05.11.2019

Спектральный анализ нержавеющей стали. Анализаторы металлов и сплавов цветных и чёрных металлов. Что такое рентгенофлуоресцентный анализатор


Наибольшим спросом у Заказчиков услуг Испытательного центра пользуются исследования химического состава металлов и сплавов, которые проводит лаборатория "Спектральных, химико-аналитических исследований и эталонных образцов" . Аналитическое оборудование лаборатории позволяет с высочайшей точностью определять (качественно и количественно) практически все элементы периодической таблицы таблицы Д.И. Менделеева.

Воспользовавшись услугами лаборатории "Спектральных, химико-аналитических исследований и эталонных образцов" Испытательного центра, Вы сможете :

Определить химический состав металлов, сплавов, лигатур, керамических материалов, что позволит идентифицировать марку, соответствие ГОСТ или ТУ;

Определить количественное содержание серы и углерода в сплавах и сталях;

Определить количественное содержание легирующих элементов в сталях и сплавах;

Определить количественное содержание микропримесей в сталях и сплавах;

Определить содержание кислорода и азота в сплавах и сталях;

Провести контроль качества партий материалов и изделий;

Получить инженерно-техническую и технологическую консультации.

При проведении исследований мы используем следующее аналитическое оборудование:

Масс-спектрометры c индуктивно связанной плазмой XSeries-2 и ICAP-Qc;

Оптико-эмиссионный спектрометр Magellan Q8;

Газоанализаторы LECO серии 600;

Атомно-эмиссионные спектрометры с индуктивно связанной плазмой VARIAN-730 ES, OPTIMA 8300 (производства фирмы Perkin Elmer);

Рентгенофлуоресцентные спектрометры S4 EXPLORER и S8 TIGER;

Оптико-эмиссионный спектрометр ARL 4460;

Атомно-абсорбционный спектрометр VARIAN-240 FS.

Наименование испытаний и исследований

НАИМЕНОВАНИЕ испытаний/исследований оборудование нормативно-техническая документация

ХИМИЧЕСКИЙ АНАЛИЗ

Химический анализ. Никелевые
жаропрочные сплавы (легирующие
элементы)

Спектрометр ПЭ-5400В

ОСТ 90128-142-96, ОСТ 190429-433-96, ГОСТы 24018.0-24018.8,
ГОСТы 6689.1-6689.22, ГОСТ 12344-12365, ГОСТ 17051-82

Атомно-абсорбционный анализ
сталей и никелевых сплавов
(легирующие элементы)

Атомно-абсорбционный
спектрометр Varian 240FS

МВИ 1.2.011-2009, ГОСТ Р ИСО 4940-2010, ГОСТ Р ИСО 4943-2010,
ГОСТы 6689.1-6689.22, ГОСТ 6689.24, ГОСТы 22536.3-22536.12, ГОСТ 22536.14,
ГОСТ Р 50424, ГОСТ 12346-12365

Атомно-абсорбционный анализ
легких сплавов на основах Ti, Al, Mg
(легирующие элементы +
макропримеси)

Атомно-абсорбционный
спектрометр Varian 240FS
ГОСТ 11739.1-11739.24, ГОСТ 3240.0-3240.21, ГОСТ 19863.1-19863.16

Атомно-эмиссинный анализ
никелевых сплавов и сталей
(легирующие
элементы+макропримеси)

Атомно-эмиссионный
спектрометр Varian 730-ES

ГОСТ 6012-98, ГОСТ Р ИСО 13898-2-2006, ГОСТ Р ИСО 13898-3-2007,
ГОСТ Р ИСО 13898-4-2007, ГОСТ Р ИСО 13899-2-2009, ГОСТ Р 51056-97,
ГОСТ Р 51927-2002

Атомно-эмиссинный анализ легких
сплавов на основах Al, Ti, Mg
(легирующие
элементы+макропримеси)

Атомно-эмиссионный
спектрометр Varian 730-ES

ГОСТ 11739.0-11739.24, ГОСТ 9853.24

Определение массовой доли
двуокиси кремния в исходном
продукте и готовом гидролизованном
растворе этилсиликата ЭТС-40

Весы AND HR-200 ГОСТ 26371-84

Определение продолжительности
гелеобразования в готовом
гидролизованном растворе
этилсиликата ЭТС-40

Термостат ГОСТ 26371-84

Определение содержания ионов Cl,
SO??

Анализатор жидкости
ЭКОТЕСТ-2000

ГОСТ 9.902-81

Определение рН среды (электролиты)

Измеритель
комбинированный Seven
Easy pH (рН-метр

ОСТ 1 90188-90193-90, ОСТ 1 90388-90392-90

Определение рН среды (ткани,
волокна, герметики)

Измеритель
комбинированный Seven
Easy pH (рН-метр)

ГОСТ 9.902-81

СПЕКТРАЛЬНЫЙ АНАЛИЗ

Спектральный анализ.Никелевые
жаропрочные сплавы (12 элементов
легирующие) и стали

Оптико-эмиссионный
спектрометр ARL-4460

ПИ 1.2.417-89, ГОСТ 6012-98, ГОСТ 18895, МВИ 1.2.003-2009, МВИ 1.2.001-2009

Спектральный анализ. Никелевые
сплавы типа: ВЖЛ8, ЭИ698, Э44376,
ВКН4У, ЖС47 (12 элементов
легированные) и сталей

Рентгенофлюоресцентный
спектрометр S4EXPLORER

ГОСТ 28033-89, МВИ 1.2.015-2011

Спектральный анализ легких сплавов
на основах Al, Ti, Mg

Рентгенофлюоресцентный
спектрометр S4EXPLORER

ГОСТ 7727, ГОСТ 7728


для количественного анализа сплавов

Рентгенофлюоресцентный
спектрометр S4EXPLORER

ГОСТ 7727, ГОСТ 7728

ГАЗОВЫЙ АНАЛИЗ


стали (углерод, сера)

Газоанализатор CS-600

ГОСТ 24018.7-24018.8

Газовый анализ. Никелевые сплавы и
стали (кислород, азот)

Газоанализатор ТС-600

ГОСТ 17745-90, МВИ 1.2.006-2009

Газовый анализ. Никелевые сплавы и
стали (водород)

Газоанализатор RHEN-600 ГОСТ 17745-90


(углерод, сера)

Газоанализатор CS-600

ГОСТ 24018.7-24018.8

Газовый анализ. Титановые сплавы
(кислород, азот)

Газоанализатор ТС-600

ГОСТ 28052-91, ГОСТ 17745-90

Газовый анализ. Титановые сплавы
(водород)

Спектрограф ИСП-51

ОСТ 1 90034-81, ММ 1.595-21-146-2002

Масс-спектрометрический анализ
шихтовых материалов на основах Ni,
Co, Cr, W, Mo (входной контроль
примеси)

Масс-спектрометр X
SERIES2

Масс-спектрометрический анализ.
Жаропрочные никелевые сплавы и
стали (микропримеси)

Масс-спектрометр X
SERIES2

МВИ 1.2.009-2009, МВИ 1.2.010-2009

Масс-спектрометрический анализ
легких сплавов на основах Al, Ti, Mg
(микропримеси)

Масс-спектрометр X
SERIES2

МВИ 1.2.009-2009, МВИ 1.2.010-2009

ЭМИССИОННЫЙ АНАЛИЗ

Эмиссионный анализ сплавов на
основах Al, Ti, Mg (+ макропримеси)

Оптико-эмиссионный
спектрометр Q8 Magellan

Создание аналитической программы
для количественного анализа легких
сплавов

Оптико-эмиссионный
спектрометр Q8 Magellan

ГОСТ 7727, ГОСТ 7728, ГОСТ 23902

Оказание услуг по проведению химического анализа металла

Мы можем выполнить следующие работы:

Химический состав, химанализ металла:

    Определить химический состав сталей и сплавов

    Подтвердить марки сталей

    Восстановить документацию на продукцию

    Подтвердить или опровергнуть сертификат

    Входной контроль металлов и сплавов

    Сортировать лом из черных и цветных металлов

    Определить химический состав рудных пород

    Подобрать аналог сталей и сплавов (с использованием специальной программы - марочника сталей Win Steel 8.0 Prof)

Механические испытания:

    Сжатие и растяжение

    Определение твердости

Варианты сотрудничества:

    Проведение испытаний на предприятии заказчика

    Испытание образцов в нашей лаборатории

    Выезд в регионы и получение образцов через транспортные компании

Оперативность

Выезд специалиста на объект заказчика

Работа на всей территории РФ

Высоко квалифицированные специалисты

Работа в соответствии ГОСТ

Подбор аналогов сталей и сплавов

Консультация специалиста

Заявка в один клик (заказать услугу с сайта)

"Сталь. Метод рентгенофлюоресцентного анализа"

ГОСТ 12353-78, ГОСТ 12344-2003, ГОСТ 12345-2001, ГОСТ 12350-78, ГОСТ 12346-78, ГОСТ 12347-77, ГОСТ 12348-78, ГОСТ 12352-81, ГОСТ 12355-78

Используемое оборудование для химического анализа

ВСЕ ОБОРУДОВАНИЕ ИМЕЕТ ДЕЙСТВУЮЩИЕ СВИДЕТЕЛЬСТВА О ПОВЕРКЕ.


X-MET 8000 является рентгенофлуоресцентным портативным энергодисперсионным спектрометром с возможностью определения легких элементов Mg, Al, Si, P, S в соответствии с ГОСТ 28033-89.

Диапазон измеряемых элементов: от Mg до Bi.

PMI MASTER UVR-мобильный оптико-эмиссионный анализатор металлов, который позволяет проводить высокоточный анализ и определять марку любых сталей и сплавов с возможностью анализа углерода, серы, фосфора.

АRC-MET-8000 портативный оптико-эмиссионный анализатор работающий в аргоновом режиме. С возможностью определения и прекрасной повторяемостью результатов по углероду, сере, фосфору и бору.

Стационарный твердомер по методу Роквелла МЕТОЛАБ101
Стационарный твердомер используется для измерения твердости твердых сплавов, а также закаленных и не закаленных сталей, литья, подшипниковых сталей, алюминиевых сплавов, тонких плит твердых сплавов, меди, цинкованных, хромированных и луженых покрытий поверхностей и др. по методу Роквелла.
Свидетельство об утверждении типа средств измерений RU.C.28.002.A № 63563.

Последовательность измерения

1 2
  • X-MET 8000
  • PMI MASTER UVR
3

Определение химического состава образца

Сегодня проведение химического анализа металлов - стилоскопирования - не требует нарушения целостности проверяемой конструкции или подготовки образцов. Чтобы сделать спектральный анализ и определить физико-химические характеристики металлов и сплавов, в лабораторию обращаться тоже необязательно: современный фотоэлектрический метод спектрального анализа позволяет контролировать качество готовых изделий даже в полевых условиях.

Зачем нужен спектральный анализ металлов и сплавов?

Проведение спектрального анализа металлов с помощью стационарных или портативных приборов, использующих метод рентгенофлуоресцентного спектрального анализа стали согласно ГОСТ 28033–89, призвано помочь профильным предприятиям в сортировке металла.

Подобное решение демонстрирует целый ряд преимуществ. Чтобы провести экспертизу металла не понадобится много времени. Результат будет известен уже через несколько минут. Такая мини-лаборатория по химическому анализу металла значительно сократит издержки производственного предприятия, крупного ритейлера и коммунальные службы. Устанавливаемая на спектральный анализ металла цена в специализированных организациях и график их работы больше не имеют значения: однажды купив анализатор металлов и пройдя курс подготовки специалистов, которые будут с ним работать в дальнейшем, ваша компания сможет организовать спектральный анализ металла в удобное время и в удобном месте.

Используется химический анализ металла в следующих случаях:

    Подтверждение марки, подтверждение сертификатов.

    Сортировка лома металлов и сплавов. В этой сфере достаточно распространены фальсификации, однако если приемщиками используется химический анализ, определение металла, дающее максимально точный результат, гарантированно избавит предприятие от убытков.

    Калибровочные программы прибора.

С какими веществами работает анализ химического состава металлов?

Рентгенофлюоресцентный анализ химического состава металлов и сплавов производится в лаборатории с помощью рентгенофлюоресцентного анализатора типа X-MET 7500 с возможностью определения легких элементов Mg, Al, Si, P, S в соответствии с ГОСТ 28033-89. Диапазон измеряемых элементов: от Mg до Bi. Метод подходит для определения химического состава и марки стали, других металлов. В частности, допускается:

  • химический анализ алюминиевых сплавов;
  • химический анализ титановых сплавов;
  • анализ сплавов железа и т. д.

Универсальная программа химического анализа сплавов использует несколько фундаментальных параметров для анализа металлов и сплавов, стандартный набор из 33 элементов: Mg, Al, Si, P, S, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Y, Zr, Nb, Mo, Pd, Ag, In, Sn, Sb, Hf, Ta, W, Pt, Ir, Au, Pb, Bi в концентрациях от 0 до 100%. Применима для анализа металлов на любой основе: Pb, W, Au и пр., ферросплавов

Как работает химический анализ металлов и сплавов?

Для того чтобы сделать сделать химический экспресс анализ металла, достаточно приложить к его поверхности один из реализуемых нами приборов. Рентгенофлюоресцентный метод основан на зависимости интенсивности характеристических линий флюоресценции элемента от его массовой доли в пробе.

Приборы для проведения спектрального анализа

Что такое рентгенофлуоресцентный анализатор?

Рентгенофлуоресцентный спектрометр представляет собой аналитический прибор, который определяет каждый химический элемент, присутствующий в тестируемом образце.

Это устройство также определяет общее количество химических элементов в образце.

X-MET 7500

Рентгенофлюоресцентный анализ химического состава металлов и сплавов производится с помощью рентгенофлюоресцентного анализатора типа X-MET 7500 с возможностью определения легких элементов Mg, Al, Si, P, S в соответствии с ГОСТ 28033-89. Диапазон измеряемых элементов: от Mg до Bi.Рентгенофлюоресцентный метод основан на зависимости интенсивности характеристических линий флюоресценции элемента от его массовой доли в пробе.

Данный вид контроля используется в следующих случаях:

  • Определение химического состава сталей и сплавов.
  • Восстановление документации на продукцию.
  • Подтверждение марки,подтверждение сертификатов.
  • Входной контроль металлов и сплавов.
  • Сортировка лома металлов и сплавов.
  • Подбор аналогов сталей и сплавов (с использованием специальной программы - марочника сталей Win Steel 7.0 Prof).

Какие параметры позволяет определить химанализ металла?

Пользователю доступен набор из 8 специализированных эмпирических программ: «низколегированные стали и чугуны», «нержавеющие стали», «инструментальные стали», «алюминиевые сплавы», «медные сплавы», «кобальтовые сплавы», «титановые сплавы», «никелевые сплавы». Выбор программы, с помощью которой планируется проводить определение химического состава металла, осуществляется автоматически.

  • Программа для идентификации спектра (да/нет).
  • Программа для анализа углеродистых, низколегированных сталей и чугунов.
  • Программа для анализа нержавеющих сталей.
  • Программа для анализа инструментальных сталей.
  • Программа для анализа медных сплавов.
  • Программа для анализа никелевых сплавов.
  • Программа для анализа титановых сплавов.
  • Программа для анализа кобальтовых сплавов.
  • Программа для анализа алюминиевых сплавов.
  • Идентификационные программы (да/нет).
  • Функция автоматического определения типа материала и выбора необходимой программы для анализа.
  • Автоматическая коррекция концентраций при измерении образцов малых размеров и сложных форм.
  • Функция рекалибровки по одной точке.
  • Встроенный марочник металлов и сплавов, возможность корректировки и добавления марок.
  • Возможность усреднения результатов не менее чем по 50-ти измерениям для получения достоверных результатов при анализе неоднородных образцов.
  • Возможность создания отчетов в защищенном от корректировки формате PDF по шаблону пользователя с возможностью размещением логотипа компании, результатов измерений, погрешности измерений, времени и длительности измерений, имени оператора и другой информации на выбор пользователя.

При работе с металлами нередко возникают вполне обоснованные сомнения : соответствует ли металл деталей тому, что указан в конструкторской документации. На любом производстве, как правило, применяют ограниченный ассортимент сталей и сплавов, но острой проблемой остается перепутывание марок даже при хорошо налаженном входном контроле. Это и недобросовестность поставщика, когда в одной партии попадаются прутки различных марок, что невозможно определить при входном контроле, перепутывание при выдаче заготовок в производство и отсутствие производственной дисциплины рабочих , которые, чтобы скрыть свой брак, берут любую подвернувшуюся заготовку. В ряде случаев сомнения возникают уже тогда, когда узел собран и подтвердить марку известными способами (спектральным , химическим , рентгенофлуоресцентным ) просто невозможно.

Кроме того, все чаще выпуск бракованной продукции возникает из-за перепутывания металлов при его покупке (недобросовестность поставщика) и при отсутствии входного контроля металлов. В итоге страдает качество заготовок и качество деталей. В ряде случаев сомнения возникают тогда, когда узел уже собран, и подтвердить (идентифицировать) марку металла какой-либо ответственной детали в нем известными методами (спектральным или химическим) не представляется возможным. Также прибор позволяет проводить анализ даже очень мелких деталей. Для этого необходимо расположить их на токопроводящей подложке. Возможно определение пробы золотых изделий.

Можно привести множество примеров, когда на термообработку попадали детали, заданную твердость которых невозможно было получить из-за того, что вместо стали, например, 40Х13 часть из них была изготовлена из 12Х8Н10Т. А как разбраковать несколько тысяч гаек, часть которых случайно была изготовлена из 40Х, а не из 30ХГСА, как того требовалось по конструкторской документации? Или как узнать на полностью готовой печатной плате марку примененного припоя, или каким припоем облужены выводы микросхем? Как подтвердить марку проволоки сварочного электрода?

С этими задачами легко справляется термоэлектрический анализатор «ТАМИС».

Методы анализа и определения (детектирования) металлов и сплавов

Для контроля марок металлов и сплавов используют стандартные методы:

  • химический анализ металлов

    Данный метод позволяет проанализировать химический состав металла с высокой точностью. На данный момент это единственный метод анализа, позволяющий достоверно определить процентное содержание углерода в сталях.

    Для проведения химического анализа стали по углероду стружку исследуемого металла сжигают в водородной среде и анализируют состав получившегося газа фотоколлометрическим методом. Для точности измерения проводят три параллельных пробы. Для определения других элементов используют весовой способ.

    Состав металлов весовым методом определяется путем его перевода в раствор (химическое растворение в растворах кислот, воде). Затем соединение необходимого металла переводится в осадок добавлением соли или щелочи. Далее осадок прокаливается до постоянного веса, а содержание металлов определяется взвешиванием на аналитических весах и пересчетом. Метод дает наиболее точные значения состава металла, но требует больших затрат времени.

    При электрохимическом методе после перевода пробы в водный раствор содержание металла определяется различными электрохимическими методами — полярографическим, кулонометрическим и другими, а также сочетанием с титрованием.

    Эти методы позволяют провести химический анализ металлов в широком диапазоне концентраций с удовлетворительной точностью, но отличаются высокой трудоемкостью, требуют лабораторию и квалифицированный персонал.

  • спектральный анализ металлов

    Достаточно разнообразна группа спектральных методов определения содержания металлов. В нее входят, в частности, различные методы определения содержания металлов путем проведения анализа характеристических спектров электромагнитного излучения атомов — атомный эмиссионный анализ, атомный абсорбционный анализ, спектрофотометрия, масс-спектрометрия, рентгеноспектральный анализ.

    Наиболее широко применяемый в промышленности метод. На современном оборудовании процесс исследования состава металла занимает считанные минуты. При анализе металла данным методом определение количественного содержания углерода в сталях неточно .

    Для спектрального анализа требуются квалифицированные специалисты и дорогостоящее оборудование — спектрометр (порядка 4 млн. руб.). При анализе металла на поверхности остаются следы температурного воздействия, что приводит к нарушению геометрии исследуемой металлической детали.

  • рентгенофлуоресцентный анализ металлов

    Относится к неразрушающим методам. Позволяет определять практически весь элементный состав металлов, за исключением точного содержания углерода в сталях. Процесс определения занимает не более 1 минуты.

    Для проведения рентгенофлуоресцентного анализа требуется достаточно большая площадь поверхности. Измерение малых деталей невозможно. Требуется дорогостоящее оборудование (более 1,5 млн. руб.) и хорошо подготовленные специалисты.

Термоэлектрический анализатор металлов и сплавов ТАМИС

Богатый опыт работы по анализу причин брака на различных производствах, анализу выхода из строя изделий различной сложности и назначения привел к необходимости создания недорогого , простого в обращении именно в производственных условиях анализатора металлов и сплавов (включая цветные).

Эффект Зеебека

В основе работы прибора лежит эффект Зеебека, когда при нагревании соединения двух разнородных металлов возникает термоэдс, величина которой зависит от химического состава исследуемых металлов. Термоэдс легко поддается надежным измерениям и широко используется в промышленности в термопарах для измерения температур при различных технологических процессах читать про эффект .

Преимущества термоэлектрического анализатора металлов и сплавов

При разработке анализатора металлов основное внимание было уделено:

  • надежности
  • достоверности получаемых результатов
  • простоте в эксплуатации

Учитывался тот факт, что прибором могут пользоваться школьники, кладовщицы, рабочие, мастера.

  • Широкий спектр применения прибора:
    • на производственных участках металлообрабатывающих производств (ОТК, материальных кладовых, при входном контроле и пр.)
    • на сборочных участках для контроля металлов в собранных узлах, определения видов покрытия выводов радиоэлементов, марок припоев
    • в термических участках
    • в ювелирных мастерских
    • в мастерских высших учебных заведений и школьных мастерских
    • в исследовательских лабораториях
    • в Центральных заводских лабораториях
    • в лабораториях входного контроля металлов
    • в следственных отделах для оперативного контроля изъятых изделий из драгоценных металлов
    • при проведении лабораторных работ по металловедению в учебных заведениях
  • Простота применения
  • Компактность
  • Не требует квалифицированного персонала
  • Оперативность измерения

Методика определения металлов анализатором ТАМИС

Анализатор способен различить более 40 различных марок сталей и цветных металлов. Для получения достоверных результатов анализа необходимо строго следовать методике проведения анализа, которая описана .

Химический анализ металлов и сплавов является важной процедурой, с помощью которой можно контролировать наличие в том или ином металле каких либо, примесей и включений других металлов.

Физико-химические методы анализа металлов и сплавов позволят определить чистоту материала на предмет содержания в нем нежелательных примесей. Это в свою очередь позволит прогнозировать технические характеристики будущих деталей, которые будут производиться с применением того или иного металла либо сплавов нескольких металлов.

Когда и зачем необходим химический анализ металлов и сплавов

Металлы, а также их сплавы широко используются в разных отраслях промышленности и народного хозяйства. В чистом виде металлы практически не существуют – они обязательно имеют в своем составе природные или технологические примеси.

От их типа и концентрации напрямую зависят эксплуатационные параметры будущей продукции, которая производится из металла. Использование химического анализа позволит установить его качественные и количественные свойства.

В процессе проведения этого анализа можно будет:

  • определить количественный состав элементов;
  • выявить наличие инородных соединений и их концентрацию;
  • провести идентификацию сплавов;
  • определять соотношение смесей в металлических сплавах при их маркировке.

Стоит отметить: современный химический анализ металлов и сплавов является важным этапом экспертизы, которая используется для определения качества продукции и проверки ее соответствия текущим стандартам.

В основном анализ проводится для:

  • экспертизы качества выпускаемых металлов и сплавов на предмет их соответствия текущим стандартам;
  • контроля технологических процессов на этапе производства;
  • выполнения входной экспертизы сырья;
  • разработки и создания новых сплавов;
  • сертификации продукции из металла;
  • освидетельствования чистых металлов.

Методы химического анализа металлов

На сегодняшний день существует много разных методов, которые позволяют провести качественный анализ металлов и их сплавов.

Используемые методы должны обеспечивать:

  • экспрессность проведения процедуры анализа;
  • высокую точность результатов;
  • неразрушающий контроль;
  • простоту проведения эксперимента;
  • возможность использования методик анализа в производственном цикле.

Среди основных методов контроля наиболее часто используется спектральный анализ и эмиссионный химический анализ. Рассмотрим их особенности и преимущества.

Эмиссионный химический анализ

Этот метод исследования металлов позволяет за короткий промежуток времени с высокой вероятностью определить истинный состав исследуемого металлического образца.

На сегодня существует несколько разновидностей этого метода, но наибольшую популярность имеет атомно-эмиссионный спектральный анализ. Именно он используется в научной и промышленной отрасли для экспрессного получения данных о составе исследуемых образцов.

Эти методы анализа металлов и сплавов основаны на том принципе, что кратковременный высокотемпературный нагрев металла приводит к тому, что атомы вещества переводятся в возбужденное состояние и излучают свет в определенном интервале частот. Для каждого химического элемента характерна своя частота, по которой его и можно идентифицировать.

Полихроматическое излучение, которое получается вследствие такого разогрева металлического образца, фокусируется с помощью специальной оптической системы, с последующим раскладыванием в спектр и фиксированием регистратором.

После этого полученные данные обрабатываются с помощью компьютерной техники, на которой установлено специализированное программное обеспечение, позволяющее, используя аналитические инструменты, провести качественный и количественный анализ.

Точность метода

Метод эмиссионного анализа отличается высокими показателями чувствительности, что позволяет определять даже малейшие концентрации примесей в металлах и сплавах.

Показатель чувствительности этого метода находится в пределах 10 -5 …10 -7 %.

Что касается точности, то метод позволяет получить показатель в пределах 5% при небольших концентрациях примесей и до 3% при более высоком содержании примесей.

Преимущества

К основным преимуществам современного эмиссионного анализа относятся:

  • возможность параллельного определения сразу 70-ти элементов в составе металла или его сплава;
  • высокая скорость проводимого анализа;
  • низкий порог обнаружения примесей;
  • высокая точность и чувствительность;
  • информативность полученных результатов;
  • относительная простота проведения эксперимента;
  • возможность исследования больших изделий без ущерба их поверхностям.

Спектральный анализ

Спектральный анализ относится к методам качественного и количественного контроля составов металлических объектов. Он основан на проведении изучения спектров взаимодействия металла с используемым излучением.

Исследованию подлежат спектры электромагнитного излучения, спектры распределения элементарных частиц по энергиям и массам, а также спектры акустических волн. Комплексный анализ перечисленных спектров позволит получить детальную картину о составе исследуемого образца.

Спектральный анализ – это современный метод анализа металлов и сплавов, который основан на излучении и поглощении атомами электромагнитных волн при переходе из одного энергетического уровня на другой. Чтобы перевести атомы вещества в возбужденное состояние, в котором они могут излучать характеристическое излучение, в спектральном анализе используются разные источники света.

Общим для всех используемых источников является использование плазмы (высоко- или низкотемпературной), кинетической энергии частиц которой достаточно, чтобы перевести атомы вещества в возбужденное состояние. С помощью специального регистратора фиксируются полученные спектры, которые обрабатываются посредством программного обеспечения на компьютерной технике.

Точность метода

Химический спектральный анализ относится к высокоточным методам, которые также отличаются и высокой чувствительностью к наличию примесей в исследуемых образцах.

Показатель точности для этого метода находится в пределах от 10 -7 до 10 -6 %, а величина относительного стандартного отклонения составляет порядка 0,15…0,3.

Преимущества

  • простота проведения контроля исследуемых образцов;
  • потребность минимального количества исследуемого вещества;
  • возможность определения различных примесей;
  • высокая точность и надежность измерений;
  • возможность применения метода в условиях технологического процесса.

Заключение

Выполнение химического анализа металлов и сплавов стало необходимым атрибутом в различных отраслях промышленности. Без этой процедуры не проводятся технологические процессы в отрасли производства сталей, она необходима при создании и выпуске новых материалов, а также контроле выпускаемой продукции современными предприятиями.

От правильности и точности проведенного анализа будет зависеть качество и надежность будущей продукции, которая производится с использованием металлов и их сплавов.

Химический состав вещества – важнейшая характеристика используемых человечеством материалов. Без его точного знания невозможно со сколько-нибудь удовлетворительной точностью спланировать технологические процессы в промышленном производстве. В последнее время требования к определению химического состава вещества еще более ужесточились: многие сферы производственной и научной деятельности требуют материалы определенной «чистоты» - это требования точного, фиксированного состава, а также жесткого ограничения на наличие примесей инородных веществ. Всвязи с этими тенденциями разрабатываются все боле прогрессивные методики определения химического состава веществ. К ним относится и метод спектрального анализа, обеспечивающий точное и быстрое изучение химии материалов.

Фантастика света

Природа спектрального анализа

(спектроскопия ) изучает химический состав веществ на основе их способностей по испусканию и поглощению света. Известно, что каждый химический элемент испускает и поглощает характерный только для него световой спектр, при условии, что его можно привести к газообразному состоянию.

В соответствии с этим, возможно определение наличия этих веществ в том или ином материале по присущему только им спектру. Современные методы спектрального анализа позволяют установить наличие вещества массой до миллиардных долей грамма в пробе – за это ответственен показатель интенсивности излучения. Уникальность испускаемого спектра атомом характеризует его глубокую взаимосвязь с физической структурой.

Видимый свет представляет собой излучение с от 3,8 *10 -7 до 7,6*10 -7 м, ответственной за различные цвета. Вещества могут излучать свет только лишь в возбужденном состоянии (это состояние характеризуется повышенным уровнем внутренней ) при наличии постоянного источника энергии.

Получая избыточную энергию, атомы вещества излучают ее в виде света и возвращаются в свое обычное энергетическое состояние. Именно этот испускаемый атомами свет и используется для спектрального анализа. К самым распространенным видам излучения относят: тепловое излучение, электролюминесценция, катодолюминесценция, хемилюминесценция.

Спектральный анализ. Окрашивание пламени ионами металлов

Виды спектрального анализа

Различают эмиссионную и абсорбционную спектроскопию. Метод эмиссионной спектроскопии основан на свойствах элементов к излучению света. Для возбуждения атомов вещества используются высокотемпературный нагрев, равный нескольким сотням или даже тысячам градусов, – для этого пробу вещества помещают в пламя или в поле действия мощных электрических разрядов. Под воздействием высочайшей температуры молекулы вещества разделяются на атомы.

Атомы, получая избыточную энергию, излучают ее в виде квантов света различной длины волны, которые регистрируются спектральными аппаратами – приборами, визуально изображающими получившийся световой спектр. Спектральные аппараты служат также и разделительным элементом системы спектроскопии, потому как световой поток суммируется от всех присутствующих в пробе веществ, и в его задачи входит разделение общего массива света на спектры отдельных элементов и определение их интенсивности, которая позволит в будущем сделать выводы о величине присутствующего элемента в общей массе веществ.

  • В зависимости от методов наблюдения и регистрации спектров различают спектральные приборы: спектрографы и спектроскопы. Первые регистрируют спектр на фотопленке, а вторые делают доступным просмотр спектра для прямого наблюдения человеком через специальные зрительные трубы. Для определения размеров используются специализированные микроскопы, позволяющие с высокой точностью определить длину волны.
  • После регистрации светового спектра он подвергается тщательному анализу. Выявляются волны определенной длины и их положение в спектре. Далее выполняется соотношение их положения с принадлежностью к искомым веществам. Делается это с помощью сравнения данных положения волн с информацией, расположенной в методических таблицах, указывающих на типичные длины волн и спектры химических элементов.
  • Абсорбционная спектроскопия проводится подобно эмиссионной. В этом случае вещество помещают между источником света и спектральным аппаратом. Проходя через анализируемый материал, испущенный свет достигает спектрального аппарата с «провалами» (линии поглощения) по некоторым длинам волн – они и составляют поглощенный спектр исследуемого материала. Дальнейшая последовательность исследования аналогична для приведенного выше процесса эмиссионной спектроскопии.

Открытие спектрального анализа

Значение спектроскопии для науки

Спектральный анализ позволил человечеству открыть несколько элементов, которые невозможно было определить традиционными методами регистрации химических веществ. Это такие элементы, как рубидий, цезий, гелий (он был открыт с помощью спектроскопииСолнца – задолго до его обнаружения на Земле), индий, галлий и другие. Линии этих элементов были обнаружены в спектрах излучения газов, и на момент их исследования были неидентифицируемы.

Стало понятно, что это и есть новые, доселе неизвестные элементы. Серьезное влияние спектроскопия оказала на становление нынешнего вида металлургической и машиностроительной промышленности, атомной индустрии, сельское хозяйство, где стала одним из главных инструментов систематического анализа.

Огромное значение спектроскопия приобрела в астрофизике

Спровоцировав колоссальный скачок в понимании структуры Вселенной и утверждении того факта, что все сущее состоит из одних и тех же элементов, которыми, в том числе, изобилует и Земля. Сегодня метод спектрального анализа позволяет ученым определять химический состав находящихся за миллиарды километров от Земли звезд, туманностей, планет и галактик – эти объекты, естественно, не доступны методикам прямого анализа ввиду своего большого удаления.

С помощью метода абсорбционной спектроскопии возможно изучение далеких космических объектов, не обладающих собственным излучением. Это знание позволяет устанавливать важнейшие характеристики космических объектов: давление, температуру, особенности структуры строения и многое другое.