20.06.2019

Черный выхлоп ракеты сатурн 5. Самый большой двигатель: Сатурн-V. Трудный период, неожиданное решение наса, триумфальная методика


Глава из книги А. Попова "Американцы на Луне"

Ракета: испытания провалились - полетим на Луну

Космический полёт, образно говоря, начинается с ракеты. Есть ракета с нужными параметрами – можно готовить путешествие. В 60-е годы СССР и США напряжённо работали над созданием своих лунных ракет. СССР это не удалось, а США на рубеже 1967-1968 г.г. сообщили о создании лунной ракеты «Сатурн-5». Это была грандиозная ракета (илл.1). Её высота, в сборе с кораблём «Аполлон», составляла около 110,7 м (жилой дом в 40 этажей ), стартовая масса, по различным данным НАСА, составляла от 2700 до 3800 т..

Илл.1. Схема ракеты «Сатурн-5» в сборе с кораблём «Аполлон»

1 - система аварийного спасения, 2 - командный модуль корабля, 3 - служебный модуль корабля, 4,5 - лунный модуль, 6 - соединительный переходник, 7 - третья ступень ракеты (S-IVB), 8 - сопло двигателя J2, 9 - соединительный переходник, 10 - вторая ступень (S-II), 11 - пять сопел двигателей J2, 12 - соединительный переходник, 13 - первая ступень (S-IC), 14 - пять сопел двигателей F1

Разработкой «Сатурна-5» руководил директор Центра им. Маршалла (г. Хантсвилл), известный конструктор Вернер фон Браун. В качестве предварительного этапа фон Брауном была создана ракета «Сатурн-1Б» со стартовой массой в сборе с кораблём «Аполлон» 590 т. и полезной нагрузкой, выводимой на низкую околоземную орбиту 15 т. «Сатурн-5», согласно НАСА, мог выводить на низкую околоземную орбиту полезную нагрузку массой около 120-130 т. и около 45 т. - на окололунную орбиту.

Распространено мнение, что история создания «Сатурна-5» - это сплошная цепь успехов. Однако на самом деле, эта история не так проста и интересна для обсуждения.

Малоизвестный «Сатурн-5»

Действительную историю ракеты «Сатурн-5» можно разделить на три периода.

Сначала «Сатурн-5» проходит через полосу трудностей, заканчивающуюся 4 апреля 1968 года провальным беспилотным испытанием ракеты.

Затем, без дальнейших беспилотных испытаний, на ракету устанавливают корабль, и, с декабря 1968 года по май 1973 года, она участвует в 11 успешных полётах, неся на своей вершине космические корабли (10 «Аполлонов» и станцию «Скайлэб»). Этот период назван ниже «счастливым».

После этого наступает «музейный» период, когда самая замечательная в истории человеческого прогресса ракета навсегда исчезает из практического использования, а оставшиеся «в живых» три «Сатурна-5» переходят жить на газоны американских космических музеев. Этот период длится до сих пор.

Трудный период, неожиданное решение НАСА, триумфальная методика

«Разработка «Сатурна-5» началась в 1962 году. В мае 1966 года на испытаниях в Сент-Луисе взорвалась и разлетелась на куски вторая ступень ракеты. Первый беспилотный полёт «Сатурна-5» планировался на январь 1967 года, но бесконечная череда поломок и отказов отодвигала этот срок всё дальше и дальше… Старт, наконец, состоялся 9 ноября 1967 года». Первое беспилотное испытание прошло, по сообщениям НАСА, успешно. Но второе, заключительное беспилотное испытания ракеты, которое прошло 4 апреля 1968 года под названием "Аполлон-6", провалилось. Вот что об этом пишет Я. Голованов:

«Буквально с первых секунд полёта "Аполлон-6" засыпал командный пункт тревожными сигналами о всевозможных отказах. Из пяти двигателей первой ступени работали только три, двигатель третьей ступени вовсе не включился, а затем она «неожиданно распалась на части ». Обе главные задачи испытаний не были выполнены: ракета работала плохо… «Лунная программа страны натолкнулась на новую трудность», - комментировала «Вашингтон пос т». Откровенно говоря, мы не знаем, в чём дело, - разводил руками директор программы «Сатурн-5» Артур Рудольф ». Итак, судя по этому описанию - полный провал.

Напомним, что согласно Я. Голованову, его книга написана в те далёкие годы по «горячим» следам событий. Он посещал Хьюстон, встречался с американскими специалистами и астронавтами. И, как отмечено во введении, ветеран советской космонавтики, академик РАН Б.Е. Черток охарактеризовал Я. Голованова, как объективного профессионального журналиста и писателя, наиболее близкого к кругам ракетно-космического, сообщества.

Так что, можно полагать, в цитированном отрывке достаточно точно отражено то, что говорили об этих испытаниях именно тогда, а не в наши дни, когда многое забыто или «приглажено». И, если уж такой искренний доброжелатель Америки описал столь безрадостную картину испытания, то, значит, «Сатурн-5» действительно огорчил своих создателей.

На современном сайте НАСА информация об испытаниях 4 апреля 1968 года подаётся более сдержанно:

Во время работы первой ступени - осцилляции и резкие скачки показаний;
Через 2 минуты по всей конструкции возникли вибрации, превышающие допустимые пределы;
Во время работы второй ступени выключились два двигателя из пяти. Оставшиеся двигатели работали несинхронно и выключились в разное время;
Во время работы третьей ступени двигатель работал на 29 с. дольше, чем надо, в результате чего была сформирована резко эллиптическая орбита вместо необходимой круговой;
Повторное включение двигателя для перехода на начальный участок траектории полёта к Луне не удалось;
Скорость входа корабля в атмосферу не соответствовала той, что имеет место при возвращении корабля из окрестности Луны, а место посадки отстояло от намеченного на 90 км.
Заключение: “Apollo 6, therefore, was officially judged as not a success” - "Испытания "Аполлона-6 ", таким образом, официально признаны неуспешными".

А что мешало НАСА вообще скрыть факт неудачи испытаний и объявить их успешными? Неужели честность? Если кто-то из читателей полагает, что американцы - это эталон открытости и честности в информировании общественности о неудачах, то в этой книге он найдёт много примеров противоположного свойства. Два интересных случая рассказал автору Е.В. Иванов, москвич, бизнесмен, а в середине 80-х - матрос на корабле Краснознаменного Тихоокеанского Флота СССР:

«В зоне нашего плавания находился американский космодром Пойнт-Мугу, с которого американцы запускали баллистические ракеты «Трайдент», «Минитмен» и другие. А их останки падали в районе Маршалловых островов. В то время между СССР и США шла борьба за максимальное количество боеголовок на одной ракете-носителе.

Мы наблюдали за вхождением в плотные слои атмосферы головных частей американских ракет и считали количество отделяющихся от них боеголовок. Вот в указанном секторе неба появляется едва заметная «звездочка», она быстро увеличивается, становится очень яркой, и вот от нее начинают отделяться мелкие «звездочки» - боеголовки. Отделятся сколько положено «звёздочек», значит, успешно прошли у американцев испытания. Наше судно наряду с другими средствами технического контроля помогало установить истинные возможности США в этом соревновании. Мы гордились тем, что наши данные всегда точные. Кроме самого события мы должны были фиксировать и сообщения об испытаниях американских ТВ и радио.

Несколько раз мы видели, что от головной части отделялось на несколько боеголовок меньше, чем положено по типу ракеты. Но на следующий день американские радио и ТВ сообщали об успешном завершении испытаний. Я тогда понял, что американцы могут давать ложные сведения, когда им это выгодно.

Еще раз я в этом убедился во время учений «Тим спирит» (с точностью до года это был 1985 год). Мы находились недалеко от района учений и видели, как до авианосца «Карл Винсон» не дотянул и рухнул в море самолет типа «Интрудер». Полтора часа после этого эфир кипел от «энергичных» переговоров американских военных по этому поводу. Погибли три лётчика. Но вечером мы узнали в выпуске американских TВ-новостей, что учения идут успешно. О гибели лётчиков - ни слова ».

Так что «официальное американское сообщение» - не обязательно правдивое сообщение. И можно представить, как же плохо должны были закончиться испытания ракеты «Сатурн-5», если НАСА пришлось включить в свои отчёты заключение - «официально признаны неуспешными».

Я. Голованов, конечно, не был допущен ко всей информации НАСА, он черпал сведения из американских СМИ и из личных контактов. Официальное сообщение НАСА также могло содержать неполную информацию из-за вполне понятного стремления «сгладить» картину неудачи. Но в обоих сообщениях общим является то, что, по всем сведениям, испытания прошли неудачно.

Казалось естественным, что после 4 апреля НАСА предстояло ещё испытывать и испытывать свою лунную ракету. Тем более что самим НАСА, при создании "Сатурна-5", приоритет безопасности был "встроен, как основополагающий". Именно так и думали многие иностранные специалисты.

Так, помощник Главкома ВВС по космосу, начальник Центра подготовки космонавтов, генерал Н.П. Каманин (илл.2) 10 апреля 1968 года писал следующее: «По-видимому, американцам придется выполнить еще один пуск «Сатурна-5» с «Аполлоном» без астронавтов на борту ».

Но прошло всего 19 дней и НАСА принимает совершенно неожиданное решение. Вот что пишет об этом Я. Голованов:

«К моменту первого полёта астронавтов на "Аполлоне" ни корабль, ни его носитель не были отработаны в должной мере. Два пуска "Сатурна-5", из которых один был неудачным, не могли никого убедить в надёжности данной ракеты. Все были уверены, что состоится третий испытательный полёт, но 23 апреля руководители программы после совещания в Хантсвилле рекомендовали провести следующий полёт "Сатурна-5" с участием людей. Эти рекомендации обсуждены с членами сенатской комиссии по аэронавтике и исследованиям космоса и приняты к исполнению ». Информация об этом совещании подтверждается на сайте НАСА.

В общем, летите, ребята, к Луне, а по дороге испытайте и непременно успешно всё, что до вас не получилось. Прежде всего, испытайте модифицированную ракету-носитель «Сатурн V». Её «не модифицированный» вариант провалился на испытаниях 4 апреля. Он будет модифицирован, но на беспилотные испытания времени уже нет, русские нажимают. Так что в добрый путь! Может быть, вам и повезёт.

Если это - не авантюра, тогда что называть авантюрой? Именно так и оценили это решение НАСА сторонние специалисты.

Говоря о предстоящем полёте А-8, известный английский астроном, профессор Б. Ловелл (илл.2) сказал: "Мысль об этом полёте угнетает меня. Это чертовски глупо ".

А когда Н.П. Каманин узнал об этом решении НАСА, его изумление отразилось в дневнике:

«США намерены уже в декабре осуществить облет Луны кораблем «Аполлон-8» с тремя астронавтами на борту. Я считаю это чистейшей авантюрой: американцы не имеют опыта возвращения кораблей на Землю со второй космической скоростью, да и ракета «Сатурн-5» еще недостаточно надежна (было выполнено всего два пуска, один из которых оказался неудачным). Вероятность печального исхода такого полета очень велика…Америка в четыре раза ближе к позору и проклятиям за поспешность и необдуманность «рывка к Луне», чем к славе и торжеству ».


Илл.2. Специалисты удивлены решением НАСА

а) профессор Б. Ловелл (Англия): "Это чертовски глупо ";

б) начальник Центра подготовки советских космонавтов, генерал Н.П. Каманин: «Я считаю это чистейшей авантюрой »

в) академик, главный конструктор В.П. Мишин «был глубоко убежден, что этого не может случиться »

До самого последнего момента отказывался верить в успех назначенного полёта А-8 и преемник С.П. Королёва, главный конструктор, академик В.П. Мишин. В фильме “Время Луны” приводится интервью известного советского «космического» корреспондента, автора многих книг по истории освоения космоса, писателя В. Губарева. Он был в числе избранных лиц, которым довелось смотреть телепередачу из США о полёте А-8. Дело происходило в специальном зале центрального ТВ. В зале находился и В.П. Мишин. Вот что говорит В. Губарев о реакции Мишина:

«Он не верил в то, что американцы уйдут с околоземной орбиты, уйдут к Луне. Он был глубоко убежден, что этого не может случиться. И вдруг приходит сообщение - включился двигатель маршевый и «Аполлон-8 пошёл к Луне…Василий Павлович встал, посмотрел на экран, а там всё хорошо показывают. Пошёл, дверью хлопнул ».

Исходя из известной им информации и Ловелл, и Каманин, и Мишин были абсолютно правы. Но, может быть, им было неизвестно что-то об истинной подоплёке решения НАСА? Им, находившимся в гуще событиях, захваченным драматизмом лунной гонки, трудно было предположить, что НАСА чего-то не договаривает.

Всего через два года, очевидно, под впечатлением сообщений НАСА о высадках на Луну советский справочник по космонавтике писал о втором испытании уже гораздо мягче: «…4 апреля 1968 года в полёте имел место ряд отказов, программа выполнена не полностью ».

Ещё более смягчил краски в 1981 году автор учебника по ракетной технике: «За время лётных испытаний «Сатурна-5» имел место, по существу, один серьёзный отказ, когда на беспилотном испытательном пуске «Аполлон-6» вышел из строя один из боковых двигателей второй ступени. Однако лётное испытание не было прервано, хотя от полной программы и пришлось отказаться ».

С течением времени исчезли и эти более чем скромные критические нотки.

«Все запуски «Сатурна-5» прошли удачно, и это заслуживает особого внимания. Помимо прочего, то был триумф принятой методики отработки сложных технических систем, когда лётные испытания начинались лишь после успешного проведения наземных стендовых » - так пишет автор статьи С. Александров.

Непонятно, однако, на каком же этапе чудодейственная методика «сказала» своё решающее слово. Разработка «Сатурна-5», как отмечалось, велась с 1962 года. Неудачные испытания 4 апреля 1968 года показали: за 6 прошедших лет методика никак себя не проявила. Уж не состоялся ли её триумф за те 19 дней, которые прошли от упомянутого испытания до 23 апреля, когда НАСА приняла своё эпохальное решение? На каких же «наземных стендовых» испытаниях за 19 дней удалось сделать то, что не получилось за 6 лет? НАСА об этом ничего не сообщала. Так существовала ли эта самая «триумфальная методика» или это просто удачная пропагандистская выдумка? Если бы такая методика действительно была, то она очень бы пригодилась и после окончания лунной эпопеи. Кто же откажется от методики, которая позволяет отправлять людей в космос после неудачных испытаний ракеты? Поищем эти следы.

После завершения программы «Аполлон» в области пилотируемых полётов НАСА работала по двум основным направлениям – разработки челночных кораблей многоразового пользования («Шаттл») и создания долговременной орбитальной космической станции («Фридом»).

Челноки НАСА создала, и сначала они стартовали, в целом, успешно. Но 28 января 1986 года во время 9-ого старта на глазах у тысяч зрителей взорвался и унёс жизни 7 человек экипажа челнок «Челленджер» (илл.3а). Другой челнок («Колумбия») сгорел в атмосфере вместе с экипажем из 7 человек 1 февраля 2003 года, возвращаясь из 26-ого полёта (илл.3б). А ведь шаттлы - это корабли многоразового использования, в некотором роде, космических самолёты. И что же можно сказать о безопасности самолёта, садясь в который не знаешь, какой тебя ждёт конец? В итоге американцы установили печальный «рекорд» по количеству погибших в космосе.


Илл.3. Гибель американских челноков

а) погибший экипаж "Челленджера";

б) погибший экипаж "Колумбии"

Почему же имевшаяся только у НАСА «триумфальная методика» не помогла предотвратить эти жертвы? Ведь челноки разрабатывали в том же Хьюстоне, где создавался «Сатурн-5», а изготовляли его те же самые ракетно-космические компании. Промоделировали бы на наземных стендах взрыв челнока при старте или отваливание плитки термоизоляции при входе в атмосферу, разработали бы превентивные меры и избежали бы ненужных жертв. Однако очень похоже на то, что «триумфальная» методика канула в Лету вместе с «Сатурнами-5» и полётами на Луну. Это подтверждает и неудачный опыт разработки станции «Фридом»:

«В начале 80-х годов, подстёгиваемые успехами «Салютов» (советских орбитальных станций – А.П.), американцы приступили к проектированию станции «Фридом»… Однако проектирование «не было завершено из-за постоянного его удорожания по мере выявления всё новых технических трудностей. Даже по прошествии десяти лет сроки начала строительства так и не определились и в НАСА обоснованно опасались «оргвыводов» со стороны конгресса США…Конца научно-исследовательским работам не было видно, и как отчитываться перед конгрессом за потраченные деньги его руководство совершенно не представляло». И тогда США решили создать орбитальную станцию, «опираясь на многолетний российский опыт ».

Не странно ли, что НАСА - эксклюзивная обладательница чудо - методики за десять лет не смогла создать «сложную систему» «Фридом» и обратилась к российскому опыту? Что-то не сходится.

На самом деле окончательную судьбу новой сложной техники не определяют стендовые испытания её отдельных частей. Как возможно проверить, не трогаясь с места, слушается ли руля Ваш автомобиль? Попробуйте найти самолёт, который «провалился» на испытаниях и был запущен в серию без дополнительных испытаний на основании только того, что его тщательно дорабатывали на земле. Так и с ракетой: на земле надёжность её управления не проверишь. А какова судьба ракеты с исправным двигателем, но с отказавшей системой ориентации и управления, можно увидеть на илл. 4.

Илл.4. Американская ракета, потерявшая при пуске ориентацию

Очень похоже на то, что упомянутая методика просто выдумана, чтобы объяснить решение НАСА направить людей в полёт на неудачно испытанной ракете. Не будем более на ней останавливаться и продолжим знакомство с официальной историей «Сатурна-5».

Счастливый период: 11 успешных запусков, сотрудники и главный конструктор освобождены в связи с достигнутыми успехами

Через восемь месяцев после решения 23 апреля «Сатурн-5» стартовал прямо к Луне, неся на себе корабль «Аполлон-8» с экипажем на борту. Включая этот полёт, вся дальнейшая история «Сатурна-5» выглядит, как цепь непрерывных успехов побед. Начался «счастливый» период. После «Аполлона-8» на "Сатурне-5" поднялись в космос ещё 9 "Аполлонов". А 14 мая 1973 года, всего через полгода после полёта последнего «лунного» «Аполлона», «Сатурн-5» стартовал в последний раз. С его помощью НАСА запустила на околоземную орбиту орбитальную станцию «Скайлэб», масса которой, если верить НАСА, впечатляет и по нынешним меркам – 75 т.. Это была странная станция. Подробнее о ней написано в разделе 25.

Всего ракета «Сатурн-5» стартовала общим число 13 раз (илл.5), если включать сюда, как это часто делается другими авторами, и два упомянутых беспилотных испытания.


Илл.5. Тринадцать стартов «Сатурна-5» и генеральный конструктор ракеты Вернер фон Браун

Вот, казалось бы, и всё, что можно написать о счастливом периоде «Сатурна-5». Ведь счастье - это когда всё получается, как надо. Однако не всё было так просто и во время счастливого периода.

В том же самом 1968 году, ещё до первого полёта на Луну, НАСА решила вручить уведомления о «временном увольнении» семистам сотрудникам Центра космических исследований имени Маршалла в г. Хантсвилл, где разрабатывался «Сатурн-5». А всего через 2 года первый и до того момента бессменный директор Центра им. Маршалла, главный конструктор многих ракет и космических систем, главный конструктор ракеты «Сатурн-5» Вернер фон Браун (илл.5) был освобождён от должности директора Центра и отстранён от руководства ракетными разработками. И отстранён не «временно», а навсегда. Он «стал похож на дирижёра, внезапно оставшегося без оркестра».

К этому времени (январь 1970 года) НАСА сообщила о пяти успешных стартах «лунных» «Аполлонов» (от А-8 до А-12), и «гвоздём» этих успехов была ракета «Сатурн-5» фон Брауна. Получается так, как будто фон Браун освобождён от должности директора Центра в связи с достигнутыми успехами. Уже после отстранения фон Брауна, по информации НАСА, ещё 5 раз «Сатурны-5» успешно стартуют к Луне и один раз вынесут на околоземную орбиту «Скайлэб». Фон Брауну предложена новая, вроде бы почётная должность – заместителя директора НАСА, но ему почему-то становится неуютно в НАСА. Проходит ещё через 2 года, и он совсем покидает НАСА.

Что послужило причиной для временных увольнений сотен ракетчиков и отстранения от непосредственного руководства разработкой ракет (уже навсегда) их главного конструктора?

Музейный период

После окончания программы «Аполлон» и запуска «Скайлэба» остались ещё три "Сатурна-5" по 430 млн. $ каждый. В НАСА пошли разговоры об использовании их для запуска международной орбитальной станции. Но разговорами всё и окончилось. В августе 1973 года было решено законсервировать оставшиеся ракеты, а в декабре 1976 года они были поставлены в музеи (илл.8). И стоила эта экспозиция 3х430 = 1300 млн. долларов – примерно половину всего тогдашнего годового бюджета НАСА.


Илл.6. «Сатурн - 5» «ушёл» на музейные газоны

Немного позже «в отставку» был отправлен и предшественник «Сатурна-5» - ракета «Сатурн-1Б». Он совершил свой последний полёт в 1975 году по программе "Союз-Аполлон" и после этого уже не применялся. Прекращение использования «Сатурна-1Б» еще можно понять, поскольку его сменили челноки, обладавшие не меньшей грузоподъёмностью.

Однако исчезновение «тяжеловоза» «Сатурна-5» компенсировать было нечем. Ведь он, согласно НАСА, в 5 раз превосходил челноки по грузоподъёмности. Б. Черток так говорит об этом:

"Отказ США от хорошо отработанного, надежного носителя «Сатурн-5» казался непонятным. Я считаю, что это было ошибкой. Американские историки космонавтики, с которыми я встречался, не могли внятно объяснить, почему вопреки предыдущим планам «похоронили» отличный носитель «Сатурн-5» ". Поскольку американским историкам космонавтики не удалось придумать внятное объяснение, то в решении этой задачи на помощь им пришли российские защитники.

Как объясняют защитники причины отказа от «Сатурна-5»

«Ей стало нечего возить, потому что…масса даже самых «навороченных» спутников не превышает 20 т. », - пишут авторы статьи «Затраты и результаты» С. Александров и В. Пономарёва. Не могут, видите ли, разработчики сообразить, чтобы ещё полезного положить в спутник сверх привычных 20 т.

В действительности, к сожалению, происходит наоборот: и нужно бы лишние тонны «вложить» в космический корабль, да грузоподъёмность ракеты не позволяет. Вот что рассказывает о подготовке к запуску станции «Мир» С. Громов.

«В 1985 году, в разгар подготовки к запуску, разработчики обнаружили превышение общей массы 4,9 т. Как же удалось выйти из положения? - на 1,3 т. подняли грузоподъёмность носителя «Протон», на 0,3 т. сократили заправку двигательной установки блока, на 1,1 т. снизили массу кабелей, 0,7 т. выиграли за счёт уменьшения наклонения орбиты. Последнее решение было очень болезненным – оно делало территорию России недоступной для наблюдения со станции. А это резко снижало (если не сводило к нулю) полезность станции для изучения собственно российских природных ресурсов ».

Вот на какие жертвы приходилось идти из-за ограничения грузоподъёмности ракеты. И, поскольку в настоящее время из действующих ракет нет ничего мощнее нашего «Протона», то именно поэтому масса самых тяжёлых модулей МКС – «Заря» и «Звезда» составляет около 20 т.

«Настоящей причиной появления орбитальных станций явилось жесточайшее ограничение по массе и объёму космических кораблей, определявшееся грузоподъёмностью и размерами существующих ракет-носителей ». Просто удивительно, как С. Александров на разных страницах одной книги (с. 126 и с. 330) может выражать столь противоположные мнения.

Нашлось бы, «чего возить» «Сатурну-5» и в наше время, и не только на Луну. Например, он мог бы вывести на орбиту моноблочную международную космическую станцию (МКС).

В настоящее время МКС собирается на орбите из блоков с массой не более 20 т. На илл.7 показана МКС на одном из этапов её строительства. Три показанные модуля МКС, вместе взятые, имеют общую массу - 53 т. На стыковочные узлы сейчас приходится около 1/7 массы МКС, то есть, примерно 9 т. 9 тонн на одни только «двери»! Не много ли? А «Сатурн-5», согласно НАСА, мог «одним махом» доставить на орбиту моноблочную станцию массой в 75 т.

Илл.7. Многоблочная МКС на одном из первых этапов её строительства. Кружками обведены стыковочные узлы

Если бы МКС была моноблочной, то за счёт уменьшения числа стыковочных узлов проще и надёжнее стало бы её устройство. Сократилось бы число стыковок, каждая из которых всегда остаётся опасной процедурой, иногда приводящей к тяжёлым повреждениям. Свободнее стало бы жить и работать её экипажам. Так почему же НАСА не предоставила «Сатурн-5» для запуска МКС?

«Сатурн – 5» очень дорог в изготовлении

Приходится слышать и такое мнение. Однако, известно, что при разработке новых технологий или изделий первые образцы стоят дорого, но стоимость производства последующих образцов начинает резко снижаться. Возьмём ту же самую ракету «Сатурн-5». Её разработка, а, значит, и первый экземпляр стоил около 7 млрд. $. Но уже последующие экземпляры стоили по 400 млн. $ за штуку, то есть в 20 раз дешевле. А что было бы при их дальнейшем производстве?

По данным к 1999 году в России было выпущено около 1000 ракет типа «Союз». С начала 60-х годов это получается в среднем по 25-30 ракет в год. Они что, шли все по цене первых ракет? Нет, конечно. Такой масштаб производства подразумевает резкое снижение стоимости изготовления.

В статье В.А. Сурнина проведено сопоставление стоимости доставки 1 кг полезного груза на низкую околоземную орбиту различными носителями. Как известно большие надежды в плане экономической эффективности НАСА возлагала на челночные корабли многоразового использования (шаттлы). Но эти надежды не оправдались. Вот что пишет об этом В.А. Сурнин.

"Удельная стоимость доставки одного кг полезной нагрузки на орбиту с помощью системы "Спейс Шаттл" по проекту составляет 2500-3600 долларов… Однако запуски показали, что действительная стоимость значительно превышает прогнозные данные. Основная причина указанного расхождения - несоответствие реального числа запусков с планируемым. Так, при проектировании планировалось проводить до 30-40 запусков в год, реально осуществляется лишь 10-11 запусков. Катастрофа аппарата "Челленджер", на два года прекратившая запуски МВКА, также отразилась на удельной стоимости доставки грузов. На модификацию конструкции космического аппарата было затрачено дополнительно 2,4 млрд. долларов…для транспортной космической системы "Спейс Шаттл" стоимость доставки 1 кг полезной нагрузки на околоземную орбиту составляет 9 тыс. долл. "

Далее он приводит в статье данные, из которых следует, что при заявленной НАСА для Сатурна-5 величине полезной нагрузки (120-130 тонн) доставка грузов с его помощью обходилась бы примерно в 5-7 раз дешевле, чем шаттлами. Так, может быть, стоит стартовые комплексы шаттлов снова переоборудовать под "Сатурны-5»? Но на «расточительные» шаттлы деньги у американцев почему-то есть, а на «экономные» «Сатурны-5» - нет.

«Сатурн – 5» очень дорог в обслуживании

«Ещё одно препятствие – сложность и стоимость обслуживания огромной ракет ы» - пишут авторы статьи. «Один день обслуживания ракеты «Сатурн-5», стоящей на стартовом столе, стоил 200 тысяч долларов » - поясняет автор. Это уже довод, рассчитанный на вовсе несведущего человека. По житейским меркам, 200 тысяч долларов – это, конечно, огромная сумма. Но не по меркам космических запусков. Только модуль «Заря» для МКС стоит в 1000 раз больше – 220 млн. долларов. За один старт «Сатурн-5», даже в укороченном двухступенчатом варианте, согласно НАСА, выводил на орбиту 75-80 т полезной нагрузки. Это четыре таких модуля, как «Заря» - почти на миллиард долларов. Так что расходы на обслуживание ракеты при запуске – это «копейки» по сравнению со стоимостью запускаемой полезной нагрузки.

Потеряли чертежи, заводы и специалистов

В журнале «Популярная механика» его главный редактор А. Грек информирует нас о следующей совершенно безрадостной картине: «Сейчас наладить производство «Сатурна - 5» нереально: не сохранилось ни полной документации, ни сборочных заводов, ни специалистов ». В общем, всё пропало. Ну что ж, попробуем помочь.


Илл.8. Всё нашлось, или чем занимались и занимаются в Центре им. Маршалла:

а) первая ступень ракеты «Сатурн-5»; б) - топливный бак для челнока; в) - производство модулей МКС

Первым делом надо найти чертежи. К счастью, пятью номерами раньше тот же журнал, но устами другого автора (Пола Эйзенштейна) порадовал таким сообщением: «Ситуацию прояснил Пол Шавкросс, сотрудник внутренней инспекции НАСА. Все чертежи самой большой в мире ракеты целы и невредимы ». Итак, чертежи нашли.

А куда пропал завод, который делал «Сатурн-5»? Оказывается, и завод цел. Самая громоздкая часть «Сатурна-5» - первая ступень, производилась на заводе в Центре космических полётов им. Маршалла (Хантсвилл, Алабама) (илл.8). В настоящее время Центр продолжает создавать космическую технику. А раз техника делается, значит, и специалисты не перевелись.

Так что есть всё: заводы, документация, и специалисты. Нет только у НАСА желания производить и использовать столь замечательную ракету. И называемые защитниками причины этого не выглядят убедительными. Не смогли они помочь американским историкам космонавтики «внятно объяснить», почему забыт якобы отличный носитель «Сатурн-5».

Куда пропали сверхмощные двигатели F-1?

Только в 1988 году, почти через 20 лет после первого полёта «Сатурна-5», СССР смог создать ракету «Энергия» (илл.9) примерно с той же грузоподъёмностью, которую НАСА назвала для «Сатурна-5».


Илл.9. Двигатели от «Энергии» на американской ракете

а) 1988 год. Советская ракета "Энергия"; б) двигатель от ракеты «Энергия» - РД170; в) двигатель РД180 (модернизированный РД171); г) 2003 год. Старт американской ракеты «Атлас» с двигателем РД180.

«Энергия» дважды успешно стартовала, но вскоре в СССР началась перестройка и «Энергия» стала одной из её жертв. Прекратил своё существование сам СССР и то, что было по силам великой державе, стало не по силам средней стране, отягощенной грузом экономических проблем.

И, всё-таки, «Энергия» не исчезла бесследно для технического прогресса: «Технологии, разработанные для «Энергии», используются и в настоящее время. Двигатель боковых блоков «Энергии» РД-170, самый мощный по состоянию на 2005 год, двигатель в истории космонавтики, используется как РД-171 на первой ступени ракеты-носителя «Зенит» (в том числе в проекте «Морской старт»), а двигатель РД-180, спроектированный на основе РД-171, - в американской ракете «Атлас-5» ».

В общем, двигатель – сердце ракеты, причём, сердце особенное – долгоживущее, допускающее пересадку следующему клиенту, когда предыдущий уже скончался. С этой точки зрения интересно обсудить судьбу двигателя F-1 (илл.10). Пять таких сверхмощных двигателей, расположенные на первой ступени, по словам НАСА, обеспечивали старт 3000 - тонного «Сатурна-5». Но куда подевались эти сверхмощные двигатели, и почему для новых мощных американских ракет используются не «родные» двигатели F-1 "Сатурна-5", а импортные от советской ракеты «Энергия» (илл.9б)?

Илл.10. Двигатель F-1 исчез вместе с ракетой. (Главный конструктор «Сатурна-5» Вернер фон Браун стоит около сопла двигателя F-1)

Ведь если двигатели F-1 не только стояли на выставках (илл.10), но и работали, то тогда это американские двигателисты опередили советских, по крайней мере, на 20 лет. И по логике прогресса к настоящему времени у НАСА должны иметься двигатели, более совершенные, чем РД-180. Но американцы почему-то покупают российские РД-180. А тогда существовали ли в действительности двигатели F-1 и та ракета «Сатурн-5», которую могли поднять только они?

Если верить НАСА, то «Сатурн-5» - бесспорный рекордсмен среди ракет, чей рекорд продержался 20 лет (до появления ракеты «Энергия»). Но обратите внимание на то, что результаты его рекордов фиксировались без свидетелей, точнее, без посторонних свидетелей.

C 1976 года СССР практиковал участие иностранных космонавтов в полётах на кораблях «Союз». Только до 1986 года на «Союзах» летали 11 иностранных космонавтов. В настоящее время «Союзы» доставляют интернациональные экипажи на МКС. «Протоны» выводили на орбиту модули для МКС. Так что грузоподъёмность советских ракет известна иностранным специалистам по их собственному опыту. А что советские и другие иностранные специалисты могли сказать на своём опыте о грузоподъёмности «Сатурна-5»?

В июле 1975 года ракета «Сатурн-1Б» вывела на околоземную орбиту корабль «Аполлон», а советская ракета «Союз» - одноимённый корабль (илл.11). Корабли состыковались, и советские космонавты посетили корабль «Аполлон». Полёт позволил иностранным (в данном случае, советским) специалистам лично убедиться в том, что у американцев есть ракета «Сатурн-1Б», способная выводить «Аполлон» на низкую околоземную орбиту корабль «Аполлон» в облегчённом, «околоземном» варианте (15 т,). Это в 8 раз меньше массы 120-130 т., которую якобы мог выводить «Сатурн-5» на низкую околоземную орбиту.

И поскольку никто из посторонних свидетелей не встречался в космосе с теми тяжёлыми объектами, которые якобы выводил «Сатурн-5», то декларируемая НАСА способность «Сатурна-5» выводить на орбиту сверхтяжёлые объекты (120-130 т.) осталась неподтверждённой со стороны иностранных специалистов. А пока рекорд не подтверждён сторонними свидетелями, всегда есть основания сомневаться в том, что он вообще был.


Илл.11. Советские космонавты – свидетели и участники полёта «Аполлона» c массой 15 т. (совместный полёт «Аполлона» и «Союза» на околоземной орбите)

Подытожим те интересные факты, о которых мы узнали в этом разделе:

1. Ракета «Сатурн-5» прошла, по данным НАСА, всего два беспилотных полётных испытания, причём итоговое второе испытание (4 апреля 1968 года) было неуспешным.

2. После неудачного второго испытания других беспилотных испытаний не проводилось, и следующий полёт ракеты (декабрь 1968 года) был пилотируемым, то есть с экипажем.

3. В том же самом 1968 году НАСА решила вручить уведомления о «временном увольнении» семистам ракетчикам в г. Хантсвилле – центре разработки лунной ракеты.

4. Всего через 2 года был освобождён от занимаемой должности директор ракетно-космического Центра им. Маршалла, главный конструктор ракеты «Сатурн-5», Вернер фон Браун. Освобождение состоялось во время блистательной эпопеи полётов «Аполлонов», совершаемых именно на ракете «Сатурн-5».

5. После завершения программы «Аполлон» и разового запуска станции «Скайлэб» великое достижение американской ракетной техники - лунная ракета «Сатурн-5» никогда более не использовалось ни целиком, ни по частям в виде двигателей. И это, несмотря на то, что, по сведениям НАСА, у неё после завершения указанных программ ещё оставались три такие ракеты.

6. С учётом тех 20 лет, на которые «Сатурн-5» якобы обогнал советскую «Энергию», американцы должны быть далеко впереди нас в части создания соответствующих сверхмощных двигателей. А они покупают российские. Так существовали ли в действительности двигатели F-1?

7. Все 10 пилотируемых полётов ракеты «Сатурн-5» были осуществлены экипажами, составленными исключительно из граждан США. Никто из граждан других стран не работал в космосе на тех супертяжёлых объектах, которые, по данным НАСА, мог выводить в космическое пространство «Сатурн-5». Поэтому декларируемая НАСА способность «Сатурна-5» выводить на орбиту такие сверхтяжёлые объекты осталась неподтверждённой со стороны иностранных специалистов.

Всё сказанное по этому поводу заставляет задуматься, не скрывался ли за стартами гигантских ракет какой-то, пока непонятный нам обман?

Как бы то ни было, а решение НАСА от 23 апреля 1968 года никто не отменял: «Сатурнам-5» - стартовать вместе астронавтами на Луну. А, когда решение принято, то всякие сомнения в успехе дела и тем более его критика, недопустимы. Поэтому поговорим о тех, кто своим неверием и критикой мешал успеху.

Одна из лунных легенд конспирологии гласит, что американцы, испугавшись инопланетной угрозы, вынуждены были в срочной порядке свернуть программу Аполлон. Один из доводов этой версии гласит, будто спешка была такой, что не у дел остались три готовых экземпляра ракеты Сатурн 5, весьма дорогих в эксплуатации. Но даже в отрыве от конспирологических доктрин все же интересно, что стало с оригинальными экземплярами легендарной ракеты Сатурн 5, можно ли их увидеть в музеях, или их постигла судьба прямого конкурента - советской ракеты Н 1?

Аутсайдеры

После неудачной экспедиции Аполлона 13 в апреле 1970 года, американские власти поняли, что миссии такого рода совсем не застрахованы от возможных трагических последствий (как для астронавтов, так и для престижа страны). Правительство приказало НАСА «затянуть пояса», выдав средства только до миссии Аполлона 17. В противоположность мнению конспирологов, решение было принято вовсе не в срочном порядке, из-за обнаружения на Луне экспедиционного корпуса инопланетян. Миссии Аполлона 18 и 19 были аннулированы 2 сентября 1970 года, после чего на Луне побывали экспедиции Аполлона 14, 15, 16 и 17.

Однако американские конвейеры уже к 70 году успели наштамповать несколько комплектов ракет Сатурн 5, которые были доступны после последней планировавшейся миссии Аполлона 17. В решении конгресса затянуть пояса НАСА это учитывалось, и космическое агентство уже начало модификации двух носителей для программы Скайлэб (орбитальная станция).

Последним носителем примененным для лунной экспедиции, стал SA 512 (Аполлон 17). Ракета SA 513 (отмененная экспедиция Аполлона 18) лишилась приписанной ей третей ступени, вместо которой она выводила на орбиту станцию «Скайлэб», переделанную из параллельно созданной третей ступени. Ракета SA 514, от аннулированной экспедиции Аполлона 19, осталась не у дел и была резервом на случай проблем с SA 512. Ракета-носитель SA 515 пошла по пути СА 513, и стала резервным носителем для дублера «Скайлэба», но сделанного уже из родной третей ступени SA 515.

«Все смешалось, люди, кони…»

Оставшиеся после запуска «Скайлэба» ступени ракет растаскали по музеям так, что практически все три сохранившихся экземпляра Сатурна 5 представляют собой химеры из ступеней друг друга.
В космическом центре Джонсона представлен Сатурн 5 с первой ступенью от SA 514, второй ступенью от SA 515 и третей ступенью ракеты SA 513, которую заменили на «Скайлэб». Единственный экземпляр, все ступени которого создавались для реальной лунной экспедиции.

Сатурн 5 в космическом центре имени Джонсона, Хьюстон

Вторая и третья ступень SA 514, вместе с тестовой первой ступенью (не создавалась для полета), представляют собой второй экземпляр Сатурна 5, выставленный в космическом центре имени Кеннеди, штат Флорида.

В американском музее воздухоплавания и космонавтики выставлен Сатурн 5 составленный из трех тестовых ступеней, ракета не предназначалась для полета. Там же выставлен дублер станции «Скайлэб» — «Скайлэб — Б», переделанный из третей ступени SA 515.

Полу бутафорский тестовый Сатурн 5 в Хантсвилле, неправда ли находка для сторонников лунного заговора?

Первая ступень ракеты SA 515 осталась в Мичуде (около Нового Орлеана), где ее и собрали (там же собирали внешние топливные баки системы Спейс Шаттл).

В целом, в музеях сохранилось достаточно комплектов ступеней Сатурна 5 для сборки двух лунных версий этой ракеты (Все три ступени SA 514 и SA 515 с третей ступенью от SA 513). Так что «эксперты космической техники», коих много среди конспирологов, вполне могут оценить на месте могли ли ракеты Сатурн 5 выполнять свою официальную задачу, или нет.

Подпишитесь на нас

В СМИ всё чаще говорят о так называемом «лунном заговоре», конспирологической теории, которая утверждает, что полёт и высадка на Луну в рамках космической программы «Аполлон» были сфабрикованы. Является ли это политической спекуляцией, какие цели преследуют эти обсуждения - это немного другой вопрос.

Часто говорят, что ракета «Сатурн-5» была слишком хороша для того, чтобы быть реальной. Если она существовала, зачем нужно было начинать программу шаттлов, которые в конечном итоге оказались дороже предшественника? Если она существовала, зачем сейчас вести с нуля разработку сверхтяжёлой ракеты SLS с похожими характеристиками? Как вообще можно утерять технологию производства?

«Сатурн-5» - ракета, созданная для обеспечения вывода пилотируемых космических кораблей «Аполлон» на траекторию полёта к Луне. Людей нужно было не только запустить, но и предусмотреть возможность безопасного возвращения. То есть нужно было обеспечить мягкое приземление на поверхность Луны двух человек с оборудованием и системами жизнеобеспечения, взлёт с Луны и возврат на Землю с теплозащитой при входе в атмосферу. Часть массы удалось сэкономить за счёт разделения лунного модуля, который садился на Луну, от командного, который оставался на орбите Луны.

Но ракета всё равно потребовалась огромная: «Сатурн-5» мог выводить на низкую околоземную орбиту 140 тонн. Для сравнения: часто используемая тяжёлая ракета «Протон» выводит 22 тонны. Последний из запущенных «Сатурнов-5» вывел на орбиту космическую станцию «Скайлэб» массой 77 тонн - только многомодульный «Мир» смог побить этот рекорд. «Скайлэб» был настолько огромным, что при потере точки опоры астронавт мог повиснуть и застрять в таком положении на несколько минут, пока система вентиляции не сдует к одной из стенок. «Сатурн-5» остаётся самой мощной ракетой в истории, её рекорд пока никто не смог побить.

Человечество смотрит вперёд и хочет новых достижений. Сегодня взгляд НАСА устремлён на Марс. И пусть Конгресс с неохотой даёт деньги, но ведётся разработка ракеты Space Launch System (SLS). Если грубо обрисовать её, то это трёхступенчатая ракета с двумя усиленными твердотопливными ускорителями с шаттлов. На её первой ступени установлены четыре двигателя шаттлов. В своей самой тяжёлой модификации SLS должна побить рекорд «Сатурна-5» - Block III сможет выводить 150 тонн на низкую околоземную орбиту.

Но это лишь самая тяжёлая из предложенных модификаций. Другие более реалистичны, они могут запустить 70 или 130 тонн. Если «Сатурн-5» могла выводить 140, то почему не использовать её? Для ответа на этот вопрос нужно обратиться к истории создания ракеты.

Пусть и неофициально, но в НАСА о Луне начали задумываться в 1960 году, ещё до речи Кеннеди. Название «Сатурн-5» намекает, что ракета была пятой моделью в семействе. Были другие варианты, даже тяжелее «Сатурна-5». Серия ракет «Нова» смогла бы выводить на низкую околоземную орбиту 300 тонн и выше, но навсегда осталась на чертёжной доске. В 1962 году программа разработки «Новы» была свёрнута из-за выбора схемы полёта с отдельным лунным модулем, что снижало требования по массе летательного аппарата.

Ракета обладала беспрецедентной сложностью. Стоял вопрос, кто будет её строить. Фон Браун выбрал разделение труда. Это позволяло ему выбирать лучших из лучших во всей промышленности. Он мог задействовать самых опытных людей из каждой из компаний. Скорость разработки действительно получилась высокой. Для подрядчиков решение означало крупные заказы, а не огромный заказ для кого-то одного. В итоге основная доля распределялась между тремя компаниями: «Боинг», North American Aviation и «Дуглас». Они производили три ступени, из которых состоит «Сатурн-5».

На S-IC установлены 5 двигателей Rocketdyne F-1, которые работают на жидком кислороде и керосине. Первая ступень производилась компанией «Боинг» на заводе Michoud Assembly Facility в Новом Орлеане в штате Луизиана. Прогон в аэродинамической трубе проходил в Сиэттле. Ступень была создана конструкторами из Космического центра Маршалла, ведущего центра НАСА.

За S-II отвечала North American Aviation. В движение ступень приводилась пятью двигателям J-2 от компании Rocketdyne на жидких водороде и кислороде. Сборка производилась в Сил-Бич в штате Калифорния. Douglas Aircraft Company строила третью ступень S-IVB в Хантингтон-Бич в Калифорнии. Как и на второй, здесь стоял двигатель J-2, но один. Он работал на тех же водороде и кислороде. Третья ступень умещалась в самолёт Pregnant Guppy, а две другие приходилось доставлять на мыс Канаверал по воде. Иногда они проводили по 70 дней в море.

Полётом трёх ступеней управлял инструментальный модуль конструкции Космического центра Маршалла и сборки IBM. Конструкторы решили разделить системы навигации корабля и ракеты по ряду причин. В их числе была надёжность. Решение спасло жизни: во время полёта «Аполлона-12» в ракету ударила молния. Компьютер «Аполлона» отключился, а «Сатурна-5» - нет.

Разделение труда оказалось палкой о двух концах. Всего в производстве ракеты было задействовано более 20 тыс. подрядчиков и субподрядчиков. Не все из них существуют и поныне. Сегодня North American Aviation ушла в прошлое как отдельная организация - компания была продана «Боингу» в 1996 году. Также «Боинг» владела Rocketdyne, но позже продала United Technologies Corporation, а последняя передала её Aerojet. Многие компании, которые участвовали в создании ракеты, не дожили до наших дней. Некоторые из оставшихся сменили структуру и несколько поколений сотрудников.

Но ликвидированные организации - это не единственная проблема. Даже если бы все компании всё ещё существовали, они вряд ли смогли бы начать производство. Каждый из подрядчиков держал собственную документацию по производству, которая могла быть утеряна. Даже если она не утеряна, она может храниться на каком-то из складов. На каком, знает человек, который уже там не работает или вообще умер.

За работой подрядчиков следили две группы в Космическом центре Маршалла. Отдел Research and Development Operations следил за целостностью структуры ракеты, а Industrial Operations перечислял денежные средства и принимал работу. Людей, которые знают, как сложить кусочки мозаики, уже нет.

Для «Сатурна-5» не было запланированного использования после «Аполлона». Многое не документировалось должным образом, оставаясь в личных записях инженеров. Сегодня эти кусочки бумаги гниют в чьём-нибудь подвале. Люди знают, где были те или иные документы, помнят важные мелочи, которые нигде не записаны. Ещё нужны операторы, которые будут управлять полётом ракеты. Если сегодня захочется запустить «Сатурн-5», то их нужно будет обучить заново.

Сама постановка вопроса «как были утеряны технологии» неправильна. Мы не живём в каких-то Тёмных веках. Мы не достигли некую эпоху невежества, в которую мы внезапно забыли принципы работы ракетных двигателей. Знания остались, их стало больше. Есть и способность делать ракеты. Почему бы сегодня не построить «Сатурн-5», если он такой мощный?

Почему для разработки новой модели автомобиля или самолёта нужно несколько лет? Все технологии их постройки уже известны. От друг друга они отличаются лишь незначительными улучшениями, пусть иногда и есть полностью новые разработки. Даже модификации уже существующей базовой модели занимают значительные промежутки времени. Так происходит, потому что это - очень сложные устройства с множеством деталей, которые производятся несколькими различными компаниями.

Ракета-носитель для высадки хрупкого человека на другое небесное тело требует ещё большей точности отдельных деталей. Её допуски, допустимые различия размеров, меньше, чем для какого-нибудь автомобиля. Поэтому при создании и постройке такого устройства тысячи часов тратятся на испытания и доработки. Нужна сложная техническая экспертиза. В её результате команда разработчиков приобретает уникальный опыт, которого нет ни у кого другого в мире. Опыт работы над «Сатурном-5» должен быть у любого, кто хочет повторить «Сатурн-5». Но людей нет.

Управление работой ракеты отражено в технической документации, которая является результатом моделирования и испытаний. Допустим, документация откуда-то появится. Ракета «Сатурн-5» состоит из более 3 миллионов деталей. Сам корабль «Аполлон» и лунный модуль добавляют ещё несколько миллионов. Сборка и управление подобными аппаратами - сложные процессы, масштаб запутанности которых едва поддаётся человеческому сознанию. Любые изменения в конструкции тоже потребуют изменений и переписывания этой бумаги с инструкциями.

А изменения потребуются. По окончании программы «Аполлон» заводы, которые выпускали детали для ракет, либо были закрыты, либо начали выпускать что-то ещё. Сборочные линии были разобраны, шаблоны и формы были уничтожены за ненадобностью. Инженеры, рабочие-механики, учёные и операторы управления полётом занялись другой работой. Со временем устарели материалы, некоторые из них уже не производят.

Устаревшие материалы можно заменить. (Или можно воссоздать половину промышленности США образца начала шестидесятых.) Замена материалов поменяет массу, напряжения, давления и взаимодействия между деталями. Изменятся неисправности и возможности летательного аппарата. Можно провести техническую экспертизу. Несколько лет уйдёт на повторное проведение испытаний и моделирование. Можно сформировать новые методики действий и операции по управлению, написать новую документацию. Можно обучить людей. Но всё это означает фактическое создание ракеты с нуля.

Рассматривалась возможность использовать двигатели F-1 первой ступени в будущей ракете SLS на боковых ускорителях. Разумеется, их не хотели копировать полностью. Современные средства разработки и системы автоматизированного проектирования обладают большей мощностью и простотой процесса для конструктора. За пятьдесят лет было создано много нового, поэтому сегодня можно сделать более эффективные узлы. Можно начать улучшать отдельные части. Именно на это и был направлен проект F-1B: один из двигателей F-1 разобрали и прогнали 3D-сканером.

Текущий проект SLS использует двигатели и твердотопливые ускорители шаттлов - от F-1B отказались. Конгресс США предъявляет свои требования к подрядчикам программы SLS, и они куда жёстче, чем в эпоху лунной гонки. За это проект в шутку прозвали Senate Launch System.

«Сатурн-5» оказался слишком дорогой ракетой. Стоимость запуска в 1969 году составляла 3,19 млрд долларов с учётом инфляции. На смену пришла программа Space Shuttle, целью которой ставилось удешевление стоимости пуска до 118 долларов за фунт (≈1520 $ за килограмм в сегодняшних деньгах). Из-за неожиданной сложности всех операций, смены конструкции и раздутия бюджета шаттлы никогда не достигли этой цели, став в разы дороже. Доставить человека на Марс должна SLS, стоимость которой тоже не радует.

По материалам блога Эми Шира Тейтель и ответа Роберта Фроста.

Подпишитесь на нас

421 с (4130 Н·с/кг) Время работы 360 с Горючее жидкий водород Окислитель жидкий кислород Третья ступень - S-IVB Стартовая масса 123 тонны Маршевый двигатель J-2 Тяга 1019,2 кН (в вакууме) Удельный импульс 421 с (4130 Н·с/кг) Время работы 165 + 335 с (2 включения) Горючее жидкий водород Окислитель жидкий кислород

Ракеты-носители, разрабатывавшиеся по проектам C-2, C-3 и C-4, предполагалось использовать для сборки на орбите Земли лунного корабля, после чего он должен был выйти на траекторию к Луне , прилуниться и взлететь с Луны . Масса такого корабля на околоземной орбите должна была составлять, по разным проектам, от примерно 140 до более чем 300 тонн.

C-5

Первая ступень, S-IC

Третья ступень, S-IVB

Сборка

Транспортировка

Для перевозки ракет «Сатурн-5» к стартовой площадке использовались специальные гусеничные транспортёры (англ. crawler-transporter). В то время (1965-1969 гг.; до появления в 1969 г. шагающего экскаватора 4250-W) они являлись крупнейшими и наиболее тяжелыми образцами наземной самоходной техники в мире. Эти транспортеры также оставались самыми большими и тяжелыми гусеничными машинами в мире до 1978 г. (когда появился экскаватор Bagger 288).

Схема лунной экспедиции

Скайлэб

Запуски Сатурна 5

В 1967-73 гг произведено 13 пусков ракеты-носителя «Сатурн-5». Все признаны успешными .

Серийный номер Дата старта Описание
SA-501 Аполлон-4 9 ноября 1967 Первый испытательный полёт
SA-502 Аполлон-6 4 апреля 1968 Второй испытательный полёт
SA-503 Аполлон-8 21 декабря 1968 Первый пилотируемый облёт Луны .
SA-504 Аполлон-9 3 марта 1969 Околоземная орбита. Испытания лунного модуля .
SA-505 Аполлон-10 18 мая 1969 Лунная орбита. Испытания лунного модуля .
SA-506 Аполлон-11 16 июля 1969 Первый пилотируемый полёт с посадкой на Луне в Море Спокойствия .
SA-507 Аполлон-12 14 ноября 1969 Прилунение около автоматической межпланетной станции «Сервейер-3 » в Океане Бурь .
SA-508 Аполлон-13 11 апреля 1970 Авария в полёте. Облет Луны . Команда спасена.
SA-509 Аполлон-14 31 января 1971 Прилунение около кратера Фра Мауро .
SA-510 Аполлон-15 26 июля 1971 Прилунение в Болоте Гниения на юго-восточной окраине Моря Дождей . Первый «Лунный Ровер » (американский транспортный луноход).
SA-511 Аполлон-16 16 апреля 1972 Прилунение у кратера Декарт .
SA-512 Аполлон-17 7 декабря 1972 Первый и единственный ночной старт. Прилунение в Море Ясности долины Тавр-Литтров . Последний лунный полёт по программе «Аполлон ».
SA-513 Скайлэб 14 мая 1973 Изготовлена для «Аполлонов-18/19/20». Затем модернизирована в двухступенчатый вариант. На орбиту выведена станция «Скайлэб »
SA-514 - - Изготовлена для «Аполлонов-18/19/20», но никогда не использовалась.
SA-515 - - Изготовлена для «Аполлонов-18/19/20». Затем предназначалась в качестве резервной для «Скайлэб », но никогда не использовалась.

См. также

Напишите отзыв о статье "Сатурн-5"

Примечания

Литература

  • Akens, David S (1971). . NASA - Marshall Space Flight Center as MHR-5. Also available in Retrieved on 2008-02-19 .
  • Benson, Charles D. and William Barnaby Faherty (1978). NASA. Also available in . Retrieved on 2008-02-19 . Published by University Press of Florida in two volumes: Gateway to the Moon: Building the Kennedy Space Center Launch Complex , 2001, ISBN 0-8130-2091-3 and Moon Launch!: A History of the Saturn-Apollo Launch Operations , 2001 ISBN 0-8130-2094-8
  • Bilstein, Roger E. (1996). NASA SP-4206. ISBN 0-16-048909-1 . Also available in . Retrieved on 2008-02-19 .
  • Lawrie, Alan (2005). Saturn , Collectors Guide Publishing, ISBN 1-894959-19-1
  • Orloff, Richard W (2001). NASA. Also available in . Retrieved on 2008-02-19 . Published by Government Reprints Press, 2001, ISBN 1-931641-00-5
  • (PDF). NASA - George C. Marshall Space Flight Center under Contract NAS&-20266. Retrieved on 2008-02-19 .
  • (PDF). NASA - George C. Marshall Space Flight Center (1968). Retrieved on 2008-02-19 .
  • (PDF). NASA - George C. Marshall Space Flight Center (1970). Retrieved on 2008-02-19 .
  • (PDF). NASA - George C. Marshall Space Flight Center (1968). Retrieved on 2008-02-19 .
  • Marshall Space Flight Center History Office. Retrieved on 2008-02-19 .
  • Пол Эйзенштейн. «Популярная механика». Июнь 2003.
  • Левантовский В. И. Механика космического полета в элементарном изложении. - М .: Наука, 1970. - 492 с.
  • Александров В.А., Владимиров В.В., Дмитриев Р.Д. и др. Ракеты-носители. - М .: Воениздат, 1981. - 315 с.

Сайты NASA

Другие сайты

  • ApolloTV.net Video

Симуляторы

Топливо первой ступени : керосин RP-1 / жидкий кислород O 2 Топливо второй и третьей ступеней: «Сатурн-5 » жидкий водород H 2 /жидкий кислород O 2 Двигатели первой ступени: 5 F-1 Двигатели второй ступени: 5 J-2 Двигатели третьей ступени: 1 J-2 Управление: первая и вторая ступень — карданные подвесы боковых двигателей; третья ступень — воспомогательная система управления с отдельными двигателями на монометилгидразине/четырехокиси азота Стартовая тяга: около 3500 тонн Число пусков: 13 Число успешных пусков: 13 Число аварий: 2 частичные аварии; авария в полете «Аполлона-6 » привела к невыполнению части задач полета, незначительная авария в полете «Аполлона-13 » не имела отрицательных последствий Первый пуск: 9 ноября 1967 года, «Аполлон-4 » Последний пуск: основная версия 6 декабря 1972 года («Аполлон-17 »), «Сатурн ИНТ-21» — 14 мая 1973 года («Скайлэб »)

Полезный груз

Ракета отправляла на траекторию перелета к Луне около 45-50 тонн. Массу полезного груза на низкой околоземной орбите точно указать проблематично, поскольку ракета не предназначалась для доставки грузов на низкую орбиту. В разных источниках встречаются цифры от 118 тонн до 150 тонн, однако все эти цифры являются экстраполяцией и зависят от определения понятия «полезный груз». Во время лунных экспедиций ракета доставляла на околоземную орбиту массу около 145 тонн, из которых, однако, бо льшую часть составляли масса третьей ступени и топлива в ней, необходимых для отправки орбитального корабля и лунного модуля к Луне. По сути, третья ступень с топливом представляла собой часть полезного груза, поскольку служила разгонным блоком при отправке кораблей к Луне. Однако топливо третьей ступени частично расходовалось на довывод системы на околоземную орбиту, поэтому конструкция третьей ступени одновременно должна рассматриваться как часть ракеты в ее полете на низкую орбиту. Без доработок (которые никогда не были реализованы) использование трехступенчатого варианта для вывода грузов на низкую работу неэффективно. Двухступенчатый вариант (известный как «Сатурн ИНТ-21 ») мог выводить на низкую околоземную орбиту массу около 100 тонн.

Полезный груз «Сатурна-5» состоит из двух частей: орбитального корабля и лунного модуля . Орбитальный корабль крепится «головой вперед» к третьей ступени с помощью длинного переходника — так называемого адаптера . Лунный модуль располагается «головой вперед» внутри адаптера и крепится к его нижней части. Поверх командного модуля орбитального корабля устанавливается защитный колпак с системой автоматического спасения (САС). Колпак с САС отстреливается вскоре после отделения первой ступени. После выхода на траекторию перелета к Луне орбитальный корабль отделяется от адаптера, после чего верхние панели адаптера раскрываются (начиная с экспедиции «Аполлона-8 » панели отстреливались). Орбитальный корабль разворачивается на 180 градусов, стыкуется с лунным модулем и извлекает его из нижней части адаптера, после чего связка кораблей начинает самостоятельный полет.

Схема ракеты «Сатурн-5»

Конструкция

Ракета построена по тандемной схеме (то есть с поперечным делением на ступени), когда каждая последующая ступень расположена сверху предыдущих. Все ступени жидкостные, с несущими баками. Первая ступень использует в качестве горючего и окислителя керосин и жидкий кислород соответственно, верхние ступени криогенные (горючее — жидкий водород, окислитель — жидкий кислород). Ступени соединены друг с другом посредством переходников. Переходник между первой и второй ступенью состоит из двух частей и разделяется по двум плоскостям. Нижняя часть отделяется вместе с первой ступенью, верхняя часть (кольцо) через отделяется через несколько десятков секунд после запуска двигателей второй ступени. Разделение ступеней по «холодной» схеме: двигатели последующей ступени запускаются после отделения предыдущей. Торможение отделяемых ступеней производится с помощью специальных тормозных твердотопливных двигателей . Осадка топлива перед запуском двигателей на второй ступени производится с помощью специальных твердотопливных двигателей (удалены на последних четырех экземплярах ракеты), на третьей — с помощью твердотопливных двигателей осадки и двигателей автономной реактивной системы управления. Третья ступень запускается дважды: первый раз для довывода полезного груза на низкую околоземную (промежуточную) орбиту, второй раз — при разгоне полезного груза с промежуточной орбиты к Луне. В верхней части третьей ступени установлен инструментальный блок , управляющий полетом ракеты.

Первая ступень S-IC

Ступень состоит из 5 основных компонентов, перечисленных снизу вверх: двигательный отсек, бак керосина, межбаковый отсек, бак жидкого кислорода, передняя юбка.

Двигательный отсек ступени состоит из силовой конструкции, теплозащиты и стабилизаторов. Один двигатель из пяти укреплен неподвижно в центре отсека, четыре боковых двигателя установлены в кардановых подвесах, которые расположены по окружности отсека под углом 90° один к другому. Боковые двигатели закрыты обтекателями для защиты от аэродинамических нагрузок. Конструкция и оборудование в донной части ступени закрыты теплоизоляцией для предохранения от тепла двигателей. Четыре небольших стабилизатора обеспечивают устойчивость ракеты-носителя при максимальном скоростном напоре.

Топливный отсек состоит из баков горючего (керосина) и окислителя (жидкого кислорода), соединенных межбаковым отсеком. 5 трубопроводов окислителя проходят через бак горючего к двигателям. Горючее подается к двигателям по 10 трубопроводам. Для наддува бака горючего используется гелий, он хранится в четырех баллонах давлении около 200 атмосфер, которые крепятся к шпангоутам внутри бака окислителя. Перед стартом бак окислителя наддувается гелием, после старта — газообразным кислородом, который отбирается от магистрали окислителя высокого давления.

Межбаковый отсек — негерметичная цилиндрическая оболочка, состоящая из подкрепленных круговыми шпангоутами гофрированных панелей.

Передняя юбка служит для соединения первой ступени со второй , она состоит из подкрепленных панелей и шпангоутов, верхний стыковой шпангоут имеет усиленную конструкцию. Внутри переходника располагается бортовая аппаратура первой ступени. Ступень имеет 5 быстроразъемных соединений, на которых располагаются отрывные разъемы кабельной сети системы телеметрии, разъемы главных трубопроводов окислителя и горючего и других систем. Часть плат расстыковываются и убираются до включения двигателей, другая — при старте ракеты.

Система управления ступени включает в себя систему управления вектором тяги, систему гидропривода и регулирующую аппаратуру. Восемь рулевых машинок отклоняют двигатели в двух плоскостях со скоростью 5 град/сек. Рабочей жидкостью гидравлической системы является горючее, отбираемое из трубопроводов высокого давления.

Отделение первой ступени происходит на высоте около 65 км при скорости около 2,3 км/с. После выключения двигателей включаются 8 тормозных РДТТ , расположенных под обтекателями главных двигателей. Тяга каждого тормозного РДТТ около 38 т, эффективное время работы 0,66 с (начиная с «Аполлона-15 » число тормозных двигателей уменьшено до четырех). [, ]

Производитель: North American (сегодня часть «Боинга»)
Высота: 24,9 метра
Диаметр баков: 10,1 метр
Сухая масса: около 44 тонн
Полная масса: около 460 тонн (в разных полетах несколько различалась)
Двигательная установка: 5 жидкостных реактивных двигателей J-2
Вакуумная тяга: около 520 тонн
Горючее: жидкий водород H 2
Окислитель: жидкий кислород O 2
Соотношение окислитель/топливо: 4,5 — 5,5
Вакуумный удельный импульс: около 425 секунд (в разных полетах несколько различался)
Управление: периферийные двигатели на кардановых подвесах
Время работы: 400 секунд (в разных полетах несколько различалось)

Вторая ступень состоит из верхнего переходника, топливных баков, двигательного отсека с пятью ЖРД J-2 , нижнего переходника между первой и второй ступенью. На верхнем переходнике длиной 3,5 метра установлено 4 тормозных твердотопливных двигателя , которые запускаются после отделения третьей ступени и тормозят вторую ступень.

Топливный отсек включает в себя баки жидкого кислорода и жидкого водорода. Днище и стенки водородного бака покрыты теплоизоляцией, сокращающей потери водорода на испарение на стартовой позиции и в полете. Толщина теплоизоляции стенок 4 см, верхнего днища около 1 см. Для обеспечения пожаробезопасности теплоизоляция продувается гелием. Баки имеют смежное днище (перегородку), которое состоит из двух оболочек, пространство между которыми заполнено теплоизоляцией. Общая перегородка позволяет значительно уменьшить массу конструкции. Нижний переходник обеспечивает жесткое соединение первой и второй ступени. Вокруг наружной поверхности переходника установлены твердотопливные двигатели осадки, они запускаются после отделения первой ступени , чтобы осадить топливо перед запуском двигателей (в пусках «Аполлона-4 » и «Аполлона-6 » было 8 двигателей осадки, затем их число уменьшили до 4, а начиная с пуска «Аполлона-15 » их убрали вовсе). Через 23 сек после запуска двигателей переходник сбрасывается пиротолкателями.

В двигательном отсеке установлены четыре ЖРД J-2 : четыре периферийных на кардановых подвесах (отклоняются в пределах ±7° двумя сервоприводами, имеющими автономные турбонасосные системы) и неподвижный центральный. Теплозащитный экран крепится внутри нижнего переходника и вокруг камер двигателя, он защищает дно ступени от нагрева при работе двигателей. В топливную систему, кроме трубопроводов и арматуры, входят перегородки для демпфирования колебаний топлива, устройства, препятствующие воронкообразованию на входе в трубопровод, датчики расхода компонентов. Система позволяет регулировать подачу компонентов в необходимом соотношении. В полете производится программное переключение соотношения компонентов топлива (с 4,5 на 5,5), что позволяет увеличить удельный импульс при уменьшении тяги. Для наддува водородного бака используется газообразный водород, отбираемый из трубопровода двигателя. Кислородный бак наддувается газообразным кислородом, поступающим от магистрали жидкого кислорода.

Двигатели второй ступени включаются, когда расстояние между первой и второй ступенями увеличится до 2 — 3 метров. Это повышает надежность разделения и позволяет уменьшить теплозащиту ступени. Система управления полетом второй ступени запускается после отделения первой ступени и получает команды от инструментального блока . Управление осуществляется путем отклонения 4 периферийных двигателей, что обеспечивает контроль по всем каналам.

Третья ступень S-IVB

Ступень S-IVB предназначена для завершения вывода орбитального корабля и лунного модуля на геоцентрическую орбиту и последующего перевода на траекторию полета к Луне. Таким образом, ступень используется и для довывода полезного груза, и в качестве разгонного блока.

Выпускалось два типа ступени: для ракеты-носителя «Сатурн-1Б » (серия 200) и для ракеты «Сатурн-5» (серия 500). Серия 500 имела следующие отличия от серии 200:

  • нижний переходник с большим нижним диаметром для стыковки с 10,1-метровой второй ступенью (диаметр первой ступени «Сатурна-1Б» совпадал с базовым диаметром S-IVB, и расширенный переходник не был нужен);
  • увеличенный запас гелия для повторного запуска двигателя J-2 ;
  • два твердотопливных двигателя осадки топлива вместо трех у серии 200;
  • отсутствовал четвертый двигатель автономной системы управления (см. ниже).

Ступень состоит из верхнего и нижнего переходников, отсека топливных баков и двигательной установки. Водородный и кислородный баки алюминиевые, имеют общее днище. Водородный бак покрыт внутренней теплоизоляцией. Силовая установка ступени имеет системы прокачки компонентов, которая обеспечивает охлаждение магистральных агрегатов (насосы, клапаны, трубопроводы) перед включением двигателя. Охлаждение ведется жидким водородом и кислородом, которые подаются из баков в коммуникации двигателя, охлаждают их и возвращаются в баки. Для наддува бака окислителя используют гелий, который хранится в восьми титановых баллонах под давлением 210 ат. Баллоны расположены в водородном баке. Гелий нагревается в теплообменнике двигателя. Давление в баке окислителя поддерживается в пределах 2,6 — 2,8 атмосфер. Бак горючего до старта наддувается гелием, а во время работы двигателя — газообразным водородом, который отбирается на выходе из рубашки двигателя. В баке поддерживается давление наддува 1,9 — 2,2 атмосфер.

Система регулирования подачи топлива имеет датчики уровня топлива, расположенные в баках и связанные с бортовым компьютером, который вырабатывает команды регулирования подачи окислителя. Система поддерживает соотношение компонентов окислителя и горючего 5:1.

Для управления по каналам тангажа и курса ЖРД, укрепленный на кардановом подвесе, может отклоняться гидравлической системой на ±7°. В течение всего полета ступени управление по крену осуществляется тремя вспомогательными жидкостными реактивными двигателями. Двигатели работают на монометилгидразине и четырехокиси азота, развивают тягу 68 кг. Двигатели могут работать в режиме непрерывной тяги и в импульсном режиме. Четвертый вспомогательный ЖРД (ускоряющий) аналогичен трем первым, расположен также на нижнем переходнике, и его вектор тяги такой же, как у маршевого двигателя. Он развивает тягу до 32 кг. Подача компонентов в двигатели вытеснительная. В полете четвертый ускоряющий ЖРД работает дважды для осадки топлива: первый раз — после отделения второй ступени от S-IVB перед первым включением маршевого двигателя, и второй раз — перед запуском ЖРД J-2 для выхода на траекторию полета к Луне (на ступенях серии 200, стоявших на «Сатурне-1Б », этот двигатель отсутствовал). На ступени также располагались 2 твердотопливных двигателя осадки топлива (вместо трех на ступенях серии 200), включавшихся после отделения от второй ступени. [, ]

На базе ступени S-IVB была создана первая американская орбитальная станция «Скайлэб », запущенная в мае 1973 года на ракете «Сатурн ИНТ-21 », двухступенчатом варианте «Сатурна-5».

Инструментальный блок

В инструментальном блоке смонтированы основные электронные системы ракеты. Блок расположен поверх третьей ступени S-IVB . На внутренней поверхности цилиндрического кольца размещены главные блоки управления стартом, ориентации и полетом по траектории, навигации, телеметрии и аварийной системы. Основные блоки системы управления — бортовой компьютер и инерциальная платформа, блоки управления полетом — аналоговый вычислитель, скоростные гироскопы, акселерометры.

Блок имеет систему терморегулирования. Приборы монтируются непосредственно на панелях, отводящих тепло. Через панели циркулирует охлаждающая жидкость, уносящая тепло в теплообменник, где она охлаждается испарением воды. Система управления микроклиматом также обеспечивает отвод тепла от оборудования, размещенного в носовой части третьей ступени.

Измерительная система ракеты состоит из электрических съемников, датчиков, сигнализирующих устройств и устройств для обработки данных. Радиочастотная система блока обеспечивает слежение, выработку команд и телеметрическую передачу. Электрическая система преобразует и распределяет энергию, необходимую для работы агрегатов в полете. Электрическая энергия обеспечивается серебряно-цинковыми аккумуляторами с номинальным напряжением 28 В. Вся ракета оборудована системой обнаружения неисправностей, вырабатывающей сигналы аварийного состояния, передаваемые на пульт управления астронавтов.

Сборка, предстартовая подготовка и пуск

Сборка и проверка

Предполетная проверка и испытания ракеты «Сатурн-5» и корабля «Аполлон» ocyществляются объединенной правительственно-промышленной комиссией в составе 500 человек. Несколько тысяч человек участвуют в подготовке к старту ракеты с кораблем в Космическом центре НАСА им. Кеннеди на мысе Канаверал. В здании вертикальной сборки на расстоянии 5 км от стартового комплекса производятся сборка и сопряжение ступеней ракеты и корабля. Осуществляется общая проверка перед транспортировкой на стартовую позицию.

Предстартовая подготовка

За 8 — 10 недель до старта ракета с кораблем, установленные на передвижную стартовую платформу, транспортируются на стартовую позицию на специальном гусеничном транспортере . После соединения всех электроцепей, пневмокоммуникаций, топливных линий космической системы и платформы включается энергия и производится проверка всех коммуникаций. Одновременно проверяются бортовые и наземные радиосистемы. Затем производятся испытания готовности к полету, в которых одновременно с действительным отсчетом времени и имитацией полетных операций проверяется работа космодрома и Центра управления полетом в Хьюстоне. Для окончательного испытания ракеты перед стартом баки заправляются топливом и производится имитация предстартовой работы всех систем до момента включения двигателей первой ступени .

Стартовые операции

Последний предстартовый отсчет времени начинается за 6 суток до старта, в это время выполняются все операции подготовки к полету. Предстартовый отсчет содержит несколько пауз, чтобы избежать необходимости отсрочки полета, если обнаружатся аномалии в работе систем. Окончательный предстартовый отсчет начинается в Т0 - 28 ч, исключая паузы (T0 — момент старта).

Примерно за 12 часов до пуска первая ступень заправляется керосином RP-1. Затем, приблизительно за 4 часа до пуска, заправляется жидкий кислород. Баки перед заправкой охлаждаются. Вначале окислителем заправляется до 40 % вторая ступень , затем заправляется до 100 % третья ступень , дальше заправляется до 100 % вторая ступень, затем до 100 % первая ступень. Эта процедура позволяет убедиться в отсутствии утечки кислорода из бака второй ступени до его полной заправки. Дальше заправляется жидкий водород в бак второй ступени, затем третьей ступени. Общее время заправки ракеты криогенным топливом 4 ч 30 мин. Когда все системы подготовлены к полету, осуществляется переход на команду «зажигание в T0 - 190 с», и ракета переводится на автоматику.

В момент времени T0 - 8,9 секунд посылается сигнал на зажигание маршевых двигателей первой ступени. Из пяти двигателей первым запускается центральный, затем по 2 противоположных периферийных с интервалом 300 мс (при пуске «Сатурна ИНТ-21 » запуск двигателей проводился по схеме 1-4). В момент времени T0 - 1,6 с двигатели выходят на полную тягу. Ракета удерживается с работающими двигателями в течение 5 с, затем ракета освобождается по «мягкой» схеме. Освобождаются 4 удерживающих рычага, и ракета начинает подниматься, преодолевая удерживающие силы, возникающие от металлических пальцев, протягиваемых сквозь отверстия. Этот процесс мягкого освобождения длится 0,5 с. Через 1,7 с после начала подъема ракеты внешние ЖРД отклоняются, создают угол рыскания и увеличивают зазор, предотвращающий контакт ракеты с башней. Этот маневр заканчивается на 10-й секунде полета на высоте около 130 метров. Компьютер в инструментальном блоке , управляющий полетом, вырабатывает управляющие сигналы по крену и тангажу, выдает их в сервоприводы карданов периферийных двигетелей и выводит ракету на заданный азимут. Маневр по крену заканчивается на 31-й секунде, а программа управления по тангажу продолжается до отделения первой ступени. Максимальный динамический напор достигается примерно на 70-й секунде полета, на ракету при этом действует сила сопротивления воздуха около 210 тонн. Центральный двигатель выключается примерно на 130 секунде, во избежание слишком больших перегрузок. Периферийные ЖРД работают до тех пор, пока не израсходуется весь кислород или керосин. Исчерпание кислорода фиксируется при сигнале по крайней мере 2 из 4 датчиков в верхних частях магистралей снабжения периферийных двигателей. Исчерпание горючего фиксируется дублированным датчиком, установленным в нижней части бака. Главной системой отключения является система исчерпания окислителя, система исчерпания горючего — запасная. После команды на выключение периферийных двигателей через 0,6 секунды включаются тормозные РДТТ, развивающие в среднем тягу около 38 тонн каждый в течение 0,67 секунды. Первая ступень отделяется от второй на высоте около 65 км при скорости относительно земли около 2,3 км/с. Продолжая баллистический полет, ступень поднимается до высоты около 100 км и падает (в положении «двигатели вниз») в Атлантический океан на расстоянии около 560 км от космодрома.

За 0,2 сек, до отделения первой ступени выдается команда на запуск РДТТ осадки топлива, установленных на нижнем переходнике второй ступени. Менее чем через 1 секунду после разделения ступеней подается команда на запуск маршевых двигателей второй ступени . Пять двигателей запускаются одновременно, и через 23 с сбрасывается нижний переходник второй ступени. Далее экипаж вручную подает команду на сброс системы аварийного спасения (которая связана только с кораблем и не управляется от ракеты-носителя). Бортовой компьютер управляет полетом, выдавая сигналы на сервоприводы карданов периферийных двигателей. Через 40 сек после запуска двигателей бортовой компьютер в инструментальном блоке переходит на режим итерационного управления. С этого момента управление полетом осуществляется по методу настраивающейся траектории.

Через 700 мс после выключения двигателей второй ступени запускаются 2 РДТТ осадки топлива, установленные на нижнем переходнике третьей ступени. Через 0,1 с пиротехническими зарядами срезаются планки, соединяющие вторую и третью ступень, запускаются 4 тормозных РДТТ, установленных на верхнем переходнике второй ступени. Отделение второй ступени происходит на высоте около 190 км при скорости около 7 км/сек на дальности около 1600 км; продолжая полет по баллистической траектории, вторая ступень через 11 минут после отделения падает в Атлантический океан на расстоянии около 4200 км от места старта.