, (из таблицы 6): Шестерня сталь 40 Х; Колесосталь 45; Dзагот до 120 мм; Dзагот любой; Т. О. – улучшение; Т. О. – нормализация; НВср1 = 270. НВср2 = 190.

2. Определяем допускаемые контактные напряжения по формуле (22) с учётом рекомендаций таблицы 7: Шестерня, МПа Колесо МПа; . Т. к. для косозубых колёс при разности средних твёрдостей рабочих поверхностей зубьев шестерни и колеса (НВср1 – НВср2) ≥ 70 и НВ≤ 350 за допускаемое контактное напряжение пары принимают меньшее из двух полученных, то

, МПа; , МПа, ; МПа, окончательно принимаем [σH] = 434 МПа. 3. Рассчитываем допускаемые напряжения изгиба с исполь зованием данных из таблицы 8: Шестерня

4. 1 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ ЛЕКЦИЯ 4 Зубчатые передачи План: 4. 1. Влияние числа зубьев на их форму и прочность. 4. 2. Понятие о корригировании зубчатых передач. 4. 3. Точность зубчатых передач. 4. 4. Силы в зацеплении цилиндрических зубчатых передач. 4. 5. Виды разрушения зубьев и критерии работоспособности зубчатых передач.

4. 3 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 4. 2. Понятие о корригировании зубчатых передач Корригирование улучшение профиля зуба путем его Корригирование очерчивания другим участком той же эвольвенты по сравнению с нормальным зацеплением. Корригирование применяют: применяют Ø для устранения подрезания зубьев шестерни, если Ø для повышения изгибной прочности зубьев, что достигается увеличением их толщины; Ø для повышения контактной прочности, что достигается увеличением радиуса кривизны в полюсе зацепления; Ø для получения заданного межосевого расстояния передачи

4. 4 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ Корригирование осуществляют смещением инструмента на величину «Хm» при нарезании зубьев. Положительное смещение – это смещение инструмента от центра зубчатого колеса Хm >0 Отрицательное - смещение к Отрицательное центру Хm

4. 5 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 4. 3. Точность зубчатых передач В стандартах предусмотрено 12 степеней точности Наиболее распространены 6, 7, 8 и 9 степени. Пример обозначения степени точности колес 8 В. Во избежание заклинивания зубьев в зацеплении должен быть гарантированный боковой зазор. Величина зазора регламентируется видом сопряжения зубчатых колес. Стандартом предусмотрено шесть видов сопряжения: сопряжения Н нулевой зазор, Е малый, С и Д уменьшенный, В нормальный, А увеличенный.

4. 6 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 4. 4. Силы в зацеплении прямозубых цилиндрических зубчатых передач, Окружная сила Радиальная сила

4. 7 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ Силы в зацеплении косозубых цилиндрических зубчатых передач Окружная сила Радиальная сила Осевая сила

4. 8 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 4. 5. Виды разрушения зубьев и критерии работоспособности зубчатых передач Повторно – переменное воздействие нагрузки на зубья приводит: к поломке зубьев; к выкрашиванию рабочих поверхностей; к износу и заеданию зубьев. Для закрытых зубчатых передач: основной расчёт на контактную прочность; на контактную прочность проверочный расчёт зубьев на изгибную выносливость Для открытых передач наоборот.

5. 1 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ ЛЕКЦИЯ 5 Зубчатые передачи План: 5. 1. Материалы зубчатых колес и их термообработка. 5. 2. Допускаемые контактные и изгибные напряжения. 5. 3. Расчет цилиндрических зубчатых передач на контактную прочность. 5. 4. Расчет цилиндрических зубчатых передач на изгибную прочность.

5. 2 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 5. 1. Материалы зубчатых колес и их термообработка Стальные зубчатые колеса разделяют на две основные группы: 1 - с твердостью Термообработка: нормализация или улучшение; Термообработка 2 - с твердостью Термообработка: объёмная закалка, закалка ТВЧ, Термообработка цементация, азотирование

5. 3 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 5. 2. Допускаемые контактные и изгибные напряжения 1. Допускаемые контактные напряжения 2. Допускаемые напряжения изгиба

5. 4 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 5. 3. Расчет цилиндрических зубчатых передач на контактную прочность Наибольшее контактное напряжение в зоне зацепления: удельная расчетная окружная сила:

5. 5 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 5. 4. Расчет цилиндрических зубчатых передач на изгибную прочность Напряжения изгиба удельная расчётная окружная сила при изгибе

6. 1 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ ЛЕКЦИЯ 6 Конические зубчатые передачи План: 6. 1. Основные геометрические соотношения. 6. 2. Силы в зацеплении конических зубчатых передач. 6. 3. Расчет прямозубой конической передачи по напряжениям изгиба и на контактную прочность. 6. 4. Конические передачи с непрямыми зубьями.

6. 2 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 6. 1. Основные геометрические соотношения Передаточное отношение или Соотношение между модулями i ≤ 4, (до 6, 3)

6. 3 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 6. 1. Основные геометрические соотношения Внешнее конусное расстояние: Передаточное число: Высота головки и ножки зуба: .

6. 5 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 6. 3. Расчет прямозубой конической передачи по напряжениям изгиба и на контактную прочность Диаметры эквивалентных колес Эквивалентные числа зубьев Напряжения изгиба: Контактные напряжения:

6. 6 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 6. 4. Конические передачи с непрямыми зубьями с тангенциальными зубьями с круговыми зубьями

7. 1 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ ЛЕКЦИЯ 7 Червячные передачи План: 7. 1. Достоинства, недостатки, области применения, передаточное число и классификация червячных передач. 7. 2. Геометрические параметры червячной передачи. 7. 3. Силы в зацеплении червячной передачи. 7. 4. Виды разрушения зубьев и критерии работоспособности червячных передач.

МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 7. 1. Достоинства и недостатки, области применения, передаточное число и классификация червячных передач. Достоинства передачи: 1) плавность и бесшумность работы; 2) компактность и сравнительно небольшая масса; 3) возможность большого редуцирования; 4) возможность самоторможения; 5) большая кинематическая точность. Недостатки: 1) сравнительно низкий КПД; 2) повышенный износ и склонность к заеданию; 3) применение для колес дорогих антифрикционных материалов; 4) повышенные требования к точности сборки.

МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ Области применения: станки, подъемно транспортные машины, приборы т. д. ; при небольших и средних мощностях, обычно не более 50 квт. Передаточное число Обычно z 1 = 1 … 4 , следовательно, червячные передачи имеют большие передаточные числа. В силовых червячных передачах передаточное число рекомендуют до 10… 60; в приборах и делительных механизмах до 300 и более.

7. 2 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ Классификация: По форме внешней поверхности червяка с цилиндрическим червяком с глобоидным червяком По форме профиля резьбы червяка архимедов червяк конволютный червяк эвольвентный червяк По направлению линии витка червяка -с правым -с левым направлением нарезки По расположению червяка относительно колеса с нижним с боковым с верхним расположением червяка

МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ КПД червячной передачи зависит от числа заходов червяка: z 1 = 1 η = 0, 7… 0, 75 z 1 = 2 η = 0, 75… 0, 8 z 1 = 3 η =0, 8… 0, 85 z 1 = 4 η = 0, 85… 0, 9

7. 6 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 7. 3. СИЛЫ В ЗАЦЕПЛЕНИИ ЧЕРВЯЧНОЙ ПЕРЕДАЧИ Окружная сила на колесе = осевой силе на червяке Радиальные силы Осевая сила на колесе = окружной силе на червяке

8. 2 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 7. 4. Виды разрушения зубьев и критерии работоспособности червячных передач. В червячной паре менее прочным элементом является зуб колеса. Основные виды разрушений и повреждений в червячных передачах: износ и заедание. Критерии работоспособности и расчета: Основной - расчет на контактную прочность зубьев, Проверочный - расчет на изгибную выносливость зубьев, а также – тепловой расчет червячной передачи и расчет на жесткость червяка.

МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ ЛЕКЦИЯ 8. Червячные передачи План: 8. 1. Материалы и допускаемые напряжения. 8. 2. Расчет червячных передач на прочность по контактным напряжениям и по напряжениям изгиба. 8. 3. Тепловой расчет червячных передач. 8. 4. Расчет вала червяка на жесткость.

8. 3 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 8. 1. МАТЕРИАЛЫ И ДОПУСКАЕМЫЕ НАПРЯЖЕНИЯ Материал венца червячного колеса Скорости скольжения Оловянистые бронзы 5. . . 25 м/сек Безоловянистые бронзы 2. . . 5 м/сек Серый чугун не более 2 м/с Материал червяка цементируемые стали (20 Х, 18 ХГТ) среднеуглеродистые стали (45, 40 ХН) с поверхностной закалкой Твердость поверхности

8. 4 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ Допускаемые контактные напряжения: Øдля оловянистых бронз - из условия сопротивления усталостному выкрашиванию Øдля твердых бронз и чугунов - из условия сопротивления заеданию (или по эмпирическим формулам). Допускаемые напряжения изгиба: по эмпирическим формулам в зависимости от материала венца червячного колеса и характера нагрузки

8. 5 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 8. 2. Расчет червячных передач на прочность по контактным напряжениям и по напряжениям изгиба Условие контактной прочности: прочности. Условие прочности зуба на изгиб:

8. 6 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 8. 3. Тепловой расчет червячных передач Условие теплового баланса по температуре масла в картере редуктора: Способы искусственного охлаждения: 1) увеличение поверхности редуктора; 2) обдув корпуса воздухом вентилятора; 3) установка в корпусе водяного охлаждения; 4) применение циркуляционных систем смазок. 8. 4. РАСЧЕТ ВАЛА ЧЕРВЯКА НА ЖЕСТКОСТЬ Условие жесткости вала червяка по величине прогиба:

9. 1 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ ЛЕКЦИЯ 9 РЕДУКТОРЫ План: 9. 1. Классификация редукторов. 9. 2. Особенности конструкции и расчета цилиндрических, конических, червячных редукторов

9. 2 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 9. 1. Классификация редукторов Редукторы это механизмы, состоящие из передач Редукторы зацеплением с постоянным передаточным отношением, заключенные в корпус и предназначенные для понижения угловой скорости. Признаки классификации редукторов: Тип редуктора: Тип Ц - цилиндрический, К - конический, Ч - червячный, П - планетарный, Г - глобоидный Ш -, широкий У - узкий С - соосный М - мотор-редуктор Типоразмер редуктора Типоразмер Исполнение редуктора Исполнение определяют типом и определяют передаточным главными параметрами числом, вариантом сборки тихоходной ступени и формой концевых участков валов (аω, dae 2) Обозначение редуктора:

9. 3 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 9. 2. Особенности конструкции и расчета цилиндрических, конических и червячных редукторов. а)ЦИЛИНДРИЧЕСКИЕ РЕДУКТОРЫ Одноступенчатые редукторы применяют при передаточных числах u

9. 4 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ При u = 7… 40 выгоднее применять двухступенчатые редукторы: Редуктор с последовательным расположением ступеней

9. 5 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ б)Конические редукторы применяют для передачи вращающего момента между валами с взаимно перпендикулярным расположением осей Передаточные отношения для прямозубых при косых и редукторов круговых зубьях

9. 6 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ В) ЧЕРВЯЧНЫЕ РЕДУКТОРЫ применяют для передачи движения между перекрещивающимися валами. Передаточные отношения: Одноступенчатый червячный редуктор c нижним расположением червяка

9. 7 Редуктор с червяком сбоку от колеса МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ Редуктор с вертикальным расположением вала колеса или червяка

9. 8 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ Двухступенчатые редукторы с червячными передачами: цилиндрочервячный червячноцилиндрический u = 44, 6 … 480 червячночервячный u = 42, 25 … 3600

ОРИЕНТИРОВОЧНЫЙ РАСЧЕТ ВАЛОВ Предварительно все валы привода необходимо. пронумеровать и при расчетах присваивать определяемым параметрам индекс соответствующего вала. Расчеты выполнять последовательно для каждого вала привода. Ориентировочный расчет вала проводится только на кручение по пониженным допускаемым напряжениям, так как известен только крутящий момент Т, передаваемый валом (изгиб невозможно учесть ввиду того, что неизвестны точки приложения нагрузки к валу).

Диаметр входного или выходного конца вала редуктора, а также диаметр вала под зубчатое колесо для двухступенчатого редуктора определяют по формуле dк где Т – крутящий момент на валу, Н · м; – допускаемое касательное напряжение, МПа. Для валов из относительно мягких сталей при определении диаметра конца вала принимают = 20… 25 МПа, для промежуточных валов = 10… 15 МПа

Если редуктор непосредственно примыкает к электродвигателю, то диаметр входного конца вала редуктора принимают равным dк = (0, 8. . . 1, 2) dдв, где dдв – диаметр вала электродвигателя для установки муфты между ва лами электродвигателя и редуктора. Диаметры остальных участков вала находят последовательным изменением диаметра предыдущего участка на 2. . . 5 мм (рис. 1). Полученные значения округляют до ближайшего стандартного значения (табл. 2).

входной вал цилиндрического редуктора; выходной вал цилиндрического, конического и червячного редукторов входной вал конического редуктора

Возможно два конструктивных исполнения входных валов: шестерню изготавливают заодно с валом (вал шестерня) и отдельно от него (насадная шестерня). Для насадной шестерни d f 1 > 1, 2 dш, где d f 1 – диаметр по впадинам зубьев шестерни, dш – диаметр вала под шестерней. Таблица 2. Стандартные значения диаметров валов Диаметры валов подшипники, мм 15; 17; 20; 25; 30; 35; 40; 45; 50; 55; 60 и т. д. 10; 10, 5; 11, 5; 12; 13; 14; 15; 16; 17; Прочие диаметры 18; 19; 21; 22; 24; 26; 28; 30; 32; 34; 36; валов (ГОСТ 6636 -69), 38; 40; 42; 45; 48; 50; 52; 55; 60; 63; 65; мм 70; 75; 80; 85; 90; 95; 100 и т. д

Диаметры ступеней валов обозначают следующим образом: dк – диаметр входного (или выходного) конца вала; dу – диаметр вала под уплотнение и крышку подшипника; dп – диаметр вала подшипник; dзк – диаметр вала под зубчатое колесо; dб – диаметр буртика; dш – диаметр вала под шестерней; d – диаметр вала для выхода режущего инструмента; dа 1 – диаметр червяка по вершинам витков (определен при расчете червячной передачи, так как червяк, как правило, выполняют заодно с валом и только в редких случаях напрессовывают на вал) или диаметр по вершинам зубьев шестерни.

Пример расчета диаметров участков вала редуктора (в расчете диаметры участков вала сразу округлены по ГОСТам): dк = 38 мм (по формуле (1)); dу = 38 + 2 = 40 мм; dп = 40 + 5 = 45 мм; dзк = 45 + 3 = 48 мм; dб = 48 + 2 = 50 мм. Буртик может находиться как с правой стороны зубчатого колеса, так и с левой.

По найденному диаметру вала подшипник подбирают стандартные радиальные (если Fa = 0 или Fa 0, 3 Ft) или радиально упорные подшипники легкой или средней серии и выписывают их характеристики. Серию в дальнейшем уточняют при расчете подшипников. При проектировании промежуточного вала с раздвоенной шестерней определяют диаметр вала по формуле (1) под колесом, а диаметры вала под шестернями принимают на 2. . . 5 мм меньше найденного.

10. 1 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ ЛЕКЦИЯ 10 РЕМЕННЫЕ ПЕРЕДАЧИ План: 10. 1. Достоинства, недостатки, области применения, классификация ременных передач. 10. 2. Силы и напряжения в ремне. 10. 3. Критерии работоспособности ременных передач. 10. 4. Детали ременных передач.

МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 10. 1. Достоинства, недостатки, области применения и классификация ременных передач Передачу механической энергии, осуществляемую гибкой связью посредством трения между ремнем и шкивом, называют ременной.

10. 2 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ Классификация ременных передач По виду ремня различают ременные передачи: круглоременные плоскоременные клиноременные поликлиноременные Передаточное отношение ременных передач: зубчатые

10. 3 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ Достоинства ременных передач: v 1) возможность передачи энергии на значительные расстояния: (6… 5 м); v 2) простота и низкая стоимость конструкции; v 3) плавность и бесшумность хода, способность смягчать удары и предохранять от перегрузок при буксовании; v 4) возможность работы в широком диапазоне скоростей (до 100 м/с) и мощностей (от долей киловатта до сотен киловатт) v 5) простота обслуживания и ухода; v 6) относительно высокий КПД: 0, 91… 0, 98.

10. 4 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ Недостатки: v 1) непостоянство передаточного отношения вследствие упругого скольжения, меняющегося в зависимости от нагрузки; v 2) относительно большие габариты передачи и невысокая долговечность ремня (особенно в быстроходных передачах); v 3) вытягивание ремня в процессе эксплуатации передачи приводит к необходимости установки дополнительных устройств (натяжной ролик); v 4) большие нагрузки на валы и их опоры (подшипники).

10. 5 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 10. 2. СИЛЫ И НАПРЯЖЕНИЯ В РЕМНЕ сила в ведомой ветви С И Л Ы сила давления на валы - сила предварительного натяжения ремня - окружная сила - центробежная сила: сила в ведущей ветви

10. 7 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 10. 3. Критерии работоспособности ременных передач Тяговая способность ремня: площадь поперечного сечения ремня: Долговечность ремня: число пробегов ремня: для плоских ремней для клиновых ремней

МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 10. 8 10. 4. Детали ременных передач Резинотканевые плоские ремни Клиновые ремни нарезные послойные кордтканевые спирально корд шнуровые завернутые

11. 1 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ ЛЕКЦИЯ 11 ЦЕПНЫЕ ПЕРЕДАЧИ План: 11. 1. Преимущества, недостатки, области применения. 11. 2. Основные геометрические соотношения. 11. 3 Конструкции основных элементов цепных передач. 11. 4. Критерии работоспособности и расчета цепных передач.

МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 11. 1. Преимущества, недостатки, области применения Цепную передачу относят к передачам зацеплением с гибкой связью.

11. 2 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ Достоинства: 1) могут передавать движение на значительные расстояния (до 8 м); 2) более компактны (по сравнению с ременными), 3) могут передавать большие мощности до до 100 к. Вт; 4) меньшие силы, действующие на валы значительно; 5) отсутствует проскальзывание; 6) могут передавать движение одной цепью нескольким звездочкам.

МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ Недостатки: 1) значительный шум вследствие удара звена цепи при входе в зацепление, особенно при малом числе зубьев и большом шаге; 2) сравнительно быстрый износ шарниров цепи (затруднен подвод смазки); 3) удлинение цепи из-за износа шарниров, что требует применения натяжных устройств.

МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ Цепные передачи применяют в станках, транспортных машинах, горном оборудовании, подъёмно транспортных устройствах и т. д. при значительных межосевых расстояниях, когда зубчатые передачи не применимы, а ременные передачи ненадежны. Наибольшее применение получили цепные передачи мощностью до 120 к. Вт при окружных скоростях до 15 м/с (500 об/мин). Передаточное отношение цепной передачи

МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ. Рекомендуют применять передачи с передаточным отношением до 7, допускают до 10… 14. Следует учитывать, что с увеличением передаточных отношений значительно возрастают габариты передачи. Потери в цепной передаче складываются из потерь на трение в шарнирах цепи, на зубьях звездочек и опорах валов. Среднее значение КПД цепной передачи достигает

11. 3 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 11. 2. Основные геометрические соотношения Основным параметром цепи является шаг t передачи. Он принимается по ГОСТу. Чем больше шаг, тем выше: нагрузочная способность цепи, но сильнее удар звена цепи о зуб звёздочки в период набегания цепи на звездочку, меньше плавность, бесшумность и долговечность передачи. Оптимальное межосевое расстояние передачи принимают из условий долговечности цепи: где t – шаг цепи.

; МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ Рекомендуют принимать нижние значения а для передач с передаточным отношением верхние значения а для передач у которых Число звеньев цепи W определяют в зависимости от межосевого расстояния, округляют до целого числа, которое желательно брать четным, чтобы не применять специальных соединительных звеньев. Диаметр делительной окружности звездочки dд =

МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 11. 3. Конструкция основных элементов цепной передачи Приводная цепь – главный элемент цепной передачи. Основные типы стандартизированных приводных цепей: втулочные, втулочно роликовые и зубчатые. Втулочные применяют при скоростях 2 м/с. Втулочно роликовые цепи имеют широкое распространение их применяют при скоростях 20 м/с. Ролик позволяет выравнивать давление зуба звездочки на втулку и уменьшить изнашивание как втулки, так и зуба. Они бывают одно, двух, трех и четырехрядными. Зубчатые цепи применяют при больших скоростях до 35 м/с.

11. 4 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ Зубчатая цепь Втулочно-роликовая цепь (Втулочная цепь) Звездочки во многом подобны зубчатым колесам. Профиль и размеры зубьев звездочки зависят от типа и размеров цепи. Для цепей все размеры звездочек стандартизованы. Зубья звездочек выполняют с выпуклым, прямолинейным и вогнутым профилем.

11. 5 МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 11. 4. Критерии работоспособности и расчета цепных передач Стандартные цепи конструируют равнопрочными по напряжениям во всех деталях. Для большинства условий работы цепных передач основной причиной потери работоспособности является износ шарниров цепи. Поэтому основным критерием работоспособности цепных передач является долговечность цепи, определяемая износом шарниров. Долговечность приводных цепей по износу составляет 3… 5 тыс. часов работы.

МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ, МПа, Для увеличения долговечности цепной передачи принимают по возможности большее число зубьев меньшей звездочки (z 1 = 19… 31). Среднее давление в шарнире цепи pц не должно превышать допускаемого для данного типа цепи pц = Кэ – коэффициент эксплуатации: Кэ = КД КС К Крег Кр.

МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ Эскизная компоновка редуктора Цель эскизной компановки: 1. Определение расстояния между опорами валов и длин консольных участков валов; 2. Определение точек приложения сил, нагружающих валы; 3. Проверка не накладываются ли валы (зубчатые колеса) одной ступени редуктора на валы (зубчатые колеса) другой ступени; 4. Размещение внутри редуктора зубчатых колес всех ступеней так, чтобы получить минимальные внутренние размеры редуктора.

МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ Исходные данные: 1. Размеры зубчатых цилиндрических, конических и червячных передач; 2. Диаметры валов после их предварительного определения. Размеры, необходимые для выполнения компоновки: 1. Длина и диаметр ступиц колес 1. Габаритные размеры подшипников качения; 2. Расстояние от внутренней поверхности стенки редуктора: до торцев зубчатых колес е = 8… 15 мм; углубление подшипников е 1 = 3… 5 мм; 3. Расстояние между торцами вращающихся деталей е 2 = 10… 15 мм;

МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ 4. Радиальный зазор между зубчатым колесом одной ступени и валом другой ступени (min) е 3 = 15… 20 мм; 5. Расстояние от торца подшипника до торца шкива (звездочки) s = 25… 35 мм.

МЕХАНИКА ПРИКЛАДНАЯ МЕХАНИКА Модуль 3 Раздел 13 – ВАЛЫ И ОПОРЫ ВАЛЫ И ОСИ ПОДШИПНИКИ МУФТЫ ЛЕКЦИЯ 12 ЛЕКЦИЯ 14 ЛЕКЦИЯ 15 ЛЕКЦИЯ 13

МЕХАНИКА 12. 1 Модуль 3 ПРИКЛАДНАЯ МЕХАНИКА ВАЛЫ И ОПОРЫ ВАЛЫ И ОСИ ЛЕКЦИЯ 12 План: 12. 1. Общие сведения. 12. 2. Ориентировочный расчет валов. 12. 3. Проверочный расчет валов на статическую прочность

ВАЛЫ И ОПОРЫ 12. 2 ВАЛЫ И ОСИ Ось поддерживает сидящие на Ось ней детали. При работе испытывает напряжения изгиба Оси бывают неподвижными и подвижными Вал поддерживает сидящие на нем детали и передает крутящий момент вдоль своей оси. При работе испытывает, напряжения от изгиба и кручения (иногда от растяжения-сжатия)

ВАЛЫ И ОПОРЫ 12. 3 ВАЛЫ И ОСИ Классификация валов По геометрической форме оси прямые коленчатые гибкие По конструкции гладкие ступенчатые (фасонные) По типу сечения сплошные полые Материалы валов - углеродистые и легированные стали - без т/о: Ст. 5, Ст. 6, с то – стали 45, 40 Х; - для быстроходных валов: стали 20, 20 Х, 12 ХН 3 А.

ВАЛЫ И ОПОРЫ 12. 4 ВАЛЫ И ОСИ Основными критериями работоспособности и расчета валов и осей является статическая и усталостная прочность. Расчет валов проводится в три этапа: 1 этап - Ориентировочный расчет 2 этап - Промежуточный или проверочный расчет 3 этап - Уточненный расчет или расчет на усталость

ВАЛЫ И ОПОРЫ 12. 5 ВАЛЫ И ОСИ 1 этап - Ориентировочный расчет вала - это определение радиальных размеров исходя из прочности вала на кручение и особенностей конфигурации вала Минимальный диаметр вала из условия статической прочности на кручение:

ВАЛЫ И ОПОРЫ 12. 5 ВАЛЫ И ОСИ 1 этап - Ориентировочный расчет вала Осевые размеры вала (расстояния между точками приложения нагрузок) из эскизной компановки механизма:

ВАЛЫ И ОПОРЫ 12. 6 ВАЛЫ И ОСИ 2 этап - Промежуточный (проверочный) расчет валов - это расчет на статическую прочность с учетом совместного действия кручения и изгиба Øвал заменяют балкой на опорах-подшипниках, Øстроят эпюры изгибающих и крутящих моментов, Øнаходят эквивалентный момент в опасном сечении Øуточняют диаметр вала в этом сечении:

МЕХАНИКА 13. 1 Модуль 3 ПРИКЛАДНАЯ МЕХАНИКА ВАЛЫ И ОПОРЫ ВАЛЫ И ОСИ ЛЕКЦИЯ 13 План: 13. 1. Уточненный расчет валов

ВАЛЫ И ОПОРЫ 13. 2 ВАЛЫ И ОСИ 3 этап - Уточненный расчет валов (расчет вала на усталость) - это определение расчетных коэффициентов запаса усталостной прочности в опасном сечении Условие усталостной прочности вала Коэффициенты запаса усталостной прочности: при изгибе при кручении

ВАЛЫ И ОПОРЫ 13. 2 ВАЛЫ И ОСИ 3 этап - Уточненный расчет валов При расчете принимают, что: - напряжения изгиба σ изменяются по симметричному циклу, - напряжения кручения τ - по отнулевому (пульсирующему) циклу. σ τ

ВАЛЫ И ОПОРЫ 13. 2 ВАЛЫ И ОСИ 3 этап - Уточненный расчет валов С учетом механических характеристик материала вала определяют коэффициенты концентрации напряжений Кσ , К τ по виду напряжений концентраторов напряжений в опасных сечениях

ПОДШИПНИКИ СКОЛЬЖЕНИЯ ЛЕКЦИЯ 1 План: 1. 1. Области применения подшипников скольжения. 1. 2. Конструкции и материалы подшипников скольжения. 1. 3. Условия работы и виды разрушения подшипников скольжения. 1. 4. Основные условия образования режима жидкостного трения.

14. 2 1. 1. Области применения подшипников скольжения 1) высокоскоростные подшипники; 2) подшипники прецизионных машин; 3) подшипники тяжелых валов (диаметром более 1 м); 4) разъемные подшипники, например, для коленчатых валов; 5) подшипники, работающие в особых условиях (воде, агрессивных средах и т. д.); 6) подшипники, воспринимающие ударные и вибрационные нагрузки; 7) подшипники дешевых тихоходных механизмов и др.

14. 3 1. 2. Конструкции и материалы подшипников скольжения Основные элементы подшипника: вкладыш 1 корпус 2 Корпус и вкладыш могут быть разъемными или неразъемными

14. 4 1. 3. Условия работы и виды разрушения подшипников скольжения Основным критерием расчета подшипников скольжения является образование режима жидкостного трения. Одновременно жидкостного трения. обеспечиваются критерии по износу и заеданию. износу

ПОДШИПНИКИ КАЧЕНИЯ ЛЕКЦИЯ 2 План: 2. 1. Достоинства, недостатки и классификация подшипников качения. 2. 2. Виды разрушения подшипников качения. Критерии их работоспособности. 2. 3. Практический расчет (подбор) подшипников качения.

2. 1. Достоинства, недостатки и классификация подшипников качения Достоинства: § сравнительно малая стоимость; § высокая степень взаимозаменяемости; § малый расход смазки; § малые потери на трение и незначительный нагрев; §простота обслуживания и ухода. Недостатки: § высокая чувствительность к ударным и вибрационным нагрузкам; § малая надежность в высокоскоростных приводах; § сравнительно большие радиальные размеры; § шум при больших скоростях.

14. 5 Классификация подшипников качения 1) по форме тел качения 3) по габаритам и нагрузочной шариковые; способности пять серий: способности роликовые; сверхлегкая, 2) по направлению особолегкая, воспринимаемой нагрузки легкая, радиальные; средняя, -упорные; тяжелая серия. - радиально упорные. 4) по классам точности: по классам точности 0 – нормального, 6 – повышенного, 5 высокого, 4 особо высокого, 2 сверх высокого.

14. 7 Конструктивные элементы подшипника качения Тело качения Наружное кольцо Сепаратор Внутреннее кольцо МАТЕРИАЛЫ Тела качения и кольца - высокопрочные шарикоподшипниковые стали ШX 15, ШХ 20 и др. (HRC 61… 66) Сепараторы - мягкая листовая сталь. Сепараторы высокоскоростных подшипников - бронзы, латуни, легкие сплавы или пластмассы

14. 8 2. 2. Виды разрушения подшипников качения. Критерии их работоспособности. Виды разрушения подшипников качения: - усталостное выкрашивание рабочих поверхностей тел качения и беговых дорожек колец; - пластические деформации на дорожках качения (вмятины); - задиры рабочих поверхностей качения; - абразивный износ; - разрушение сепараторов разрушения (основная причина потери работоспособности); - раскалывание колец и тел качения.

Критерии работоспособности подшипников качения: - долговечность и динамическая грузоподъемность по усталостному выкрашиванию для подшипников, вращающихся с угловой скоростью рад/с; - статическая грузоподъемность по пластическим деформациям для невращающихся или маловращающихся подшипников с угловой скоростью рад/с.

14. 9 2. 3. Практический расчет (подбор) подшипников качения Условие подбора Номинальная динамическая грузоподъемность Эквивалентная нагрузка на подшипник Номинальный срок службы в миллионах оборотов:

15. 1 МУФТЫ ЛЕКЦИЯ 14 План: 15. 1. Классификация муфт, назначение и методика их выбора

15. 3 МУФТЫ Муфты - это устройства, служащие для соединения валов и передачи крутящего момента. Дополнительное назначение муфт: Ø для выключения и включения исполнительного механизма при непрерывно работающем двигателе (управляемые муфты); муфты Ø для предохранения машины от перегрузки (предохранительные муфты); муфты Ø для компенсации вредного влияния несоосности валов, связанной с неточностью монтажа (компенсирующие муфты); муфты Ø для уменьшения динамических нагрузок (упругие муфты) и т. д. муфты Основная паспортная характеристика муфт - крутящий момент, на передачу которого она рассчитана. Муфты подбирают по ГОСТу по расчётному крутящему моменту: Где - коэффициент режима работы муфты

ВАЛЫ И ОПОРЫ 15. 4 МУФТЫ Классификация Муфты Не расцепляемые Неподвижные (глухие) Упругие Сцепные управляемые Подвижные компенсирующие Свободного хода (обгонные) Жесткие С разрушающимся элементом С металлическим упругим элементом Сцепные самодействующие С неметаллическим упругим элементом Центробежные Предохранительные С не разрушающимся элементом

ВАЛЫ И ОПОРЫ 15. 5 МУФТЫ ГЛУХИЕ МУФТЫ Глухие муфты образуют жесткое и неподвижное соединение валов. К ним относятся втулочные и фланцевые муфты.

ВАЛЫ И ОПОРЫ 15. 6 МУФТЫ КОМПЕНСИРУЮЩИЕ ЖЕСТКИЕ Различают три вида отклонений от правильного взаимного расположения (несоосности) валов: Ø продольное смещение, Ø радиальное смещение или эксцентриситет Ø угловое смещение или перекос Компенсация вредного влияния несоосности валов достигается: 1) за счет подвижности практически жестких деталей компенсирующие жесткие муфты; муфты 2) за счет деформации упругих деталей - упругие муфты

ВАЛЫ И ОПОРЫ 15. 8 МУФТЫ КОМПЕНСИРУЮЩИЕ УПРУГИЕ МУФТЫ - компенсируют несоосность валов; - устраняют резонансные колебания, изменяя жесткость системы - снижают величину кратковременных перегрузок узлов машины. Металлические упругие элементы 1) витые цилиндрические пружины 2) стержни или пакеты пластин 3) пакеты разрезных гильзовых пружин 4) змеевидные пружины

ВАЛЫ И ОПОРЫ 15. 9 МУФТЫ КОМПЕНСИРУЮЩИЕ УПРУГИЕ МУФТЫ Неметаллические упругие элементы Муфта с упругой оболочкой

ВАЛЫ И ОПОРЫ 15. 10 МУФТЫ УПРАВЛЯЕМЫЕ ИЛИ СЦЕПНЫЕ МУФТЫ 1) муфты, основанные на зацеплении (кулачковые и зубчатые); зубчатые 2) муфты, основанные на трении (фрикционные). фрикционные Кулачковая муфта Фрикционные муфты дисковая коническая

ВАЛЫ И ОПОРЫ 15. 11 МУФТЫ АВТОМАТИЧЕСКИЕ ИЛИ САМОУПРАВЛЯЕМЫЕ МУФТЫ предназначены для автоматического разъединения валов в момент, когда параметры работы машины становятся недопустимыми 1) муфты предохранительные 2) центробежные муфты 3) муфты свободного хода Фрикционная роликовая муфта свободного хода

16. 2 СОЕДИНЕНИЯ Разъемные соединения РЕЗЬБОВЫЕ СОЕДИНЕНИЯ ШЛИЦЕВЫЕ СОЕДИНЕНИЯ ШПОНОЧНЫЕ СОЕДИНЕНИЯ КЛЕММОВЫЕ СОЕДИНЕНИЯ С НАТЯГОМ Неразъемные соединения СВАРНЫЕ СОЕДИНЕНИЯ КЛЕЕВЫЕ СОЕДИНЕНИЯ ЗАКЛЕПОЧНЫЕ СОЕДИНЕНИЯ ПАЯНЫЕ СОЕДИНЕНИЯ. ДОПУСКИ И ПОСАДКИ

16. 3 Разъемные соединения СОЕДИНЕНИЯ. ДОПУСКИ И ПОСАДКИ РЕЗЬБОВЫЕ СОЕДИНЕНИЯ. Классификация: В зависимости от формы резьбовой поверхности: цилиндрические и конические резьбы. В зависимости от формы профиля резьбы: треугольные, упорные, трапецеидальные, прямоугольные, круглые. В зависимости от направления винтовой линии резьбы: правые и левые В зависимости от числа заходов резьбы: однозаходные и многозаходные. В зависимости от назначения резьбы: крепежные, крепежно–уплотняющие, для передачи движения Основной критерий работоспособности – прочность нарезанной части стержня на растяжение

16. 5 СОЕДИНЕНИЯ. ДОПУСКИ И ПОСАДКИ ШПОНОЧНЫЕ СОЕДИНЕНИЯ Соединения призматическими шпонками Основной критерий работоспособности шпоночных соединений - прочность на смятие и срез. Условие прочности на смятие Допускаемые напряжения смятия - [ см] = 60… 150 МПа Условие прочности на срез: Допускаемые напряжения среза [ ср] = 70… 100 МПа

16. 6 СОЕДИНЕНИЯ. ДОПУСКИ И ПОСАДКИ СОЕДИНЕНИЯ С НАТЯГОМ Наиболее распространены цилиндрические соединения, в которых одна деталь охватывает другую по цилиндрической поверхности. Достоинства: простота конструкции, хорошее базирование соединяемых деталей; большая нагрузочная способность. Недостатки: сложность сборки и особенно разборки; рассеивание прочности соединения в связи с колебаниями размеров в пределах допусков Прочность соединения обеспечивают натягом, который образуется в выбранной посадке. Значение натяга определяется необходимым контактным давлением pm на посадочной поверхности соединяемых деталей

16. 7 СОЕДИНЕНИЯ. ДОПУСКИ И ПОСАДКИ СВАРНЫЕ СОЕДИНЕНИЯ Классификация: 1) по взаимному расположению соединяемых элементов: соединения встык; внахлестку; втавр; угловые; 2) по способу сварки: соединения, выполненные дуговой сваркой металлическим электродом; контактной сваркой; 3) по направлению воспринимаемого швом усилия: соединения, выполненные лобовыми швами; фланговыми швами; комбинированными швами.

16. 8 СОЕДИНЕНИЯ. ДОПУСКИ И ПОСАДКИ СВАРНЫЕ СОЕДИНЕНИЯ Стыковое соединение Тавровое соединение Соединение внахлестку Стыковые соединения проверяют на прочность при растяжении (сжатии) и изгибе. Соединения внахлестку рассчитывают на срез по наименьшей площади сечения, расположенного в биссекторной плоскости прямого угла поперечного сечения шва

МЕХАНИКА 17. 1 Модуль 3 ПРИКЛАДНАЯ МЕХАНИКА СОЕДИНЕНИЯ. ДОПУСКИ И ПОСАДКИ ЛЕКЦИЯ 17 План: 17. 1. Основные положения системы допусков и посадок 17. 2. Система допусков и посадок подшипников качения 17. 3. Посадки шпоночных соединений 17. 4. Допуски формы и расположения поверхностей

СОЕДИНЕНИЯ. ДОПУСКИ И ПОСАДКИ 17. 2 ДОПУСКИ И ПОСАДКИ ОСНОВНЫЕ ПОЛОЖЕНИЯ СИСТЕМЫ ДОПУСКОВ И ПОСАДОК Номинальный размер детали; Действительный размер детали Отверстие Вал Сопряженные детали Зазор Натяг Предельное верхнее отклонение Предельное нижнее отклонение Действительное отклонение Допуск размера Поле допуска Посадка

СОЕДИНЕНИЯ. ДОПУСКИ И ПОСАДКИ 17. 3 ДОПУСКИ И ПОСАДКИ Обозначение посадок: отклонение для отверстия Ø номинальный размер Ø отклонение для вала основное отклонение квалитет

СОЕДИНЕНИЯ. ДОПУСКИ И ПОСАДКИ 17. 4 ДОПУСКИ И ПОСАДКИ Обозначение посадок: Две системы образования посадок: посадок 1) система отверстия Ø 2) система вала Ø 19 квалитетов: в порядке понижения нормирования точности 0, 1; 0; 1; 2; 3; . . . ; 17 0, 1; 0; 1 - предназначены для оценки точности концевых мер; 2… 4 - калибров и особо точных изделий; 5… 13 для образования посадок; 14… 17 для свободных размеров

СОЕДИНЕНИЯ. ДОПУСКИ И ПОСАДКИ 17. 5 ДОПУСКИ И ПОСАДКИ Посадки с натягом: Поле допуска для тонкостенных деталей: Переходные посадки Посадки с зазором:

СОЕДИНЕНИЯ. ДОПУСКИ И ПОСАДКИ 17. 6 ДОПУСКИ И ПОСАДКИ Посадки подшипников качения Посадки шпоночных соединений Три типа шпоночных соединений: 1) свободное для паза на валу: для паза во втулке: 2) нормальное и соответственно 3) Плотное и соответственно

СОЕДИНЕНИЯ. ДОПУСКИ И ПОСАДКИ 17. 7 ДОПУСКИ И ПОСАДКИ Допуски формы и расположения поверхностей Виды погрешностей формы и расположения поверхностей: Пример обозначения отклонений формы и расположения поверхностей

17. 8 ДОПУСКИ И ПОСАДКИ СОЕДИНЕНИЯ. ДОПУСКИ И ПОСАДКИ Шероховатость поверхности Обозначение шероховатости: Виды знаков шероховатости: - вид обработки не устанавливается; - поверхность должна быть образована удалением слоя материала; - поверхность должна быть образована без удаления материала.