12.07.2019

Химическое разрушение металла. Коррозия металла – что это такое и как с ней бороться? Повышение коррозийной стойкости путем добавления в стальные сплавы легирующих добавок


Материалы из металлов под химическим или электрохимическим воздействием окружающей среды подвергаются разрушению, которое называется коррозией. Коррозия металлов вызывается , в результате которых металлы переходят в окисленную форму и теряют свои свойства, что приводит в негодность металлические материалы.

Можно выделить 3 признака, характеризующих коррозию:

  • Коррозия – это с химической точки зрения процесс окислительно-восстановительный.
  • Коррозия – это самопроизвольный процесс, возникающий по причине неустойчивости термодинамической системы металл – компоненты окружающей среды.
  • Коррозия – это процесс, который развивается в основном на поверхности металла. Однако, не исключено, что коррозия может проникнуть и вглубь металла.

Виды коррозии металлов

Наиболее часто встречаются следующие виды коррозии металлов :

  1. Равномерная – охватывает всю поверхность равномерно
  2. Неравномерная
  3. Избирательная
  4. Местная пятнами – корродируют отдельные участки поверхности
  5. Язвенная (или питтинг)
  6. Точечная
  7. Межкристаллитная – распространяется вдоль границ кристалла металла
  8. Растрескивающая
  9. Подповерхностная
Основные виды коррозии

С точки зрения механизма коррозионного процесса можно выделить два основных типа коррозии: химическую и электрохимическую.

Химическая коррозия металлов

Химическая коррозия металлов — это результат протекания таких химических реакций, в которых после разрушения металлической связи, атомы металла и атомы, входящие в состав окислителей, образуют . Электрический ток между отдельными участками поверхности металла в этом случае не возникает. Такой тип коррозии присущ средам, которые не способны проводить электрический ток – это газы, жидкие неэлектролиты.

Химическая коррозия металлов бывает газовой и жидкостной.

Газовая коррозия металлов – это результат действия агрессивных газовых или паровых сред на металл при высоких температурах, при отсутствии конденсации влаги на поверхности металла. Это, например, кислород, диоксид серы, сероводород, пары воды, галогены. Такая коррозия в одних случаях может привести к полному разрушению металла (если металл активный), а в других случаях на его поверхности может образоваться защитная пленка (например, алюминий, хром, цирконий).

Жидкостная коррозия металлов – может протекать в таких неэлектролитах, как нефть, смазочные масла, керосин и др. Этот тип коррозии при наличии даже небольшого количества влаги, может легко приобрести электрохимический характер.

При химической коррозии скорость разрушения металла пропорциональна и той скорости с которой окислитель проникает сквозь пленку оксида металла, покрывающую его поверхность. Оксидные пленки металлов могут проявлять или не проявлять защитные свойства, что определяется сплошностью.

Сплошность такой пленки оценивают величине фактора Пиллинга-Бэдвордса: (α = V ок /V Ме) по отношению объема образовавшегося оксида или другого какого-либо соединения к объему израсходованного на образование этого оксида металла

α = V ок /V Ме = М ок ·ρ Ме /(n·A Me ·ρ ок) ,

где V ок — объем образовавшегося оксида

V Ме — объем металла, израсходованный на образование оксида

М ок – молярная масса образовавшегося оксида

ρ Ме – плотность металла

n – число атомов металла

A Me — атомная масса металла

ρ ок — плотность образовавшегося оксида

Оксидные пленки, у которых α < 1 , не являются сплошными и сквозь них кислород легко проникает к поверхности металла. Такие пленки не защищают металл от коррозии. Они образуются при окислении кислородом щелочных и щелочно-земельных металлов (исключая бериллий).

Оксидные пленки, у которых 1 < α < 2,5 являются сплошными и способны защитить металл от коррозии.

При значениях α > 2,5 условие сплошности уже не соблюдается , вследствие чего такие пленки не защищают металл от разрушения.

Ниже представлены значения α для некоторых оксидов металлов

металл оксид α металл оксид α
K K 2 O 0,45 Zn ZnO 1,55
Na Na 2 O 0,55 Ag Ag 2 O 1,58
Li Li 2 O 0,59 Zr ZrO 2 1.60
Ca CaO 0,63 Ni NiO 1,65
Sr SrO 0,66 Be BeO 1,67
Ba BaO 0,73 Cu Cu 2 O 1,67
Mg MgO 0,79 Cu CuO 1,74
Pb PbO 1,15 Ti Ti 2 O 3 1,76
Cd CdO 1,21 Cr Cr 2 O 3 2,07
Al Al 2 ­O 2 1,28 Fe Fe 2 O 3 2,14
Sn SnO 2 1,33 W WO 3 3,35
Ni NiO 1,52

Электрохимическая коррозия металлов

Электрохимическая коррозия металлов – это процесс разрушения металлов в среде различных , который сопровождается возникновением внутри системы электрического тока.

При таком типе коррозии атом удаляется из кристаллической решетки результате двух сопряженных процессов:

  • Анодного – металл в виде ионов переходит в раствор.
  • Катодного – образовавшиеся при анодном процессе электроны, связываются деполяризатором (вещество — окислитель).

Сам процесс отвода электронов с катодных участков называется деполяризацией, а вещества способствующие отводу – деполяризаторами.

Наибольшее распространение имеет коррозия металлов с водородной и кислородной деполяризацией .

Водородная деполяризация осуществляется на катоде при электрохимической коррозии в кислой среде

2H + +2e — = H 2 разряд водородных ионов

2H 3 O + +2e — = H 2 + 2H 2 O

Кислородная деполяризация осуществляется на катоде при электрохимической коррозии в нейтральной среде

O 2 + 4H + +4e — = H 2 O восстановление растворенного кислорода

O 2 + 2H 2 O + 4e — = 4OH —

Все металлы, по их отношению к электрохимической коррозии , можно разбить на 4 группы, которые определяются величинами их :

  1. Активные металлы (высокая термодинамическая нестабильность) – это все металлы, находящиеся в интервале щелочные металлы — кадмий (Е 0 = -0,4 В). Их коррозия возможна даже в нейтральных водных средах, в которых отсутствуют кислород или другие окислители.
  2. Металлы средней активности (термодинамическая нестабильность) – располагаются между кадмием и водородом (Е 0 = 0,0 В). В нейтральных средах, в отсутствии кислорода, не корродируют, но подвергаются коррозии в кислых средах.
  3. Малоактивные металлы (промежуточная термодинамическая стабильность) – находятся между водородом и родием (Е 0 = +0,8 В). Они устойчивы к коррозии в нейтральных и кислых средах, в которых отсутствует кислород или другие окислители.
  4. Благородные металлы (высокая термодинамическая стабильность) – золото, платина, иридий, палладий. Могут подвергаться коррозии лишь в кислых средах при наличии в них сильных окислителей.

Электрохимическая коррозия может протекать в различных средах. В зависимости от характера среды выделяют следующие виды электрохимической коррозии:

  • Коррозия в растворах электролитов — в растворах кислот, оснований, солей, в природной воде.
  • Атмосферная коррозия – в атмосферных условиях и в среде любого влажного газа. Это самый распространенный вид коррозии.

Например, при взаимодействии железа с компонентами окружающей среды, некоторые его участки служат анодом, где происходит окисление железа, а другие – катодом, где происходит восстановление кислорода:

А: Fe – 2e — = Fe 2+

K: O 2 + 4H + + 4e — = 2H 2 O

Катодом является та поверхность, где больше приток кислорода.

  • Почвенная коррозия – в зависимости от состава почв, а также ее аэрации, коррозия может протекать более или менее интенсивно. Кислые почвы наиболее агрессивны, а песчаные – наименее.
  • Аэрационная коррозия — возникает при неравномерном доступе воздуха к различным частям материала.
  • Морская коррозия – протекает в морской воде, в связи с наличием в ней растворенных солей, газов и органических веществ.
  • Биокоррозия – возникает в результате жизнедеятельности бактерий и других организмов, вырабатывающих такие газы как CO 2 , H 2 S и др., способствующие коррозии металла.
  • Электрокоррозия – происходит под действием блуждающих токов на подземных сооружениях, в результате работ электрических железных дорог, трамвайных линий и других агрегатов.

Методы защиты от коррозии металла

Основной способ защиты от коррозии металла – это создание защитных покрытий – металлических, неметаллических или химических.

Металлические покрытия.

Металлическое покрытие наносится на металл, который нужно защитить от коррозии, слоем другого металла, устойчивого к коррозии в тех же условиях. Если металлическое покрытие изготовлено из металла с более отрицательным потенциалом (более активный) , чем защищаемый, то оно называется анодным покрытием . Если металлическое покрытие изготовлено из металла с более положительным потенциалом (менее активный), чем защищаемый, то оно называется катодным покрытием .

Например, при нанесении слоя цинка на железо, при нарушении целостности покрытия, цинк выступает в качестве анода и будет разрушаться, а железо защищено до тех пор, пока не израсходуется весь цинк. Цинковое покрытие является в данном случае анодным .

Катодным покрытием для защиты железа, может, например, быть медь или никель. При нарушении целостности такого покрытия, разрушается защищаемый металл.

Неметаллические покрытия.

Такие покрытия могут быть неорганические (цементный раствор, стекловидная масса) и органические (высокомолекулярные соединения, лаки, краски, битум).

Химические покрытия.

В этом случае защищаемый металл подвергают химической обработке с целью образования на поверхности пленки его соединения, устойчивой к коррозии. Сюда относятся:

оксидирование – получение устойчивых оксидных пленок (Al 2 O 3 , ZnO и др.);

фосфатирование – получение защитной пленки фосфатов (Fe 3 (PO 4) 2 , Mn 3 (PO 4) 2);

азотирование – поверхность металла (стали) насыщают азотом;

воронение стали – поверхность металла взаимодействует с органическими веществами;

цементация – получение на поверхности металла его соединения с углеродом.

Изменение состава технического металла также способствует повышению стойкости металла к коррозии. В этом случае в металл вводят такие соединения, которые увеличивают его коррозионную стойкость.

Изменение состава коррозионной среды (введение ингибиторов коррозии или удаление примесей из окружающей среды) тоже является средством защиты металла от коррозии.

Электрохимическая защита основывается на присоединении защищаемого сооружения катоду внешнего источника постоянного тока, в результате чего оно становится катодом. Анодом служит металлический лом, который разрушаясь, защищает сооружение от коррозии.

Протекторная защита – один из видов электрохимической защиты – заключается в следующем.

К защищаемому сооружению присоединяют пластины более активного металла, который называется протектором . Протектор – металл с более отрицательным потенциалом – является анодом, а защищаемое сооружение – катодом. Соединение протектора и защищаемого сооружения проводником тока, приводит к разрушению протектора.

Категории ,

Основной материал для изучения темы:

§ 13, стр. 81.

Габриелян, О. С.

Химия. 9 класс: Дрофа, 2013.

Дополнительный материал по теме «Коррозия металлов»

Корро́зия , ржавление, ржа - это самопроизвольное разрушение металлов в результате химического или физико-химического взаимодействия с окружающей средой. В общем случае это разрушение любого материала, будь то металл или керамика, дерево илиполимер. Причиной коррозии служит термодинамическая неустойчивость конструкционных материалов к воздействию веществ, находящихся в контактирующей с ними среде. Пример - кислородная коррозия железа в воде:

Гидроксид железа Fe(OH) 3 и является тем, что называют ржавчиной.

В повседневной жизни для сплавов железа (сталей) чаще используют термин «ржавление». Менее известны случаи коррозииполимеров. Применительно к ним существует понятие «старение», аналогичное термину «коррозия» для металлов. Например, старение резины из-за взаимодействия с кислородом воздуха или разрушение некоторых пластиков под воздействием атмосферных осадков, а также биологическая коррозия. Скорость коррозии, как и всякой химической реакции, очень сильно зависит от температуры. Повышение температуры на 100 градусов может увеличить скорость коррозии на несколько порядков.

Классификация видов коррозии

Коррозионные процессы отличаются широким распространением и разнообразием условий и сред, в которых они протекают. Поэтому пока нет единой и всеобъемлющей классификации встречающихся случаев коррозии.

По типу агрессивных сред, в которых протекает процесс разрушения, коррозия может быть следующих видов:

    газовая коррозия;

    атмосферная коррозия;

    коррозия в неэлектролитах;

    коррозия в электролитах;

    подземная коррозия;

    биокоррозия;

    коррозия под воздействием блуждающих токов.

По условиям протекания коррозионного процесса различаются следующие виды:

    контактная коррозия;

    щелевая коррозия;

    коррозия при неполном погружении;

    коррозия при полном погружении;

    коррозия при переменном погружении;

    коррозия при трении;

    межкристаллитная коррозия;

    коррозия под напряжением.

По характеру разрушения:

    сплошная коррозия, охватывающая всю поверхность:

    • равномерная;

      неравномерная;

      избирательная;

    локальная (местная) коррозия, охватывающая отдельные участки:

    • язвенная;

      точечная;

      сквозная;

      межкристаллитная (расслаивающая в деформированных заготовках и ножевая в сварных соединениях).

Главная классификация производится по механизму протекания процесса. Различают два вида:

    химическую коррозию;

    электрохимическую коррозию.

Коррозия неметаллических материалов

По мере ужесточения условий эксплуатации (повышение температуры, механических напряжений, агрессивности среды и др.) и неметаллические материалы подвержены действию среды. В связи с чем термин «коррозия» стал применяться и по отношению к этим материалам, например «коррозия бетонов и железобетонов», «коррозия пластмасс и резин». При этом имеется в виду их разрушение и потеря эксплуатационных свойств в результате химического или физико-химического взаимодействия с окружающей средой. Но следует учитывать, что механизмы и кинетика процессов для неметаллов и металлов будут разными.

Коррозия металлов

Ржавчина, самый распространённый вид коррозии.

Коррозия металла.

Коррозия металлов - разрушение металлов вследствие химического или электрохимического взаимодействия их с коррозионной средой. Для процесса коррозии следует применять термин «коррозионный процесс», а для результата процесса - «коррозионное разрушение». Образование гальванических пар с пользой применяют для создания батарей и аккумуляторов. С другой стороны, образование такой пары приводит к неблагоприятному процессу, жертвой которого становится целый ряд металлов, - коррозии. Под коррозией понимают происходящее на поверхности электрохимическое или химическое разрушение металлического материала. Наиболее часто при коррозии металл окисляется с образованием ионов металла, которые при дальнейших превращениях дают различные продукты коррозии. Коррозия может быть вызвана как химическим, так и электрохимическим процессом. Соответственно, различают химическую и электрохимическую коррозию металлов.

Типы коррозии

Различают 4 основных вида коррозии: электрохимическая коррозия, водородная, кислородная коррозия и химическая.

Электрохимическая коррозия

Разрушение металла под воздействием возникающих в коррозионной среде гальванических элементов называют электрохимической коррозией. Не следует путать с электрохимической коррозией коррозию однородного материала, например, ржавление железа или т. п. При электрохимической коррозии (наиболее частая форма коррозии) всегда требуется наличие электролита (Конденсат, дождевая вода и т. д.), с которым соприкасаются электроды - либо различные элементы структуры материала, либо два различных соприкасающихся материала с различающимися окислительно-восстановительными потенциалами. Если в воде растворены ионы солей, кислот, или т. п., электропроводность её повышается, и скорость процесса увеличивается.

Коррозионный элемент

При соприкосновении двух металлов с различными окислительно-восстановительными потенциалами и погружении их в раствор электролита, например, дождевой воды с растворенным углекислым газом CO 2 , образуется гальванический элемент, так называемый коррозионный элемент. Он представляет собой не что иное, как замкнутую гальваническую ячейку. В ней происходит медленное растворение металлического материала с более низким окислительно-восстановительным потенциалом; второй электрод в паре, как правило, не корродирует. Этот вид коррозии особо присущ металлам с высокими отрицательными потенциалами. Так, совсем небольшого количества примеси на поверхности металла с большим редокспотенциалом уже достаточно для возникновения коррозионного элемента. Особо подвержены риску места соприкосновения металлов с различными потенциалами, например, сварочные швы или заклёпки.

Если растворяющийся электрод коррозионно-стоек, процесс коррозии замедляется. На этом основана, например, защита железных изделий от коррозии путём оцинковки - цинк имеет более отрицательный потенциал, чем железо, поэтому в такой паре железо восстанавливается, а цинк должен корродировать. Однако в связи с образованием на поверхности цинка оксидной плёнки процесс коррозии сильно замедляется.

Примером крупномасштабной электрохимической коррозии может служить происшествие, случившееся в декабре 1967 года с норвежским рудовозом «Анатина» (англ. Anatina ), следовавшим из Кипра в Осаку. Налетевший в Тихом океане тайфун привёл к попаданию в трюмы солёной воды и образованию большойгальванической пары: медного концентрата со стальным корпусом судна, который вскоре размягчился, и судно подало сигнал бедствия. Экипаж был спасён подоспевшим немецким судном, а сама «Анатина» еле-еле добралась до порта.

Водородная и кислородная коррозия

Если происходит восстановление ионов H 3 O + или молекул воды H 2 O, говорят о водородной коррозии или коррозии с водородной деполяризацией. Восстановление ионов происходит по следующей схеме:

2H 3 O + + 2e − → 2H 2 O + H 2

2H 2 O + 2e − → 2OH − + H 2

Если водород не выделяется, что часто происходит в нейтральной или сильно щелочной среде, происходит восстановление кислорода и здесь говорят о кислородной коррозии или коррозии с кислородной деполяризацией:

O 2 + 2H 2 O + 4e − → 4OH −

Коррозионный элемент может образовываться не только при соприкосновении двух различных металлов. Коррозионный элемент образуется и в случае одного металла, если, например, структура поверхности неоднородна.

Химическая коррозия

Электрокоррозия полотенцесушителя

Химическая коррозия - взаимодействие поверхности металла с коррозионно-активной средой, не сопровождающееся возникновением электрохимических процессов на границе фаз. В этом случае взаимодействия окисления металла и восстановление окислительного компонента коррозионной среды протекают в одном акте. Например, образование окалины при взаимодействии материалов на основе железа при высокой температуре с кислородом:

При электрохимической коррозии ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от электродного потенциала металла (например, ржавление стали в морской воде).

Виды коррозии

    Газовая коррозия

    Атмосферная коррозия

    Коррозия при неполном погружении

    Коррозия по ватерлинии

    Коррозия при полном погружении

    Коррозия при переменном погружении

    Подземная коррозия

    Биокоррозия

    Коррозия внешним током

    Коррозия блуждающим током

    Контактная коррозия

    Коррозия при трении

    Фреттинг-коррозия

    Сплошная коррозия

    Равномерная коррозия

    Неравномерная коррозия

    Местная коррозия

    Подповерхностная коррозия

    Точечная коррозия

    Коррозия пятнами

    Сквозная коррозия

    Послойная коррозия

    Нитевидная коррозия

    Структурная коррозия

    Межкристаллитная коррозия

    Избирательная коррозия

    Графитизация чугуна

    Обесцинкование

    Щелевая коррозия

    Ножевая коррозия

    Коррозионная язва

    Коррозионное растрескивание

    Коррозия под напряжением

    Коррозионная усталость

    Предел коррозионной усталости

    Коррозионная хрупкость

Борьба с коррозией

Коррозия приводит ежегодно к миллиардным убыткам, и решение этой проблемы является важной задачей. Основной ущерб, причиняемый коррозией, заключается не в потере металла как такового, а в огромной стоимости изделий, разрушаемых коррозией. Вот почему ежегодные потери от неё в промышленно развитых странах столь велики. Истинные убытки от неё нельзя определить, оценив только прямые потери, к которым относятся стоимость разрушившейся конструкции, стоимость замены оборудования, затраты на мероприятия по защите от коррозии. Ещё больший ущерб составляют косвенные потери. Это простои оборудования при замене прокорродировавших деталей и узлов, утечка продуктов, нарушение технологических процессов.

Идеальная защита от коррозии на 80 % обеспечивается правильной подготовкой поверхности, и только на 20 % качеством используемых лакокрасочных материа­лов и способом их нанесения . Наиболее производительным и эффективным методом подготовки поверхности перед дальнейшей защитой субстрата являетсяабразивоструйная очистка.

Обычно выделяют три направления методов защиты от коррозии:

    Конструкционный

    Активный

    Пассивный

Для предотвращения коррозии в качестве конструкционных материалов применяют нержавеющие стали, кортеновские стали, цветные металлы. При проектировании конструкции стараются максимально изолировать от попадания коррозионной среды, применяя клеи, герметики, резиновые прокладки.

Активные методы борьбы с коррозией направлены на изменение структуры двойного электрического слоя. Применяется наложение постоянного электрического поля с помощью источника постоянного тока, напряжение выбирается с целью повышения электродного потенциала защищаемого металла. Другой метод - использование жертвенного анода, более активного материала, который будет разрушаться, предохраняя защищаемое изделие.

В качестве защиты от коррозии может применяться нанесение какого-либо покрытия, которое препятствует образованию коррозионного элемента (пассивный метод).

Кислородная коррозия оцинкованного железа

Кислородная коррозия железа, покрытого оловом

Красочное покрытие, полимерное покрытие и эмалирование должны, прежде всего, предотвратить доступ кислорода и влаги. Часто также применяется покрытие, например, стали другими металлами, такими как цинк, олово, хром, никель. Цинковое покрытие защищает сталь даже когда покрытие частично разрушено. Цинк имеет более отрицательный потенциал и корродирует первым. Ионы Zn 2+ токсичны. При изготовлении консервных банок применяют жесть, покрытую слоем олова. В отличие от оцинкованной жести, при разрушении слоя олова корродировать, притом усиленно, начинает железо, так как олово имеет более положительный потенциал. Другая возможность защитить металл от коррозии - применение защитного электрода с большим отрицательным потенциалом, например, из цинка или магния. Для этого специально создаётся коррозионный элемент. Защищаемый металл выступает в роли катода, и этот вид защиты называют катодной защитой. Растворяемый электрод, называют, соответственно, анодом протекторной защиты. Этот метод применяют для защиты от коррозии морских судов, мостов, котельных установок, расположенных под землей труб. Для защиты корпуса судна на наружную сторону корпуса крепят цинковые пластинки.

Если сравнить потенциалы цинка и магния с железом, они имеют более отрицательные потенциалы. Но тем не менее корродируют они медленнее вследствие образования на поверхности защитной оксидной плёнки, которая защищает металл от дальнейшей коррозии. Образование такой плёнки называют пассивацией металла. У алюминия её усиливают анодным окислением (анодирование). При добавлении небольшого количества хрома в сталь на поверхности металла образуется оксидная плёнка. Содержание хрома в нержавеющей стали - более 12 процентов.

Газотермическое напыление

Для борьбы с коррозией используют также методы газотермического напыления. С помощью газотермического напыления на поверхности металла создается слой из другого металла/сплава, обладающий более высокой стойкостью к коррозии (изолирующий) или наоборот менее стойкий (протекторный). Такой слой позволяет остановить коррозию защищаемого металла. Суть метода такова: газовой струей на поверхность изделия на огромной скорости наносят частицы металлической смеси, например цинк, в результате чего образуется защитный слой толщиной от десятков до сотен микрон. Газотермическое напыление также применяется для продления жизни изношенных узлов оборудования: от восстановления рулевой рейки в автосервисе до нефтедобывающих компаний

Термодиффузионное цинковое покрытие

Для эксплуатации металлоизделий в агрессивных средах, необходима более стойкая антикоррозионная защита поверхности металлоизделий. Термодиффузионное цинковое покрытие является анодным по отношению к чёрным металлам и электрохимически защищает сталь от коррозии. Оно обладает прочным сцеплением (адгезией) с основным металлом за счет взаимной диффузии железа и цинка в поверхностных интерметаллидных фазах, поэтому не происходит отслаивания и скалывания покрытий при ударах, механических нагрузках и деформациях обработанных изделий.

Диффузионное цинкование, осуществляемое из паровой или газовой фазы при высоких температурах (375-850 °C), или с использованием разрежения (вакуума) - при температуре от 250 °C, применяется для покрытия крепёжных изделий, труб, деталей арматуры и др. конструкций. Значительно повышает стойкость стальных, чугунных изделий в средах, содержащих сероводород (в том числе против сероводородного коррозионного растрескивания), промышленной атмосфере, морской воде и др. Толщина диффузионного слоя зависит от температуры, времени, способа цинкования и может составлять 0,01-1,5 мм. Современный процесс диффузионного цинкования позволяет образовывать покрытие на резьбовых поверхностях крепёжных изделий, без затруднения их последующего свинчивания. Микротвёрдость слоя покрытия Hμ = 4000 - 5000 МПа. Диффузионное цинковое покрытие также значительно повышает жаростойкость стальных и чугунных изделий, при температуре до 700 °C. Возможно получение легированных диффузионных цинковых покрытий, применяемое для повышения их служебных характеристик.

Кадмирование

Покрытие стальных деталей кадмием производится методами, аналогичными цинкованию, но даёт более сильную защиту, особенно в морской воде. Применяется значительно реже из-за значительной токсичности кадмия и его дороговизны.

Хромирование

Коррозия ухудшает работутрубопроводов.

Экономические потери от коррозии металлов огромны. В США по последним данным NACE [ ущерб от коррозии и затраты на борьбу с ней составили 3,1 % от ВВП (276 млрд долларов). В Германии этот ущерб составил 2,8 % от ВВП. По оценкам специалистов различных стран эти потери в промышленно развитых странах составляют от 2 до 4 % валового национального продукта. При этом потери металла, включающие массу вышедших из строя металлических конструкций, изделий, оборудования, составляют от 10 до 20 % годового производства стали.

Обрушение Серебряного моста.

Ржавчина является одной из наиболее распространённых причин аварий мостов. Так как ржавчина имеет гораздо больший объём, чем исходная масса железа, её наращивание может привести к неравномерному прилеганию друг к другу конструкционных деталей. Это стало причиной разрушения моста через реку Мианус в 1983 году, когда подшипники подъёмного механизма проржавели внутри. Три водителя погибли при падении в реку. Исследования показали, что сток дороги был перекрыт и не был почищен, а сточные воды проникли в опоры моста. 15 декабря 1967 года Серебряный мост, соединяющий Поинт Плезант, штат Западная Виржиния, и Канауга, штат Огайо, неожиданно рухнул в реку Огайо. В момент обрушения 37 автомобилей двигались по мосту, и 31 из них упали вместе с мостом. Сорок шесть человек погибли, и девять серьёзно пострадали. Помимо человеческих жертв и травм, был разрушен основной транспортный путь между Западной Виржинией и Огайо. Причиной обрушения стала коррозия

Мост Кинзу в Пенсильвании был разрушен в 2003 году от торнадо прежде всего потому, что центральные основные болты проржавели, существенно снизив его устойчивость.

Домашняя работа

Сплавы

Внимание!!!

Для получения оценки «3» достаточно выполнить только первую часть работы, для получения оценки «4», необходимо выполнить без ошибок всю часть работы на «3» и также без ошибок всю часть работы на оценку «4». Для получения оценки «5» необходимо выполнить всю работу без ошибок!!!

Оценка «3»

1. Какой из металлов как простое вещество более подвержен коррозии

1) 1s 2 2s 2 2p 6 3s

2) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1

3) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2

4) 1s 2 2s 2 2p 6 3s 2 3p 1

2. Химическую коррозию вызывают

1) вода и кислород

2) оксиды углероды и серы

3) растворы солей

4) все перечисленные факторы.

3. При контакте Ni и Fe в растворе кислоты

1) железо будет растворяться

2) железо будет восстанавливаться

3) никель будет растворяться

4) будет выделяться кислород

Оценка «4»

4. Способы защиты от коррозии, при котором в рабочую среду вводят вещества, уменьшающие агрессивность среды, называют

5. Способ защиты от коррозии, при котором железный лист покрывают слоем олова

6. Наиболее активно корродирует

1) химически чистое железо

2) железо, покрытое слоем олова

3) техническое железо

4) сплав железа с титаном

Оценка «5»

7. Легирующий элемент, сообщающий стали коррозионную стойкость

8. Масса меди, выделившейся на пластинке помещенной в растворе хлорида меди (II) если в реакцию вступил цинк массой 13г

8. Масса меди, выделившейся на железной пластинке помещенной в раствор сульфата меди (II), если в реакцию вступило железо массой 11,2 г.

Коррозия — это разрушение твердых тел, вызванное химическими и электрохимическими процессами, развивающимися на поверхности тела при его взаимо-действии с внешней средой. Особенный ущерб приносит коррозия металлов. Распространенный и наиболее знакомый всем нам вид коррозии — ржавление железа. Термин «коррозия» применим к металлам, бетону, некоторым пластмассам и другим материалам. Коррозия — это физико-химическое взаимодействие металла со средой, ведущее к разрушению металла.

Трудно учесть более высокие косвенные потери от простоев и снижения производительности оборудования, подвергшегося коррозии, от нарушения нормального хода технологических процессов, от аварий, обусловленных снижением прочности металлических конструкций, и т. п. Точная оценка ущерба от коррозии железа и стали, конечно, невозможна. Однако на основе некоторых доступных данных по среднему ежегодному объёму замены гофрированных металлических крыш, проводов, трубопроводов, стальных вагонеток и других железных и стальных объектов, подверженных коррозии, можно сделать вывод, что из-за неправильной защиты ежегодные затраты на замену в среднем могут достигать 2 процентов от общего объёма используемой стали.

О коррозии металлов

Не следует путать понятия «коррозия» и «ржавчина». Если коррозия — это процесс, то ржавчина один из его результатов. Это слово применимо только к железу, входящему в состав стали и чугуна. В дальнейшем под термином «коррозия» мы будем подразумевать коррозию металлов. Согласно международному стандарту ISO 8044 под коррозией понимают физико-химическое или химическое взаимодействие между металлом (сплавом) и средой, приводящее к ухудшению функциональных свойств металла (сплава), среды или включающей их тех-нической системы. Ржавчина — это слой частично гидратированных оксидов железа, образующийся на поверхности железа и некоторых его сплавов в результате коррозии.

Кроме коррозии, металлические (в частности, строительные) конструкции подвергаются действию эрозии — разрушению поверхности материала под влиянием механического воздействия. Эрозию провоцируют дожди, ветры, песчаная пыль и прочие природные факторы.
Идеальная защита от коррозии на 80% обеспечивается правильной подготовкой поверхности под окраску и только на 20% качеством используемых лакокрасочных материалов и способом их нанесения (ISO).

Процесс коррозии

Коррозией металлов называется самопроизвольное их разрушение вследствие химического или электрохимического взаимодействия с окружающей средой.

Среда, в которой металл подвергается коррозии (корродирует), называется коррозионной или агрессивной средой. В случае с металлами, говоря об их коррозии, имеют в виду нежелательный процесс взаимодей-ствия металла со средой.

Стадии коррозионного процесса:

  • подвод коррозионной среды к поверхности ме-талла;
  • взаимодействие среды с металлом;
  • полный или частичный отвод продуктов от поверхности металла.

Классификация коррозионных процессов

По природе разрушения различают следующие виды коррозии:

Химическая коррозия — это процесс, при котором окисление металла и восстановление окислительного компонента среды протекают в одном акте.
Химическая коррозия возможна в любой коррозионной среде, однако чаще всего она наблюдается в тех случаях, когда коррозионная среда не является элект-ролитом (газовая коррозия, коррозия в неэлектропро-водных органических жидкостях).

Электрохимическая коррозия — это разрушение металлов вследствие их электрохимического взаимодействия с электролитически проводящей средой, при котором ионизация атомов металла и восстановление окислительного компонента среды протекает не в одном акте и их скорости зависят от величины электродного потенциала металла. Этот вид коррозии наиболее распространен. При электрохимической коррозии химическое превращение вещества сопровождается выделением электрической энергии в виде постоянного тока.

Биохимическая коррозия — в случае, когда коррозия металла в морской воде усиливается под действием обрастания поверхности морскими организмами.
Электрокоррозия — усиление коррозии под действием анодной поляризации, вызванной внешним электрическим полем (например, при производстве сварочных работ на плаву, при наличии блуждающих токов в акватории).

По типу коррозионной среды

Некоторые коррозионные среды и вызываемые ими разрушения столь характерны, что по названию этих сред классифицируются и протекающие в них коррозионные процессы.
Как правило, металлические изделия и конструкции подвергаются действию многих видов коррозии — в этих случаях говорят о действии так называемой смешанной коррозии.

Газовая коррозия — коррозия в газовой среде при высоких температурах.

Атмосферная коррозия — коррозия металла в усло-виях атмосферы при влажности, достаточной для образования на поверхности металла пленки электролита (осо-бенно в присутствии агрессивных газов или аэрозолей кислот, солей и т. д.). Особенностью атмосферной коррозии является сильная зависимость ее скорости и механизма от толщины слоя влаги на поверхности металла или степени увлажнения образовавшихся продуктов коррозии.

Жидкостная коррозия — коррозия в жидких средах.

Подземная коррозия — коррозия металла в грунтах и почвах. Характерной особенностью подземной коррозии является большое различие в скорости доставки кислорода к поверхности подземных конструкций в разных почвах (в десятки тысяч раз).

По характеру разрушения коррозию различают

Сплошная — Охватывает всю поверхность металла
Местная - Охватывает отдельные участки коррозии
Равномерная - Протекает с приблизительно одинаковой скоростью по всей поверхности
Точечная (питтинг) — В виде отдельных точек диаметром до 2 мм
Язвенная — В виде язв диаметром от 2 до 50 мм
Пятнами - В виде пятен диаметром более 50 мм и глубиной до2 мм
Подповерхностная — Вызывает расслоение металла и вспучивание слоев
Подпленочная — Протекает под защитным покрытием металла
Межристаллитная — В виде разрушения границ зерен
Селективная (избирательная) — В виде растворения отдельных компонентов сплава
Щелевая - Развивается в щелях и узких зазорах

Коррозия металла или сплава происходит, как правило, на границе раздела фаз, т. е. на границе соприкосновения твердого вещества с газом или жидкостью.

Коррозионные процессы подразделяются на следующие виды: по механизму взаимодействия металла со средой; по виду коррозионной среды; по виду коррозионных разрушений поверхности; по объему разрушенного металла; по характеру дополнительных воздействий, которым подвергается металл одновременно с действием коррозионной среды.

По механизму взаимодействия металла со средой различают химическую и электрохимическую коррозию.

Коррозию, протекающую под влиянием жизнедеятельности микроорганизмов, относят к биологической коррозии, а протекающую под действием радиоактивного излучения - к радиационной коррозии.

По виду коррозионной среды, участвующей в коррозионном разрушении металла или сплава, различают коррозию в жидкостях-неэлектролитах, коррозию в растворах и расплавах электролитов, газовую, атмосферную, подземную (почвенную) коррозию, коррозию блуждающим током и др.

По характеру изменения поверхности металла или сплава или по степени изменения их физико-механических свойств, в процессе коррозии независимо от свойств, среды коррозионные разрушения бывают нескольких видов.

1. Если коррозия охватывает всю поверхность металла, то такой вид разрушения называется - сплошной коррозией . К сплошной коррозии относится разрушение металлов и сплавов под действием кислот, щелочей, атмосферы. Сплошная коррозия может быть равномерной, т. е. разрушение металла происходит с одинаковой скоростью по всей поверхности, и неравномерной, когда скорость коррозии на отдельных участках поверхности неодинакова. Примером равномерной коррозии может служить коррозия при взаимодействии меди с азотной, железа - с соляной, цинка - с серной кислотами, алюминия - с растворами щелочей. В этих случаях продукты коррозии не остаются на поверхности металла. Аналогично коррозируют железные трубы на открытом воздухе. Это легко увидеть, если удалить слой ржавчины; под ним обнаруживается шероховатая поверхность металла, равномерно распределенная по всей трубе.

2. Сплавы некоторых металлов подвержены - избирательной коррозии , когда один из элементов или одна из структур сплава разрушается, а остальные практически остаются без изменений. При соприкосновении латуни с серной кислотой происходит компонентно-избирательная коррозия - коррозия цинка, а сплав обогащается медью. Такое разрушение легко заметить, так как происходит покраснение поверхности изделия за счет увеличения концентрации меди в сплаве. При структурно-избирательной коррозии происходит преимущественно разрушение какой-либо одной структуры сплава, так, например, при соприкосновении стали с кислотами феррит разрушается, а карбид железа остается без изменений. Этому виду коррозии особенно подвержены чугуны.

3. При местной коррозии на поверхности металла обнаруживаются поражения в виде отдельных пятен, язв, точек. В зависимости от характера поражений местная коррозия бывает в виде пятен, т. е. поражений, не сильно углубленных в толщу металла; язв - поражений, сильно углубленных в толщу металла; точек, иногда еле заметных глазу, но глубоко проникающих в металл. Коррозия в виде язв и точек очень опасна для таких конструкций, где важно поддерживать условия герметичности и непроницаемости (емкости, аппараты, трубопроводы, применяемые в химической промышленности).

4. Подповерхностная коррозия начинается с поверхности металла в тех случаях, когда защитное покрытие (пленки, оксиды и т. п.) разрушено на отдельных участках. В этом случае разрушение идет преимущественно под покрытием, и продукты коррозии сосредотачиваются внутри металла. Подповерхностная коррозия часто вызывает вспучивание и расслоение металла. Определить ее возможно только под микроскопом.

5. Щелевая коррозия - разрушение металла под прокладками, в зазорах, резьбовых креплениях, в клепаных соединениях и т. п. Она чаще развивается на участке конструкции, находящейся в зазоре (щели).

6. Межкристаллитная коррозия - разрушение металла по границам кристаллитов (зерен) с потерей его механической прочности, внешний вид металла при этом не меняется, но он легко разрушается на отдельные кристаллики под механическим воздействием. Объясняется это образованием между зернами металла или сплава рыхлых, малопрочных продуктов коррозии. Этому виду коррозии подвержены хромистые и хромоникелевые стали, никелевые и алюминиевые сплавы. Чтобы избежать межкристаллитной коррозии, в последние годы широко используют нержавеющие стали с пониженным содержанием углерода или в их состав вводят карбидообразователи - титан, тантал, ниобий (в 5-8 - кратном количестве от содержания углерода).

При одновременном воздействии на металл или сплав сильно агрессивных сред и механических растягивающих напряжений возможно коррозионное растрескивание, или транскристаллитная коррозия. В этом случае разрушение происходит не только по границам кристаллитов, но разделяется на части сам кристаллит металла. Это очень опасный вид коррозии, особенно для конструкций, несущих механические нагрузки (мосты, оси, тросы, рессоры, автоклавы, паровые котлы, двигатели внутреннего сгорания, водяные и паровые турбины и др.).

Коррозионное растрескивание зависит от конструкции аппаратуры, характера агрессивной среды, строения и структуры металла или сплава, температуры и т. д. Например, коррозионное растрескивание углеродистых сталей очень часто происходит в щелочных средах при высоких температурах; нержавеющих сталей - в растворах хлоридов, медного купороса, ортофосфорной кислоты; алюминиевых и магниевых сплавов - под действием морской воды; титана и его сплавов - под действием концентрированной азотной кислоты и растворов йода в метаноле.

Следует отметить, что в зависимости от природы металла или сплава и свойств агрессивной среды существует критическое напряжение, выше которого коррозионное растрескивание наблюдается часто.

По характеру дополнительных воздействий, которым подвергается металл, одновременно с воздействием агрессивной среды можно выделить коррозию под напряжением, коррозию при трении и кавитационную.

7. Коррозия под напряжением - это коррозия при одновременном воздействии коррозионной среды и постоянных или временных напряжений. Одновременное воздействие циклических растягивающих напряжений и коррозионной среды вызывает коррозионную усталость, т. е. Происходит преждевременное разрушение металла. Этот процесс можно представить следующим образом: сначала на поверхности изделия возникает местная коррозия в виде язв, которые начинают действовать в качестве концентратора напряжений, максимальное значение напряжения будет на дне язв, которое имеет более отрицательный потенциал, чем стенки, в результате чего разрушение металла будет идти вглубь, а язва будет переходить в трещину. Этому виду коррозии подвержены валы гребных винтов. Рессоры автомобилей, канаты, охлаждаемые валки прокатных станов и др.

8. Коррозия при трении - разрушение металла, вызываемое одновременным воздействием коррозионной среды и трения. При колебательном перемещении двух поверхностей относительно друг друга в условиях воздействия коррозионной среды происходит коррозия истиранием, или фреттинг-коррозия. Устранить коррозию при трении или вибрации возможно правильным выбором конструкционного материала, снижением коэффициента трения, применением покрытий и т.д.

9. Газовая коррозия - это химическая коррозия металлов в газовой среде при минимальном содержании влаги (как правило не более 0,1%) или при высоких температурах. В химической и нефтехимической промышленности такой вид коррозии встречается часто. Например, при получении серной кислоты на стадии окисления диоксида серы, при синтезе аммиака, получении азотной кислоты и хлористого водорода, в процессах синтеза органических спиртов, крекинга нефти и т.д.

10. Атмосферная коррозия - это коррозия металлов в атмосфере воздуха или любого влажного газа.

11. Подземная коррозия - это коррозия металлов в почвах и грунтах.

12. Контактная коррозия - это вид коррозии, вызванный контактом металлов, имеющих разные стационарные потенциалы в данном электролите.