25.06.2019

Расчет глубины резкости. Грип и гиперфокальное расстояние. Диапазон дистанций фокусировки


Калькулятор глубины резкости изображаемого пространства (ГРИП) является полезным фотографическим инструментом для оценки того, какие параметры настройки камеры нужны для достижения требуемой степени резкости. Этот калькулятор более гибок, чем приведенный в главе о глубине резкости , поскольку в число параметров расчёта входят дистанция просмотра, печатный размер и сила зрения - тем самым предоставлено больше контроля над тем, что считается «приемлемо чётким» (максимальный допустимый размер кружка нерезкости).

Чтобы рассчитать глубину резкости, сперва необходимо задаться соответствующим значением максимального диаметра кружка нерезкости (КН). Большинство калькуляторов подразумевают, что для отпечатка 20х25 см, рассматриваемого с расстояния 25 см, для получения приемлемой чёткости достаточно сохранить детали до 0.025 мм (0.01 дюйма). Этот подход зачастую не является корректным описанием приемлемой чёткости, поэтому данный калькулятор позволяет задать и другие варианты просмотра (хотя по умолчанию придерживается данного стандарта).

Калькулятор глубины резкости
Размер отпечатка дюймов см м
Дистанция просмотра обычная: 25 см 10 см 50 см 1 м 5 м 10 м 100 м 500 м
Зрение обычное: стандарт производителя идеальное
Тип камеры цифровая зеркальная, кроп-фактор 1.6 цифровая компактная с сенсором 1/3" цифровая компактная с сенсором 1/2" цифровая компактная с сенсором 1/1.8" цифровая компактная с сенсором 2/3" цифровая зеркальная с сенсором 4/3" цифровая зеркальная, кроп-фактор 1.5 APS цифровая зеркальная, кроп-фактор 1.3 35 мм 6x4.5 см 6x6 см 6x7 см 5x4 дюйма 10x8 дюймов
Выбранная диафрагма F 1.2 F 1.4 F 1.8 F 2 F 2.8 F 4 F 5.6 F 8 F 11 F 16 F 22 F 32 F 64
Фокусное расстояние мм
Дистанция фокусировки (до предмета) метров
Ближняя граница приемлемой чёткости
Дальняя граница приемлемой чёткости
Гиперфокальное расстояние
Общая глубина резкости

Примечание: кроп-фактор является множителем фокусного расстояния

Использование калькулятора

С нарастанием дистанции просмотра нашим глазам сложнее различить мелкие детали на отпечатке, и таким образом глубина резкости увеличивается (вместе с диаметром КН). Наоборот, наши глаза могут различить больше деталей при увеличении печатного размера , и соответственно, ГРИП уменьшается. Фото, предназначенное для близкого рассматривания в большом размере (например, в галерее) наверняка будет иметь более жёсткие технические рамки, чем аналогичное изображение, предназначенное для открытки или большого рекламного щита на обочине дороги.

Люди с идеальным зрением способны различать детали примерно в 1/3 от размера, установленного производителями объективов в качестве стадарта КН (0.025 мм для отпечатка 20x25 см, рассматриваемого с 25 см). Соответственно, смена параметра «зрение » оказывает значительное влияние на глубину резкости. С другой стороны, даже если вы различаете КН своими глазами, изображение всё ещё может восприниматься как «приемлемо чёткое». Этот расчёт может послужить лишь приблизительной оценкой условий, при которых детали более не могут быть различимы нашими глазами.

Тип камеры определяет размер кадра вашей плёнки или цифрового сенсора, и соответственно, насколько исходное изображение должно быть увеличено, чтобы достигнуть заданного печатного размера. Сенсоры большего размера обычно могут позволить КН большего диаметра, поскольку не требуют настолько сильного увеличения размера изображения, однако для достижения того же угла обзора им требуются большие фокусные расстояния. Сверьтесь с инструкцией или сайтом производителя вашей камеры, если вы не уверены в том, какой из предложенных вариантов типа камеры выбрать.

Фокусное расстояние объектива соответствует числу мм, указанному на вашей камере, отнюдь НЕ «эффективному» (истинному) фокусному расстоянию (рассчитанному в эквиваленте для 35 мм камеры), которое иногда используется. В большинстве компактных цифровых камер используются вариобъективы (зумы), фокусное расстояние которых варьируется от 6-7 мм до примерно 30 мм (зачастую оно указано на передней стенке камеры со стороны объектива). Если вы используете для компактной цифровой камеры значение за пределами этого диапазона, скорее всего оно неверно. С зеркальными камерами в этом смысле проще, поскольку большинство из них используют стандартные объективы для кадра 35 мм, на которых чётко обозначено фокусное расстояние, но не пытайтесь умножать значение, указанное на объективе, на кроп-фактор своей камеры. Если снимок уже сделан, практически все цифровые камеры записывают действительное фокусное расстояние в данные EXIF в файле снимка.

На практике

Не стоит привязываться ко всем этим цифрам при съёмке. Я не рекомендую рассчитывать ГРИП для каждого изображения, а скорее предлагаю вам получить визуальное представление того, как диафрагма и дистанция фокусировки влияют на получаемое изображение. Получить его можно, только встав из-за компьютера и занявшись экспериментами с камерой. Когда вы овладеете предметом, можно будет использовать калькулятор ГРИП для улучшения качества тщательно подобранных ландшафтных и пейзажных сцен или, скажем, макросъёмки при малом освещении, где диапазон резкости критичен.

В данной статье приведена таблица по расчету ГРИП - глубины резко отображаемого простанства для большинства современных фотоаппаратов. Вам достаточно ввести фокусное расстояние Вашего объектива, Тип пленки или Тип Цифровой камеры или диаметр круга нерезкости.

Оптические термины

f фокусное расстояние
h гиперфокальное расстояние h = f^2/(N*c)
M увеличение M = Si/So, или M = (Si-f)/f
N значение диафрагмы
Ne эффективное значение диафрагмы Ne = N*(1+M)
c максимально допустимый диаметр кружка нерезкости
So расстояние от передней главной фокальной плоскости до объекта
Smax расстояние от передней главной фокальной плоскости до самой дальней резко отображаемой точки Smax = h * So / (h - (So - f))
Smin расстояние от передней главной фокальной плоскости до самой ближней резко отображаемой точки Smin = h * So / (h + (So - f))
Si расстояние от задней главной фокальной плоскости до плоскости пленки

Фокальная точка это точка, в которой параллельные световые лучи от бесконечно далекого объекта сходятся после прохождения через объектив. Плоскость, перпендикулярная оптической оси, на которой находится эта точка, называется фокальной плоскостью. На этой плоскости, находящейся там, где расположена пленка в камере, объект виден резко и, как говорят, находится "в фокусе". При обычных фотообъективах, состоящих из нескольких линз, фокус можно отрегулировать таким образом, чтобы световые лучи от объекта, расположенного ближе, чем в "бесконечности", сходились в какой-то точке на фокальной плоскости.

Фокусное расстояние - это расстояние от главного фокуса до оптического центра.

Диафрагма - Фокусное расстояние объектива, деленное на диаметр входного зрачка (видимого со стороны объекта), равно относительному отверстию N (численному значению диафрагмы). Hадпись f/4 обозначает 1/4 фокусного расстояния. Освещенность изображения на пленке обратно пропорциональна квадрату относительного отверстия. Глубина резкости увеличивается, но дифракция уменьшает резкость с увеличением значения диафрагмы.

Минимальное расстояние, на котором объекты изображаются резко, когда объектив сфокусирован на бесконечность h = f^2/(N*c)


Установка вашего объектива на гиперфокальное расстояние означает, что все объекты, расположенные на удалении от половины этого расстояния и до бесконечности, будут в фокусе. Иными словами, наводка на ГР позволяет добиться максимальной глубины резко изображаемого пространства (при резкой "бесконечности").

Именно на ГР наводятся объективы дешевых фикс-фокальных "мыльниц", но знание и умение пользоваться ГР может быть полезным и серьезным фотографам с куда более мощными камерами. Гиперфокальное расстояние зависит от фокусного расстояния объектива и выбранной диафрагмы. Например, объектив с фокусным расстоянием 28 мм при диафрагме f/22 имеет гиперфокальное расстояние 1,37 м. Вы можете рассчитывать, что при установке объектива на 1,37 м глубина резко изображаемого пространства составит от 1,37:2=0,7 м до бесконечности. Еще пример: объектив 50 мм при f/16 установлен на 6 м (см. таблицу), тогда глубина резкости составит от 3 м до бесконечности.

Поскольку у всех объективов есть определенные аберрации и астигматизм, они не могут идеально сводить лучи от точки объекта, чтобы они образовывали истинную точку изображения (т.е. бесконечно малую точку с нулевой площадью). Другими словами, изображения образуются из комплекса точек, имеющих определенную площадь или размеры. Поскольку изображение становится менее резким по мере увеличения размеров этих точек, то эти точки называют "кругами нерезкости". Таким образом, один из факторов, определяющих качество объектива, это самая малая точка, которую он может образовать, или его "минимальный круг нерезкости". Максимально допустимый размер точки на изображении называется "допустимым кругом нерезкости". Для 35мм камер диаметр кружка нерезкости обычно принимают с=0.03мм или с=1/1720 от диагонали кадра, что дает 0.025 для 35мм пленки.


Площадь съемочного плана, выраженная как угол, который может быть воспроизведен объективом в виде резкого изображения. Номинальный диагональный угол зрения определяется как угол, образуемый воображаемыми линиями, связывающими вторую главную точку объектива с обоими концами диагонали изображения (43,2 мм). Данные объектива с электронной фокусировкой обычно включают горизонтальный (36 мм) угол зрения и вертикальный (24 мм) угол зрения.

Угол зрения и круг изображения можно рассчитать как 2*arctan(X/(2*f*(M+1))), где Х - ширина, высота или диагональ кадра, М - увеличение.

Минимальное и максимальное расстояния , на которых объекты изображаются резко могут быть расчитаны следующим образом:
Smin = h * So / (h + (So - f))
Smax = h * So / (h - (So - f))
Если знаменатель равен нулю или отрицателен, то Smax = бесконечности.

ГРИП, глубина резкости — расстояние между ближней и дальней границами пространства, измеренное вдоль оптической оси, при нахождении в пределах которого объекты находятся в фокусе (на снимке получаются достаточно резко).

frontdepth = So - Smin
frontdepth = Ne*c/(M^2 * (1 + (So-f)/h))
frontdepth = Ne*c/(M^2 * (1 + (N*c)/(f*M)))

reardepth = Smax - So
reardepth = Ne*c/(M^2 * (1 - (So-f)/h))
reardepth = Ne*c/(M^2 * (1 - (N*c)/(f*M)))

Задняя дистанция резкости равна бесконечности, если знаменатель равен нулю.

Аберрация - дефекты изображения, которые возникают из-за ограничений при проектировании и изготовлении объективов.

Изображение, cозданное идеальным фотообъективом, должно иметь следующие характеристики:

  1. точка должна быть образована как точка;
  2. плоскость (такая, как стена), перпендикулярная оптической оси, должна быть образована как плоскость;
  3. изображение, образованное объективом, должно иметь такую же форму, как сам объект. Кроме того, с точки зрения выражения изображения объектив должен показать истинный цвет воспроизводимого объекта.

Практически идеальная работа объектива возможна только в том случае, если используются лишь лучи света, поступающие в объектив вблизи оптической оси, и если свет монохроматический (свет только одной конкретной длинны волны). Однако в случае с обычным объективом, где большая апертура используется для получения достаточной яркости и объектив должен сводить вместе лучи, проходящие не только вблизи оптической оси, но от всех частей изображения, крайне трудно создать вышеупомянутые идеальные условия в силу существования следующих помех:

  1. Поскольку большинство объективов построено лишь из линз со сферическими поверхностями, лучи света от одной точки объекта не отображаются на изображении в виде идеальной точки. (Проблема, которой невозможно избежать при сферических поверхностях.)
  2. У различных типов света(т.е., у волн различной длины) разные положения фокальной точки.
  3. Есть много требований, связанных с изменениями угла зрения (в особенности в объективах с переменным фокусным расстоянием и в телефотообъективах).

Основные типы аберраций:

Действие всех аберраций (за исключением дисторсии и дополнительных цветов) можно уменьшить диафрагмированием. Кривизна поверхности не устраняется диафрагмированием.

Дифракция -явление, при котором световые волны попадают в район тени от объекта. В случае с фотообъективом экспозиция часто регулируется путем изменения размера диафрагмы объектива (апертуры), чтобы отрегулировать количество света, проходящего через объектив. Дифракция в фотообъективе происходит при малых диафрагмах, когда ребра диафрагмы мешают прохождению световых волн по прямой линии, в результате чего лучи света проходят близко к ребрам диафрагмы, огибая эти ребра на пути через диафрагму. Дифракция вызывает уменьшение контрастности и разрешающей способности изображения, в результате чего получается неконтрастное изображение. Хотя дифракция имеет тенденцию появляться тогда, когда диаметр диафрагмы меньше определенного размера, на самом деле она зависит не только от диаметра диафрагмы, но и от различных факторов, таких, как длинна волны света, фокусное расстояние и светосила объектива.

ГРИП и гиперфокальное расстояние являются одними из основных понятий, которые необходимо усвоить начинающему фотографу. Давайте разбираться по порядку - что это такое и для чего применяется в фотографии.

ГРИП - это сокращенная аббревиатура от слов Глубина Резко Изображаемого Пространства , она же Глубина резкости. По-английски аббревиатура ГРИП будет называться Depth of Field или DOP . Это область пространства или расстояние между ближней и дальней границей, где объекты будут восприниматься резкими.

Строго говоря, идеальная резкость, с точки зрения физики, может быть только в одной плоскости. Откуда же тогда появляется эта область? Дело в том, что человеческий глаз, несмотря на все свое совершенство, все же не является идеальной оптической системой. Мы не замечаем небольшую размытость изображения до некоторых пределов. Принято считать, что человеческий глаз не замечает размытости точки до 0,1 мм с расстояния 0,25 м. На этом и основаны все расчеты глубины резкости. В фотографии эта небольшая размытость точки называется кружком нерезкости. В большинстве методик расчета за диаметр кружка нерезкости принимается величина 0,03 мм.

Исходя из допущения, что человеческий глаз не замечает некоторую размытость, мы будем иметь уже не плоскость резкости в пространстве (называемую фокальной плоскостью), а некоторую область, которая ограничивается допустимым размытием объектов. Эта область и будет называться глубиной резкости.

От чего зависит глубина резкости

На глубину резко изображаемого пространства оказывают влияние всего два параметра:

  1. Фокусное расстояние объектива
  2. Величина диафрагмы

Чем больше фокусное расстояние объектива, тем меньше глубина резкости. Чем шире открыта диафрагма (меньше диафрагменное число), тем меньше глубина резкости. Проще говоря, для того, чтобы получить максимально большую глубину резкости, нужно использовать широкоугольный объектив и максимально прикрыть диафрагму, сделав ее отверстие меньше. И, наоборот, для получения минимальной ГРИП желательно использовать длиннофокусный объектив и широко открытую диафрагму.



В некоторых источниках, причем позиционируемых, как весьма авторитетные, можно встретить утверждение, что на глубину резкости влияет также и размер матрицы или кадра фотопленки. На самом деле это не так. Сам по себе размер матрицы или кроп-фактор никакого влияния на ГРИП не оказывает. Но почему тогда глубина резкости у компактных фотоаппаратов с маленьким размером матрицы значительно больше, чем у зеркальных фотоаппаратов с большим размером сенсора? Потому что с уменьшением размера матрицы уменьшается и фокусное расстояние объектива, необходимого для получения того же угла зрения! А чем меньше фокусное расстояние, тем глубина резкости больше.

Глубина резкости также зависит от расстояния до объекта съемки - чем ближе к объективу, тем глубина резкости меньше, а размытие заднего плана выражено сильнее.

Как используется глубина резкости

Выбор оптимальной глубины резкости зависит от задач съемки. Самая распространенная ошибка начинающих фотографов, которые недавно приобрели светосильный объектив - снимать все на максимально открытой диафрагме. Когда-то это хорошо, а когда-то нет. Например, если вы снимаете портрет со слишком малой глубиной резкости, вполне может получиться так, что глаза будут в резкости, а кончик носа нет. Красиво ли это? Вопрос спорный. Если же голова человека повернута в сторону, то ближний глаз может оказаться резким, а дальний глаз - размытым. Это вполне допустимо, но у клиента, который не знает, что такое глубина резкости, могут возникнуть определенные вопросы.

Поэтому, для получения оптимальной глубины резкости при портретной съемке, не нужно стремиться всегда открывать диафрагму. Для большинства случаев ее лучше прикрыть на пару ступеней. Тогда и фон будет приятно размыт, и глубина резкости приемлемая. При съемке групповых портретов особенно важно обеспечить такую ГРИП, чтобы все люди получились резкими. Диафрагма в таком случае прикрывается сильнее, до значения f/8 -f/11 при съемке вне помещений и хорошем освещении.

Гиперфокальное расстояние

Как быть, если нам нужно, к примеру, сфотографировать пейзаж, где объекты переднего и заднего плана должны быть одинаково резкими? Здесь на помощь придет умение использовать гиперфокальное расстояние. Это расстояние до передней границы резко изображаемого пространства при фокусировке объектива на бесконечность. Иными словами, это та же ГРИП, но при фокусировке на бесконечность.

В зависимости от того, где важнее получить максимальную резкость - на переднем плане или на максимально удаленных объектах, фокусируются либо на гиперфокальное расстояние, либо на бесконечность. В первом случае более резкими получатся детали переднего плана, во втором - удаленные объекты. Гиперфокальное расстояние также зависит от фокусного расстояния объектива и диафрагмы. Чем больше закрыта диафрагма и меньше фокусное расстояние объектива - тем меньше гиперфокальное расстояние.


На этом снимке резок как передний, так и задний план

Расчет ГРИП и гиперфокального расстояния

Для расчета протяженности ГРИП и гиперфокального расстояния обычно применяют специальные таблицы. Но я рекомендую воспользоваться более современным способом, а именно, специализированной программой . Работает она онлайн прямо в браузере. Программа очень проста в использовании, и в ней легко разобраться самостоятельно. А самое главное, что поможет вам правильно выбирать ГРИП и гиперфокальное расстояние - это постоянная осознанная практика!

Для того чтобы вычислить гиперфокальное расстояние и определить границы резко изображаемого пространства при разных дифрагментарных числах и дистанциях фокусировки, можно использовать ГРИП калькулятор - калькулятор Глубины Резко Изображаемого Пространства. В чём практическая польза калькулятора? Он подскажет, куда нужно навести объектив и какую нужно установить диафрагму, чтобы вся сцена оказалась в пределах ГРИП.

ГРИП калькулятор. Как пользоваться?

Чтобы правильно пользоваться ГРИП калькулятором, вам нужно знать и уметь следующее: правильно ввести параметры объектива и фотоматрицы и нажать кнопку "Построить таблицу". В результате - вы получите таблицу, где столбцы будут соответствовать различным значениям диафрагмы, а строки - дистанциям фокусировки. В самой нижней строке таблицы указываются значения гиперфокального расстояния в соотношении с каждым из дифрагментарных чисел. Расстояние до ближней и дальней границ резко изображаемого пространства рассчитывается для каждой комбинации.

Замечания для вводимых параметров:

Разрешение

При условии, что разрешение вашей фотокамеры в мегапикселях, а камера позволяет снимать с разрешением меньше min или, если, по каким-то соображениям, надумаете уменьшить при редактировании разрешение снимка,- вам обязательно следует указать окончательное разрешение.

Кроп-фактор

Что указывает на то, что матрица вашей камеры меньше полнокадровой матрицы? Да, это кроп-фактор, и он будет равен 1 при использовании полнокадровой фотокамеры.

Фокусное расстояние

В случае, когда вы уже выбрали необходимый кроп-фактор, не следует указывать эквивалентное фокусное расстояние, т.к. перерасчёт будет сделан автоматически. А называться это будет так: истинное фокусное расстояние объектива вашей фотокамеры!

Следует заметить, что при некоторых обстоятельствах целесообразность применения ГРИП калькулятора резко падает, чаще такие ситуации возникают по мере увеличения фокусного расстояния. Прежде всего, используемые такого рода таблицы ориентированы на широкоугольную оптику, а для получения бесконечной глубины резкости длиннофокусные объективы чаще не предназначены.

Светосила

Параметр min число диафрагмы, что есть max величина относительного отверстия объектива вашей камеры, не влияет на вычисления и служит только для того, чтобы сделать адекватный выбор диапазона диафрагменных чисел. А в тех случаях, когда используются зум-объективы с переменной светосилой, резонно указывать max светосилу для выбранного фокусного расстояния.

Диапазон дистанций фокусировки

Опция диапазона дистанций фокусировки приведена здесь с единственной целью, чтобы продемонстрировать возможность выбора: нормальный диапазон от 1м и диапазон для съёмки крупных планов от 10см до 1м. При этом нужно учитывать, что расчёт ГРИП для макросъёмки не всегда имеет смысл, а причина в том, что в таких случаях крайне мала глубина резкости при близких дистанциях фокусировки.

Диаметр кружка рассеяния

Исходя из моего личного опыта и выбранного мною стандарта, размер кружка окружности или, как ещё иногда говорят "диаметр кружка рассеяния", равен диагонали пикселя матрицы. Но у вас у каждого есть возможность воспользоваться традиционным подходом, когда в основу вычислений закладывается не длина диагонали кадра, а всего лишь разрешение фотокамеры.

Дифракция

Параметр дифракции многие представленные в internet ГРИП калькуляторы не учитывают в расчётах, хотя, конечно, встречаются версии, когда калькулятор знает о дифракции и учитывает её. Но надо иметь в виду, что при выборе этой опции диафрагменные числа, превышающие дифракционно-ограниченное значение, будут всегда выделяться красным цветом. При этом, в качестве диаметра кружка нерезкости для диафрагменных чисел, будет использоваться соответствующий им диск Эйри. И становится очевидным, что под влиянием дифракции глубина резкости будет возрастать, но происходить это будет в результате падения общего разрушения. Выбор за вами, лично я чаще не закрываю диафрагму больше, чем на две ступени дифракционно-ограниченного значения.

Что такое ГРИП ? Пожалуй, все фотографы знают, что Г лубиной Р езко И зображаемого П ространства называется расстояние между ближней и дальней границами пространства, которое принято считать резким. Но как понять, где проходят эти границы?

ГРИП — условное понятие. Реально какой-либо конкретно очерченной глубины резкости не существует. Есть лишь плоскость фокусировки, в которой лучи, проходящие через объектив фокусируются чётко. Ближе и дальше от этой плоскости, изображение образуют пятна, которые называются «кружками нерезкости».


Чем дальше от плоскости фокусировки находятся предметы, тем большими пятнами нерезкости они будут формироваться на плоскости матрицы или плёнки. Но если кружок нерезкости увеличивается постепенно, то где пролегают границы ГРИП? Мы можем лишь условно определить минимальный размер пятна, которое мы будем считать нерезким, и отталкиваясь от этого, посчитать глубину резкости.

Сейчас, для 35мм плёнки этот стандарт определяется пятном нерезкости диаметром в ~30 микрон. Но, наиболее часто используется размер не в микронах. Самое распространённое значение кружка нерезкости — 1/1500 от диагонали матрицы или плёнки. Если перевести его в микроны, это будет примерно 28,8 µm. К сожалению, все эти стандарты безнадёжно устарели, и чтобы понять это, достаточно взглянуть на мою схему:

Оранжевым цветом тут обозначен пиксель матрицы цифрового фотоаппарата,такого
как Canon EOS 5D Mark II (синий квадратик — Canon EOS 7D). Зелёным — кружок
нерезкости диаметром в 30 микрон. Красная окружность — диаметр
кружка нерезкости, равного 1/1500 диагонали 35мм камеры (28 микрон).

Что может быть плохого в устаревших понятиях о кружке нерезкости? Дело в том, что от размера кружка нерезкости отталкиваются при расчёте ГРИП как фотографы, так и производители фототехники (например, при нанесении шкалы ГРИП на оптику), а также всевозможные калькуляторы ГРИП. В результате устаревших стандартов, при расчётах ГРИП, пользователь получает неверные данные, что может привести к браку во время важной съёмки. Безусловно, производители знают, что эти данные устарели, но почему же тогда никто не меняет стандарты? Ниже я привожу ответ на этот вопрос, от известнейшего производителя оптики, компании Carl Zeiss:

Carl Zeiss о стандартах кружка нерезкости:
(мой вольный перевод части статьи с англ.)

Представьте себе кончик булавки нулевого размера, который находится чётко в плоскости фокусировки. На плёнке он будет изображаться точно таким же размером, не увеличиваясь за счёт размытия объектива. Теперь переместите иголку в сторону камеры, и смотрите, как будет увеличиваться её изображение, из-за размытия. Как только диаметр кончика булавки вырастет до 30 µm, остановитесь. Это и будет передняя граница ГРИП. Теперь повторите тоже самое, но в противоположную сторону. Пройдя мимо плоскости идеальной резкости Вы упрётесь в дальнюю границу ГРИП.
Все школьные учебники в мире объясняют этот принцип и рассказывают похожие истории, хотя, возможно и с другими примерами. И все производители в мире, в том числе и Carl Zeiss должны придерживаться этих принципов и международных стандартов, при изготовлении шкалы ГРИП и таблиц. Но школьные учебники не говорят о следующих фактах:
Кружок нерезкости в 30 микрон, эквивалентен разрешению 30 пар линий на миллиметр (lp/mm). Стандарт кружка нерезкости был установлен еще задолго до Второй Мировой войны и ориентировался на «нормальное» качество, удовлетворительное для плёнки. Тем временем прошли десятилетия, и сегодняшние цветные плёнки легко разрешают 120 lp/mm и даже больше. Kodak Ektar 25 and Royal Gold 25 до 200 lp/mm.
Полноцветный процесс печати тоже значительно улучшился, повышая наши требования к качеству. Однако стандарт глубины резкости остался неизменным.
Все это абсолютно нормально, ведь большинство пользователей — любители. Они делают свои снимки без штатива, и печатают максимум 4 на 6 дюймов (10 на 15 см, прим.-Владимир Медведев). Имейте ввиду, что такие пользователи составляют 90% всех фотографов. Поэтому не стоит ожидать кардинального изменения стандартов ГРИП в ближайшее время, т.к. у производителей нет достаточно веских мотивов, чтобы изменять шкалу ГРИП.

Интересно, что несмотря на свой консерватизм и пессимизм по поводу «любителей, которые не печатают фотографии больше чем 10 на 15», в истории объективов Carl Zeiss, уже был прецедент по смене допусков для шкалы ГРИП. Если на старых объективах шкала рассчитывалась исходя из 1/1000 диагонали 35мм плёнки (или 43 микрона), то на новых, она рассчитывается уже исходя из 1/1500 диагонали матрицы (28 микрон), что, впрочем тоже не даёт достаточной точности. Тем не менее, прецедент интересный и заслуживает внимания, давайте посмотрим, как это выглядело.

У меня есть два объектива Carl Zeiss Distagon 21 mm F/2.8 T* . Один старого выпуска, другой — современный вариант. Сфокусируемся на обоих вариантах примерно на 0,6 метра, и посмотрим, что входит в ГРИП, согласно шкале объектива. Для наглядности, возьмём значение диафрагмы f/22.

Старая версия объектива
Согласно шкале старого объектива, в ГРИП попадают объекты, находящиеся от нас на расстоянии 0,4 м (с огромным запасом), 2 метра и дальше, вплоть до бесконечности!

Новая версия объектива
Ужесточив допуски в реинкарнации легендарного объектива, Цейсс вычеркнул из ГРИП и 2 метра, и бесконечность, и даже 0,4 метра балансирует на самой грани!

Хочу особо подчеркнуть, что даже новый объектив создавался исходя из кружка нерезкости в 1/1500 от диагонали матрицы, а это та самая огромная красная окружность на моей схеме в начале статьи. Поэтому даже показаниям этой, современной, шкалы, не стоит доверять ответственные расчёты.

Давайте посмотрим, как это всё выглядит на практике. Возьмём неплохой показательно-резкий объектив, тот же Carl Zeiss Distagon 21 mm F/2.8 T*, выберем самую обычную съёмочную ситуацию. Например, нам надо сфотографировать многоплановый пейзаж, чтобы в резкости был и передний план и, что важно, задний план. Для этого воспользоваться любым калькулятором ГРИП. По сути нам нужно определить гиперфокал. Пейзаж мы снимаем на относительно закрытой диафрагме, пускай это будет f/8. Большинство калькуляторов нам предложат навестись на 1,9 метра. В этом случае, по мнению калькуляторов, резкость будет от ~0,9 м до бесконечности.

Попробуем последовать их совету. Рулеткой отмеряем до стены 1,9 метра, ставим штатив и фокусируемся с помощью Live View. Потом закрываем диафрагму до f/8, переводим объектив на пейзаж (бесконечно-удалённые объекты) и снимаем не перефокусируясь. Для чистоты эксперимента лучше всего выставить преподъём зеркала и снимать с помощью пульта. После этого снова включаем Live View, и с его помощью перефокусируемся для достижения идеальной резкости на удалённых объектах. Снимаем ещё раз. Теперь сравним результаты.

Посмотрите внимательно на вырезанные мной 100% кропы с каждого кадра. Размытый кадр был сделан при фокусировке на 1,9 м, а резкий — на 4 метра. Из-за неправильного определения кружка нерезкости, калькулятор считает, что оба кадра полностью в резкости. Но это устаревшие стандарты.

Теперь взгляните на схему рядом. Я добавил там сетку пикселей моей камеры. При использовании устаревших стандартов в 1/1500 от диагонали матрицы, я, можно сказать согласился, что кружок нерезкости будет полностью перекрывать 9 пикселей моей матрицы (обведённых на схеме красным квадратом)! Более того, кружок серьёзно затрагивает ещё плюс 12 пикселей вокруг! И Вы готовы считать это резким? А ведь кружок в реальности не один - их множество, они пересекаются друг с другом, сливаются, и... в итоге мы получаем то, что получаем.

Это десятикратное увеличение фрагмента из фотографий выше.
Первый слайд: фокусировка на 4,0 метра
Второй слайд: фокусировка на 1,9 метра
Третий слайд: в точном масштабе показан кружок нерезкости.

Мы разобрались, что прежние стандарты не годятся для определения размеров кружка нерезкости. Но как тогда выбрать новые стандарты? Может 1/2000 диагонали? Или 1/3000? Предлагаю полностью отказаться от вычисления кружка нерезкости в зависимости от диагонали. Я думаю, что на сегодняшний момент логичнее всего отталкиваться от размера пикселей, если мы хотим получить максимум из той матрицы, за которую заплатили. Иначе зачем покупать 20-ти мегапиксельные матрицы, и не использовать их возможности? Я полностью обновил калькулятор ГРИП , рассчитав точные параметры для каждой матрицы , в чём мне помогла моя таблица характеристик матриц цифровых фотоаппаратов .


Так выглядит в масштабе новый кружок нерезкости, при проецировании на любую матрицу .

В заключение хочу сказать, что эта статья вовсе не позиционируется как революция в фотографии, бином Ньютона, или панацея от всех бед. Но теперь, пользуясь обновлённым калькулятором ГРИП , Вы можете быть уверены, что ГРИП не испортит Ваши снимки и Ваше впечатление от объективов. А помимо всех этих плюсов, пользоваться калькулятором теперь стало ещё проще, чем раньше.