05.03.2020

Электронные и графические формулы молекул. Лабораторно - исследовательская работа "составление электронных формул атомов химических элементов и графических схем, заполнение их электронами". Особенности электронного строения атомов хрома, меди и некоторых


Алгоритм составления электронной формулы элемента:

1. Определите число электронов в атоме используя Периодическую таблицу химических элементов Д.И. Менделеева .

2. По номеру периода, в котором расположен элемент, определите число энергетических уровней; число электронов на последнем электронном уровне соответствует номеру группы.

3. Уровни разбить на подуровни и орбитали и заполнить их электронами в соответствии с правилами заполнения орбиталей :

Необходимо помнить, что на первом уровне находится максимум 2 электрона 1s 2 , на втором - максимум 8 (два s и шесть р: 2s 2 2p 6 ), на третьем - максимум 18 (два s , шесть p , и десять d: 3s 2 3p 6 3d 10 ).

  • Главное квантовое число n должно быть минимально.
  • Первым заполняется s- подуровень, затем р-, d- b f- подуровни.
  • Электроны заполняют орбитали в порядке возрастания энергии орбиталей (правило Клечковского).
  • В пределах подуровня электроны сначала по одному занимают свободные орбитали, и только после этого образуют пары (правило Хунда).
  • На одной орбитали не может быть больше двух электронов (принцип Паули).

Примеры.

1. Составим электронную формулу азота. В периодической таблице азот находится под №7.

2. Составим электронную формулу аргона. В периодической таблице аргон находится под №18.

1s 2 2s 2 2p 6 3s 2 3p 6 .

3. Составим электронную формулу хрома. В периодической таблице хром находится под №24.

1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 5

Энергетическая диаграмма цинка.

4. Составим электронную формулу цинка. В периодической таблице цинк находится под №30.

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10

Обратим внимание, что часть электронной формулы, а именно 1s 2 2s 2 2p 6 3s 2 3p 6 - это электронная формула аргона.

Электронную формулу цинка можно представить в виде.

Электронные формулы фиксируют занятые электронами уровни и подуровни и количество электронов на них. В электронных формулах используется обозначение уровней и подуровней, т.е. первым, цифровым символом обозначают уровень (номер), а вторым буквенным символом (s, p, d, f) обозначают подуровни. Число электронов на подуровне обозначают верхним первым индексом.

Например: 1Н 1S , для азота N 7 1S 2 2S 2 2p 3

Электронно-графические формулы изображают атом в виде совокупности орбиталей, которые называют квантовыми ячейками. Например, для азота 1S 2 2S 2 2p 3

S-подуровень

S= -1/2 S = +1/2


P-подуровень, l=1 m=-1,m=0,m=+1

Заполнение орбиталей – ячеек электронами осуществляется в соответствии с принципом Паули, минимизация энергии и правилами Хунда

При данном значении l электроны в атоме располагаются так, что суммарное спиновое число их максимально.

∑S = 1/2+ 1/2+1/2 =3/2

Если заполнили так, т.е. s = +1/2 s = - 1/2, спаренные электроны

∑s= 1/2 + (-1/2) + 1/2 =1/2

Химические свойства атомов определяются в основном строением наружных электронных уровней, которые называются валентными.

Заполненные энергетические подуровни, соответствующие электронным структурам атомов благородных газов, называют электронным остовом. Например: для натрия, имеющего электронную формулу 1S 2 2S 2 2p 6 благородного газа неона. Сокращенно электронную формулу благородного газа обозначают его химическим символом в квадратных скобках, например: 1S 2 2S 2 2p 6 =

Это позволяет упростить запись электронных формул, например для калия вместо 1S 2 2S 2 2p 6 3S 2 3p 6 4S 1 можно написать 4S 1 . Одновременно эта запись наглядно выделяет валентные электроны, определяющие химические свойства атомов элемента.

В электронно-графических (структурных) формулах в отличие от электронных изображают не только заполненные, но и вакантные орбитали валентных подуровней. Это позволяет предсказать изменение валентности элемента в результате перехода его атома в возбужденное состояние, что обозначают символом соответствующего элемента со звездочкой.



Например: 15P * 3S 2 3P 3 n=3 ↓ S ↓↓↓ P

В невозбужденном состоянии атом фосфора имеет три неспаренных электрона на p-подуровне. При переходе атома в возбужденное состояние электронная пара s-подуровня может разделиться, и один из электронов с S- подуровня может переходить на d-подуровень. Валентность фосфора при этом меняется с трех в основном состоянии до пяти в возбужденном состоянии.

Контрольные вопросы

1 Какие элементарные частицы входят в состав атома?

2 Что такое электрон, протон, нейтрон?

3 Объясните, почему у многих элементов при одном и том же заряде ядра атома могут быть разные массовые числа. Почему у ряда элементов, например у хлора, нецелочисленные атомные массы?

4 Дайте характеристику квантовым числам. Почему в атоме не могут быть два электрона с одинаковыми квантовыми числами? Принцип Паули.

5 Объясните физический смысл графических изображений

S и р-орбиталей: S p

6 Изобразите электронно-структурные формулы атомов углерода, азота и кислорода. Подсчитайте суммы спиновых квантовых чисел электронов в этих атомах. Как изменяются эти суммы при нарушении правила Хунда.

7 Напишите электронную и электронно-структурную формулу атома бора. Какую дополнительную информацию содержит электронно-структурная формула по сравнению с электронной.

8 Правило Клечковского. Какой энергетический уровень и подуровень заполняется вперед 4S или 3d, 5S или 4p, 4f или 6p?

9 Какое основное отличие р-орбиталей от d-орбиталей?

10 Какое число электронов может находиться в энергетических состояниях 2S, 3p, 3d, 5f?

11 Опишите форму орбитали, характеризующейся квантовыми числами: а) n=3, 1=0, m=0 ; б) n=3, 1=1, m=0+1-1; в) n=3, 1=2, m=0+1-1+2-2 Приведите символы орбиталей

12 Охарактеризуйте набором квантовых чисел каждую из следующих орбиталей: 1S, 2p, 3d.

13 Сформулируйте правила, которыми определяется число орбиталей и электронов данного электронного слоя. Например 1=0,1,2 n=1,2,3

14 Какова максимальная емкость электронных слоев К, М, L, N?

15 Зависит ли число орбиталей с данным значением 1 от номера энергетического уровня? Приведите буквенные обозначения орбиталей с указанными значениями 1.

Основная

1 Хомченко Г.П., Цитович И.К. Неорганическая химия. М.: Высшая школа, 1998, глава 2, стр 53-75

2 Князев Д.А., Смарыгин С.Н. Неоганическая химия. М.: Высшая школа, 1990, глава 10, стр 102 -112

Дополнительная

3 Глинка Н.Л. Общая химия.(Под ред. А.И.Ермакова, - 28-е изд., перераб. и доп. – М.; Интеграл-Пресс, 2000 – 728с.)

4 Глинка Н.Л. Задачи и упражнения по общей химии. М.;1988.

5 Павлов Н.Н Теоретические основы общей химии. М.,Высшая химия 1978.

ОПРЕДЕЛЕНИЕ

Электронная формула (конфигурация) атома химического элемента показывает расположение электронов на электронных оболочках (уровнях и подуровнях) в атоме или молекуле.

Наиболее часто электронные формулы записывают для атомов в основном или возбужденном состоянии и для ионов.

Существует несколько правил, которые необходимо учитывать при составлении электронной формулы атома химического элемента. Это принцип Паули, правила Клечковского или правило Хунда.

При составление электронной формулы следует учитывать, что номер периода химического элемента определяет число энергетических уровней (оболочек) в атоме, а его порядковый номер количество электронов.

Согласно правилу Клечковского , заполнение энергетических уровней происходит в порядке возрастания суммы главного и орбитального квантовых чисел (n + l), а при равных значениях этой суммы - в порядке возрастания n:

1s < 2s < 2p < 3s < 3p < 4s ≈ 3d < 4p < 5s ≈ 4d < 5p < 6s ≈ 5d ≈ 4f < 6p и т.д.

Так, значению n + l = 5 соответствуют энергетические подуровни 3d (n = 3, l=2), 4d (n=4, l=1) и 5s (n=5, l =0). Первым из этих подуровней заполняется тот, у которого ниже значение главного квантового числа.

Поведение электронов в атомах подчиняется принципу запрета, сформулированному швейцарским ученым В. Паули: в атоме не может быть двух электронов, у которых были бы одинаковыми все четыре квантовых числа. Согласно принципу Паули , на одной орбитали, характеризуемой определенными значениями трех квантовых чисел (главное, орбитальное и магнитное), могут находиться только два электрона, отличающиеся значением спинового квантового числа. Из принципа Паули вытекает следствие : максимально возможное число электронов на каждом энергетическом уровне равно удвоенному значению квадрата главного квантового числа.

Электронная формула атома

Электронную формулу атома изображают следующим образом: каждому энергетическому уровню соответствует определенное главное квантовое число n, обозначаемое арабской цифрой; за каждой цифрой следует буква, соответствующая энергетическому подуровню и обозначающая орбитальное квантовое число. Верхний индекс у буквы показывает число электронов, находящихся в подуровне. Например, электронная формула атома натрия имеет следующий вид:

11 N 1s 2 2s 2 2p 6 3s 1 .

При заполнение электронами энергетических подуровней также необходимо соблюдать правило Хунда : в данном подуровне электроны стремятся занять энергетические состояния таким образом, чтобы суммарный спин был максимальным (это наиболее наглядно отражается при составлении электронно-графических формул).

Примеры решения задач

ПРИМЕР 1

Задание Запишите электронные формулы атомов элементов с атомными номерами 7, 16, 21.
Ответ Химический элемент с атомным номером 7 - это азот. Он находится во втором периоде, следовательно, имеет две орбитали. Расположение азота в V группе Периодической таблицы свидетельствует о наличии на внешнем энергетическом уровне 5-ти валентных электронов:

1s 2 2s 2 2p 3 .

Химический элемент с атомным номером 16 - это сера. Она находится в третьем периоде, следовательно, имеет три орбитали. Расположение серы в VI группе Периодической таблицы свидетельствует о наличии на внешнем энергетическом уровне 6-ти валентных электронов:

16 S) 2) 8) 6 ;

1s 2 2s 2 2p 6 3s 2 3p 4 .

Химический элемент с атомным номером 21 - это скандий. Он находится в четвертом периоде, следовательно, имеет четыре орбитали. Расположение скандия в III группе Периодической таблицы свидетельствует о наличии на внешнем энергетическом уровне 3-х валентных электронов:

21 Sc) 2) 8) 8) 3 ;

1s 2 2s 2 2p 6 3s 2 3p 6 3d 2 4s 2 .

Электронное строение атома можно показать электронной формулой и электронно-графической схемой. В электронных формулах последовательно записываются энергетические уровни и подуровни в порядке их заполнения и общее число электронов на подуровне. При этом состояние отдельного электрона, в частности его магнитное и спиновое квантовые числа, в электронной формуле не отражено. В электронно-графических схемах каждый электрон «виден» полностью, т.е. его можно охарактеризовать всеми четырьмя квантовыми числами. Электронно-графические схемы обычно приводятся для внешних электронов.

Пример 1. Напишите электронную формулу фтора, состояние внешних электронов выразите электронно-графической схемой. Сколько неспаренных электронов в атоме этого элемента?

Решение. Атомный номер фтора равен девяти, следовательно, в его атоме имеется девять электронов. В соответствии с принципом наименьшей энергии, пользуясь рис. 7 и учитывая следствия принципа Паули, записываем электронную формулу фтора: 1s 2 2s 2 2p 5 . Для внешних электронов (второй энергетический уровень) составляем электронно-графическую схему (рис. 8), из которой следует, что в атоме фтора имеется один неспаренный электрон.

Рис. 8. Электронно-графическая схема валентных электронов атома фтора

Пример 2. Составьте электронно-графические схемы возможных состояний атома азота. Какие из них отражают нормальное состояние, а какие – возбужденное?

Решение. Электронная формула азота 1s 2 s 2 2p 3 , формула внешних электронов: 2s 2 2p 3 . Подуровень 2p незавершен, т.к. число электронов на нем меньше шести. Возможные варианты распределения трех электронов на 2р-подуровне показаны на рис. 9.

Рис. 9. Электронно-графические схемы возможных состояний 2р-подуровня в атоме азота.

Максимальное (по абсолютной величине) значение спина (3 / 2) соответствует состояниям 1 и 2, следовательно, они являются основными, а остальные – возбужденные.

Пример 3. Определите квантовые числа, которыми определяется состояние последнего электрона в атоме ванадия?

Решение. Атомный номер ванадия Z = 23, следовательно, полная электронная формула элемента: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 3 . Электронно-графическая схема внешних электронов (4s 2 3d 3) такова (рис. 10),:

Рис. 10. Электронно-графическая схема валентных электронов атома ванадия

Главное квантовое число последнего электрона n = 3 (третий энергетический уровень), орбитальное l = 2 (подуровень d). Mагнитное квантовое число для каждого из трех d-электронов различно: для первого оно равно –2, для второго –1, для третьего – 0. Спиновое квантовое число у всех трех электронов одинаково: m s = + 1 / 2 . Таким образом, состояние последнего электрона в атоме ванадия характеризуется квантовыми числами: n = 3; l = 2; m = 0; m s = + 1 / 2 .



7. Спаренные и неспаренные электроны

Электроны, заполняющие орбитали попарно, называются спаренными, а одиночные электроны называются неспаренными . Неспаренные электроны обеспечивают химическую связь атома с другими атомами. Наличие неспаренных электронов устанавливается экспериментально изучением магнитных свойств. Вещества с неспаренными электронами парамагнитны (втягиваются в магнитное поле благодаря взаимодействию спинов электронов, как элементарных магнитов, с внешним магнитным полем). Вещества, имеющие только спаренные электроны, диамагнитны (внешнее магнитное поле на них не действует). Неспаренные электроны находятся только на внешнем энергетическом уровне атома и их число можно определить по его электронно-графической схеме.

Пример 4. Определите число неспаренных электронов в атоме серы.

Решение. Атомный номер серы Z = 16, следовательно, полная электронная формула элемента: 1s 2 2s 2 2p 6 3s 2 3p 4 . Электронно-графическая схема внешних электронов такова (рис. 11).

Рис. 11. Электронно-графическая схема валентных электронов атома серы

Из электронно-графической схемы следует, что в атоме серы имеется два неспаренных электрона.

Квантовые числа

n – главное квантовое число, оно определяет энергию электронов и размер электронного облака, принимает целочисленные значения. Электроны с одинаковым n образуют энергетический уровень. (n = № периода в табл. Менделеева)

L – орбитальное квантовое число определяет форму орбитали и принимает значение от 0 до n-1

n = 1, L = 0 - S-орбиталь (шар)

n = 2, L = 0 ; 1 - S и Р – орбиталь (гантель)

n = 3, L = 0 ; 1 ; 2 - S,P и d – орбиталь (сложная лепестковая форма) (L=0 – S орбит., L=1 - P орбиталь, L=2 – d орбиталь)

n = 4, L = 0 ; 1 ; 2 ; 3 (F – орб. еще более сложная)

m – магнитное квантовое число, определяет пространственную ориентацию орбитали, принимает значение от –L до +L . L=0 m=0 1(одна) S-орбиталь L=1 m= -1;0;1 3 P-орбиталей L=2 m=-2,-1,0,1,2 5 d-орб. и т.д.

- спиновое квантовое число, характеризует движение электрона вокруг своей оси и имеет 2 ориентации: «право», «лево» = + или-

С помощью 4-х квантовых чисел можно описать состояние любого электрона в вакууме, для этого составляют электронные формулы атомов.

Правила составления электронных формул атомов элементов

1. Принцип наименьшей энергии: электроны располагаются на тех орбиталях в атоме, которые характеризуются наименьшей энергией. (Правило Клечковского) Наименьшей энергией обладает орбиталь с наименьшим квантовым числом (n +L ), если (n +L ) у орбиталей равны, наименьшую энергию имеет имеет та у которой меньше n.

2. Принцип Паули: в атоме не может быть 2-х электронов с одинаковым набором всех 4-х квантовых чисел, это значит, что на одной орбитали может поместиться только 2 электрона с антипараллельными спинами.

S подуровень – 1 орбиталь 2е

P подуровень – 3 орбитали 6е

d подуровень – 5 орбиталей 10е

f подуровень – 7 орбиталей 14е

3. Правило Хунда: сумарное спиновое число на подуровене должно быть максимальным, т.е при заполнении подуровня, сначала на каждую орбиталь садится по одному электрону и у всех одно направление спина (направление вращения), а когда подуровень заполнен, на каждую орбиталь подсаживается еще один электрон уже с противоположным спином.

4) Периодическая система (таблица Менделеева)

Свойства простых веществ, а так же формы и свойства соединений элементов находятся в периодической зависимости от заряда ядра и электронной конфигурации атомов элемента. Периодическая система является графическим изображением периодического закона, она состоит из 7-ми периодов (3из них малые 1-й,2 и 3-й) и 8-ми групп.

Физический смысл периодического закона заключается в периодическом изменении свойств элементов в результате периодически возобновляющихся сходных электронных оболочек атомов при возрастании главного квантового числа n

(n = № периода)

В группах расположены элементы с периодически повторяющейся электронной структурой внешнего энергетического уровня и похожими свойствами.

Например: I-гр, А-подгр. :

Na 3s -они все щелочные металлы,

K 4s у них одинаковая структура внешнего

Rb 5s энергетич. уровня s

Cs 6s Металлическая активность возрастает

Fr 7s по ходу вниз

Каждый период (кроме 1-го) начинается двумя s-элементами, заканчивается шестью элементами, причем в малых периодах св-ва элементов изменяются резко.

По табл. вниз металлические св-ва возрастают, т.е легче отдаются электроны, по табл. в право мет. св-ва уменьшаются.

В IV периоде между s и p элементами появляются 10 d-элементов, а в VI и в VII периодах f- элементы.

Электронная структура атомов элементов и их положение в периодической системе тесно взаимосвязаны.

1) Порядковый № элемента =Z(заряду) его ядра и числу электронов в электронной структуре атома.

Например: Z=30(Zn), 30e; 1s,2s,2p,3s,3p,3d,4s (d-элемент)

2)Каждый период начинается с заполнения нового энергетического уровня, поэтому № пер. = главному квантовому числу внешнего энергетического уровня в электронной структуре атома. 4s (Zn)-IVпериод

3)№ гр. совпадает с числом валентных электронов у атомов.

5) Периодически изменяющиеся св-ва атомов элементов:

1. Радиусы атомов : атом не имеет четких границ из за волнового движ. электрона. Орбитальный радиус атома )≈ теоретически рассчитанному расстоянию от ядра атома до главного максимума плотности внешнего электронного облака. Чаще используют эффективные радиусы атомов ( (это межъядерные расстояния в молекулах).

· У металлических элементов , а у неметаллических (особенно у газов) они значительно отличаются.

В периодах (слева направо) r атомов уменьшаются из-за роста заряда их ядер, а в группах (сверху вниз) – растут из за роста числа электронных слоёв, но эта зависимость немонотонна из за особенностей строения атомов.

· Немонотонность изменений св-в элементов по периоду называется внутренней периодичностью, а в группе -вторичной периодичностью

2. Энергия ионизации и сродство к электрону:

Энергия ионизации - это энергия, необходимая для отрыва электрона от нейтрального невозбуждённого атома.

- энергия невозбужд. атома < (при отрыве каждого последующего электрона нужно тратить все больше и больше энергии)

Энергия ионизации характеризует восстановительные св-ва атомов элементов: Чем меньше у атома , тем больше восстановительные св-ва элемента. зависит от атомного радиуса и заряда ядра элемента и от электронной конфигурации атомов элемента. Чем меньше радиус и больше заряд, тем выше значение .

В периоде (слева направо) значение I растёт, но немонотонно. У металлов I меньше чем у неметаллов.

В группах (сверху вниз) значение в целом уменьшается.

F-энергия сродства к электрону – это энергетический эффект присоединения электрона к нейтральному атому. F может быть (+) или (-): СL+e→ (выделяется) Не+е= = -0.22 эв (поглащается)

F характеризует окислительные св-ва атомов элементов: чем выше F, тем выше окислительные св-ва. F зависит от r (радиуса атома), Z (заряда) и от электронной конфигурации атомов элемента. Мах F у р-элементов VIIA группы, Min F у инертных газов.

Электроотрицательность – способность атома элемента оттягивать на себя электроны при образовании хим. связи с атомами других элементов. ЭО = 1/2 (1+F)

В периодах (слева направо) ЭО в целом растет, в главных подгруппах (сверху вниз) уменьшается, но зависимость не монотонна.

Виды химической связи

Ковалентная связь – связь возникающая за счет образования общих электронных пар.

В двухатомных молекулах ( образуется неполярная ковалентная связь, т.к. общая электронная пара в одинаковой степени принадлежит обоим атомам. F + F → F F

Одинарная ковалентная связь - атомы связаны одной общей электронной парой, если двумя, то связь двойная , если тремя то тройная . N + N → N N (число неспареных электронов 8-N = 3, N-номер группы)

Полярная ковалентная связь – связь между атомами различных элементов неметаллов (HCL, , N )

Общие электронные пары в таких соединениях смещены к атомам с большей электроотрицательностью.

Ионная связь – связь возникающая между ионами, за счет электростатического притяжения.

Ионная связь возникает между атомами элементов, резко отличающимися по величине электроотрицательности. Например между типич. металлами и типич. неметаллами (Na CL, Na, F)

Кроме того ионная связь образуется между атомами металла и кислорода в солях кислотосодержащих кислот и в щелочах.

Металлическая связь – связь в металлах между атом-ионами по средством обобществленных электронов.

Атомы металлов на внешнем уровне содержат мало электронов. Эти электроны легко отбрасываются, а атомы превращаются в положительные ионы. Оторвавшиеся электроны перемещаются от одного иона к другому связывая их в единое целое.

7) Электрод – это металл или др. токопроводящий материал, погруженный в раствор его соли (электролита), а реакция протекающая на нём, называется электродной реакцией . Если металл привести в контакт с раствором соли, то ионы , гидратируясь, переходят с поверхности металла в раствор, и дегидратируясь, обратно, из раствора в металл (под действием сил кристаллической решётки). Когда скорости этих процессов становятся равными, образуется ДЭС (двойной электро-слой) и возникает электродный потенциал.

Электродный потенциал (𝞿) -это разность электростатических потенциалов между электролитом и электродом.

Значение электродного потенциала зависит от природы веществ – участников электродного процесса, от концентрации этих веществ, от t и определяется по уравнению Нернста.

Уравнение Нернста : = + ox, Red – концентрации окислительной и восстановительной форм

–число электронов, принимающих участие в процессе.

– cтандартный электродный потенциал (тбл. величина)

Уравнение Нернста для металлических электродов: +

для окислительно-восстановительных электродов:

для водородного электрода:

(условно принято) – это НВЭ (нормальный водородный электрод) принят в качестве эталона, для сравнения электродных потенциалов различных электрохимич. систем.

Условие протекания окислительно-восстановительной реакции:

8) Гальванический элемент – прибор, в котором за счет самопроизвольно идущей реакции окисления-восстановления получается электрический ток. Он представляет собой систему из 2-х электродов, соединенных жидкостным мостиком или полупроницаемой перегородкой. Если соединить электроды металлическим проводником, то электроны перетекут от одного электрода (восстановителя) к другому (окислителю) получится электрический ток. Хим. энергия превращается в электрическую. Окислитель - электрод с бОльшим значением потенциала (катод(+)), на катоде идут процессы восстановления.

Восстановитель – электрод с меньшим знач. потенциала (анод(-)), на аноде идут процессы окисления.

Аккумулятор – это обратимый химический источник тока, его можно перезаряжать и использовать многократно.

Например свинцовый аккумулятор (кислотный) - состоит из электродов (положительного и отрицательного)и электролита.

1-й электрод – свинец, 2-й элктрод –диоксид свинца, электролит 30% серной к-ты.

Принцип работы основан на электрохимических реакциях свинца и диоксида свинца, в водном растворе серной кислоты.

Общее уравнение работы аккумулятора :

9) Электролиз – окислительно-восстановтительный процесс, протекающий на электродах при прохождении тока через электролит.

В электролитеческую ванну, заполненную электролитом, опускают 2 электрода, и присоединяют к источнику тока. Источник тока перекачивает электроны от одного электрода к другому. Электрод с которого снимаются электроны приобретает + заряд (анод), который получает электроны (-) заряд (катод).

Прцессы, протекающие при электролизе определяются свойствами электролита, растворителя и материала электрода. (Если электролиз протекает в водном растворе, то на катоде им аноде могут восстанавливаться и окисляться молекулы Н2О.

Катод: 2Н2О + 2е = 2 ОН

Анод: А2Н2О – 4е = О2 + 4Н

Если возможно протекание нескольких реакций, то в первую очередь протекает та, которая требует минимальных затрат энегрии.

Инертным называется электрод, материал которого не окисляется в ходе электролиза.

На аноде может окисляться материал самого анода, например, елси анод из Ni, Cu,Cd, Pb и др. Такие аноды называюся растворимыми.

Метод с растворимым анодом используется для рафинирования металлов. Анод выполнен из черного металла.

10) Электрохимическая поляризация –явление отклонения потенциала элетродной реакции от равновесного. Перенапряжение – величина на которую идет отклонение ɳ (эта).

Возникновение поляризации связано с замедленностью отдельных стадий электрохимического процесса. Особенно велика поляризация при выделении газов О2, Н2. Поляризация электрода зависит от материала электрода, чем выше плотность тока i=I/S (I – ток, проходящий через электрод, S- площадь электрода). Поляризационная кривая – зависимость потенциала электрода от плотности тока.

Величина поляризации.

11) Законы фарадея: 1-й закон: Масса в-ва, образуется при электролизе, пропорциональна кол-ву электричества, прошедшего через электролит. = K*Q где: Q- кол-во электричества, Q=I*t, где: I-cила тока, t-время.

K= где: Э- эквивалентная масса Э = где: М – моль (молярная масса вещества), n – число электронов, перемещаемых при окислении или восстановлении, F – число Фарадея = 26,8 А или 96500 К/моль.

2-й закон: При прохождении через разные электролиты одного и того же количества электричества массы веществ, выделившихся на одноименных электродах пропорциональны их эквивалентным массам.

Применение вэлектрохимических процессов: 1) Принцип г.Э используется в автономных источниках питания. Бывают первичные и вторичные. Первичные – необратимы, не могут вернуться в рабочее состояние посли расхода активного в-ва (батарейки питания). Вторичные – можно регенирировать, пропуская ток в обратном направлении (аккумуляторы).

Электролиз используется в промышленности: для получения щелочей и др. веществ., для получения многих металлов – AL, Mg, Na, Cd., для очистки (рафинирования) Ме, используются загрязнённые Ме, в качестве анода (Cu, Ni, Pb) , используется в гальванотехнике.

Гальваностегия – процесс нанесения на поверхность металлических изделий слоёв других металлов, это делают для защиты от коррозии и для красоты.

Гальванопластика – для получения отпечатков, копий изделий, например для типографических клише.

13) Физические св-ва металлов . Металлический блеск, высокая электропроводность, теплопроводность, ковкость, пластичность. Эти свойства обуславливаются наличием в металлах подвижных электронов и металлической связи.

Различие в природе металлов, их структуре приводит к различию некоторых физ свойств. Щелочные (Li, Na, K, Rb, Cs) при малой плотности упаковки и малом заряде мЯгки, а d- металлы (Cr) очень твердые. Большое различие есть в t плавления, от 28°C (Cs) до 3370°C (W).

12) Положение металлов в периодической системе.

Классификация металлов

не активные (Cu-Au, и т.д…)

Особенности кристаллов металлов : атомы металлов выстраиваются в кристаллические решетки

Виды кристаллических решеток : Объемно центрированная (кубическая), гранецентрированная (кубич.), плотнейшая гексагональная.

Особенности строения атомов: на внешнем энергетическом уровне малое кол-во электронов.

Методы получения металлов: 1. Металлотермия - восстановление руд, с помощью алюминия, магния, и др. металлов

2.Пирометалургия – востанивление руд с помощью угля, СО, при высоких t:

+ → 2 Fe + 3 (при температуре)

3.Электролиз : а) Сu (Сu – катод, CL – анод)

б) 2NaCL → 2Na + (2Na – катод,

4.Гидрометалургический метод – так же часто включает стадию получения металлов электрохимическим восстановлением.

2ZnS + 3 (при переработке сульфидных руд, сначала сульфиды

переводят в оксиды при высокой t.)

2Zn + 2 (2Zn – катод, )

Современные технологии направлены на получение металлов высокой чистоты (зонная плавка, плавка электронными лучами и т.д.)

14) Химические св-ва металлов . По хим. св-вам металлы являются восстановителями и реагируют с окислителями.

В период. системе большинство элементов – металлы. К металлам относятся все s,d,f-элементы (кроме и He) а так же р-элементы. К р-элементам относят элементы III A гр – AL, Ga, In, IV A гр – Ge, Sn, Pb, в V A гр Sb, Bi, и в VI A – Ро (полоний).

Классификация металлов : 1.По электронной структуре: s,p,d и f – металлы.

2. По восстановительной активности: активные (Li-AL)(по ряду напряжений), средние (AL-H),

не активные (Cu-Au, и т.д…)

Восстановительная активность свободных атомов металлов характеризуется энергией ионизации (). Чем меньше , тем выше восстановительная актив. металла. В гр. А, (для s и р-металлов) восстановительная актив. растет сверху вниз, а в гр. В (для d-металлов) –уменьшается.

В растворах восстановительная активность атомов металлов характеризуется значением электродного потенциала (). Чем отрицательнее, тем выше восст. актив.. Самые активные восстановители – щелочные металлы.

1) Металлы энергично реагируют с простыми веществами: , галогены(фтор, хлор, бром, йод), сера, водород.

С кислородом: Большинство металлов окисляются на воздухе, покрываясь оксидной плёнкой, если плёнка плотная, она предохраняет металл от коррозии. все щелочные металлы : Li,Na,К, и т.д. активно реагируют с кислородом, Rb, Cs – самовоспламеняются.

С хлором : энергично реагируют (Mg+ =Mg )

C серой : менее энергично (при нагревании) (Fe+S→FeS cульфид железа)

С водородом : реагируют только щелочные и щелочно-земельные металлы. (2Li+ =2LiH) (Ca+ )

2) Реакции с водой : Ме+ металлы реагируют с если их электродный потенциал ниже чем у водорода (ниже 0) реагируют вытесняя . Например: -2,714в, поэтому 2Na+

Если на поверхности металла находится оксидная пленка взаимодействие с водой протекает при нагревании.

3) Реакции с растворами солей : металлы реагируют с растворами солей, вытесняя из них менее активный металл:

() Cu = 0,337 в, () /Ni = - 0,25в

4)Реакции с щелочами : реакции протекают с выделением , электродный потенциал должен быть , металл должени иметь амфотерную природу своих оксидов и гидрооксдов (это AL,Zn,Cr,Be и др.)

5) Реакции с кислотами : взаимодействие металлов с кислотами зависит от активности металла, концентрации к-ты и t.

HCL-взаимодействует только с металлами у которых , с выделением водорода, хлорид металла должен быть растворим в воде.

(разбавленая серная к-та реагирует с металлами так же, как соляная: Zn+

Концентрированная серная кислота окисляет металлы за счет сульфат-иона () продукты восстановления зависят от активности металла. к Mg + (активные восстанавливают до , средние до , малоактивные до .

Серная к-та пассивирует металлы: Fe, Co, Ni, Cr, AL, Be. (с этими металлами реакция идет только при нагревании).

В реакцию с концентрированной серной кислотой вступает медь

Реакция с разбавленной азотной кислотой . Разбавл. азот. к-та более сильный окислитель чем серная, окисляет большинство металлов при комнатной t. Восстанавливается с активными металлами до , с металлами средней активности до или , с неактивным до –NO.

Концентрированная азотная к-та восстанавливается с большинством металлов до бурого газа –NO, и еще она пассивирует те же металлы при обычной t. (Fe,Ni,Co,Cr,AL,Be)

Неактивные d-металлы не окисляются азотной к-той, их можно окислить «царской водкой» + .

В реакциях металлов с азотной к-той любой концентрации и концентрированной серной к-той водород не выделяется.