01.10.2019

Сложный выбор - медные или алюминиевые шины и провода. Сравнение алюминия и меди в качестве проводников


Конструкционные стали.

Их классифицируют по характеристикам и по химическому составу сплавов. Если качественные и обыкновенные. И те и другие - углеродистые стали, хоть содержание углерода в них незначительное.

Предназначение обыкновенных конструкционных сплавов - изготовление промышленных изделий, которые должны подвергаться серьезным механическим нагрузкам: гвоздей, болтов, уголков, швеллеров, балок и т.п. Качественные конструкционные стали подходят для изготовления деталей, используемых в машиностроении. Конечно, выдерживаемые нагрузки у них гораздо ниже, такие марки стали гораздо мягче, их используют для изготовления деталей методом холодной штамповки. Кроме того есть особо-высококачественные марки, их называют криогенными. Они сохраняют прочностные характеристики при экстремально низких температурах. Из них делают емкости для транспортировки и хранения сжиженных газов, а так же применяют при строительстве объектов в условиях вечной мерзлоты.

Отличается устойчивостью к коррозиям в агрессивных средах. Это ее главное свойство. Сплав подвергают легированию, основной легирующий элемент при этом - хром, и чем его больше, тем устойчивей сталь к коррозийному воздействию, например, кислот. Содержание хрома может быть от 12 до 20 % (если хрома 17 и более процентов, сплав выдержит воздействие в том числе и азотной кислоты 50% концентрации). Чтобы усилить это замечательное свойство нержавеющей стали, придать ей дополнительные физико-химические свойства, ее легируют еще никелем, титаном, ниобием, молибденом. Соотношение тех или иных элементов и их количество определяет марку стали и ее устойчивость к сильным кислотам (фосфорной, серной и т.д.)

Чем объяснить такую коррозийную стойкость? На границе хромосодержащего сплава и среды образуется пленка окислов и прочих нерастворимых соединений, которая и защищает поверхность. Из нержавейки изготавливают множество различной продукции. И не только в промышленности. Это не только прочный, но и с эстетической точки зрения приятный материал - в архитектуре, в дизайне бытовых предметов он используется очень часто.

Медь.

Это самый распространенный цветной металл. Устойчив к коррозиям в воздушной среде (только углекислый газ, содержащийся в воздухе, образует зеленоваты налет - патину), в пресной и соленой воде, с щелочными растворами, но растворяется в сильных кислотах (азотной, серной). Легко обрабатывается пайкой и давлением, однако литейные свойства ее не очень высоки. Раскисленная и бескислородная медь применяется в электронике.

Медные сплавы отличаются износостойкостью, как и чистая медь антикоррозийны.

По взаимодействию меди с примесями выделяют 3 группы:

  • Твердые растворы: с алюминием, цинком, сурьмой, никелем, олово, железом (снижается электропроводность и теплопроводность);
  • Не растворяющиеся примеси: висмут, свинец (электропроводность не изменяется, но затрудняется обработка давлением);
  • Хрупкие химические соединения: сера и кислород (кислород снижает прочность, а сера способствует лучшей резке).

Медь и медные сплавы издавна и по сей день используются в изготовлении посуды, предметов быта, используются в искусстве и архитектуре.

Алюминий

Это металл, обладающий высокой электропроводимостью, коррозийной стойкостью (на воздухе быстро покрывается тонкой «пленкой» оксида алюминия и дальше не окисляется) и, пожалуй, одно из главных его свойств - он обладает малой плотностью, следовательно, легкостью, мягкостью и прекрасной обрабатываемостью в холодном состоянии, т.е. гибке и штамповке.

Соединения алюминия абсолютно неядовиты, поэтому его активно используют в пищевой промышленности, изготавливая посуду, фольгу, упаковку и т.д.

В электротехнике его активно применяют из-за его высокой электропроводности, почти такой же как у меди, но алюминий заметно дешевле.

Чтобы добавить прочности, алюминий сплавляют с медью и магнием (в малых количествах), получается сплав «дюралюминий».

Аллюминий широко применяется в различных отраслях промышленности.

Латунь.

Сплав меди с цинком. Различное соотношение этих двух составляющих позволяют получать сплавы с различными свойствами. Если цинка от 5 до 20 % - латунь называется красной, и желтой, если содержание цинка 20-36 %

Эти сплавы ковкие и имеют достаточно низкую температуру плавления. Внешне латунь напоминает золото, поэтому часто используется в прикладном искусстве и декоре. Мебельная фурнитура, замки, декоративные элементы. Из латуни делают музыкальные инструменты. Используется она и в военной промышленности.

ВОЗМОЖНО ВАМ БУДЕТ ИНТЕРЕСНО

Да, безусловно, между медью и алюминием существует много различий при применении их в электроустановках, таких как проводимость, вес, и, один из самых важных факторов – стоимость. В прошлом веке алюминий был более распространённым металлом для выполнения таких электротехнических изделий как предохранители, шины, автоматические выключатели, использовался для прокладки внутренних сетей в жилых и промышленных зданиях. Под влиянием современных тенденций многие проектировщики активно заменяли в своих изделиях алюминий на медь, однако в последнее время тенденции снова меняются, и от меди переходят снова к алюминию. Вина этому переходу – высокая стоимость меди.

Материалы

Очень часто заблуждения по поводу меди и алюминия возникают из-за использования различных марок металлов, используемых в электроустановках. В проводах, шинах и другом электрооборудовании используют чистую медь. Чистый алюминий слабо подходит для использования в электроустановках, тут медь имеет большое преимущество. Однако, необходимо учитывать и то, что металлургическая промышленность эволюционирует и создает новые сплавы различных металлов.

Соответственно различные свойства алюминия (Al) также могут изменятся – все зависит от обработки. Например, Al 6101 прочнее, чем Al 1350. Тем не менее, после термообработки Al 6101 затвердевает и прочность его повышается. Различные виды металлов, например Al 6101 и Al 1350, могут иметь различные свойства в сравнении с чистой медью (Cu). Поэтому в процессе проектирования очень важно знать свойства материала для конкретного использования.

Свойства проводников

Масса, сечение, стоимость – три основных фактора при выборе материала проводника. Однако нужно учитывать и другие факторы. Например, факторы нагрева – как изменится проводимость при нагреве, насколько расширится металл и другие. Как известно, при нагреве металлы расширяются, соответственно, если этот фактор не учесть, можно получить деформацию точек контактов. Это свойство особенно актуально при использовании алюминия или его сплавов, так как его коэффициент теплового расширения, в зависимости от сплава, примерно на 42% больше, чем у меди. Но также стоит отметить и то, что коэффициент теплоотдачи у алюминия больше чем у меди.

Решения нашли довольно простое – увеличили поверхность алюминиевых шин, что, в свою очередь, увеличило теплоотдачу, и при нагреве шины не деформировались. При проектировании, независимо от типа проводящего материала, необходимо особое внимание уделить надежным соединениям проводников. Это необходимо для предотвращения ухудшения качества контактов с течением времени, а также предотвратить деформацию при тепловом расширении и ползучести.

Распространенным заблуждением является то, что алюминий мягкий и должен использовать специальные разъемы для сжатия при монтаже. Алюминий может нуждаться в специальном покрытии для уменьшения окисления. Это связано с тем, что окисления может оказывать существенное влияние на качество проводимости материала даже в случае соединения Al – Al. Для предотвращения процесса окисления часто покрывают проводники (это касается и меди и алюминия) оловом или серебром, так как эти материалы имеют хорошую проводимость и не склонны к окислению при атмосферных воздействиях.

Достаточно проблем может принести и коррозия, которая возникает при использовании разнородных металлов в одной системе. Al электрохимически реагирует с медью при повышенной влажности (влага действует как электролит). Проводники из меди и алюминия с кабельными наконечниками располагаются в разъемы, которые после свариваются трением и капсулируются для предотвращения коррозионных процессов в соединении Al – Cu. Правильное соединение позволяет максимально избежать коррозионных процессов. Al и медь совместимые металлы, однако не стоит забывать то, что при неправильном их соединении могут возникать коррозионные процессы.

Вес и электрическая проводимость

Пожалуй, не последним фактором при выборе между алюминиевыми и медными проводниками является их электрическая проводимость. Да, безусловно, медь имеет лучшую проводимость на единицу объема, но алюминий легче, и это его большой плюс. По словам Уве Шенка, менеджера Helukabel – «Необработанный Al примерно на 70% легче Cu. А алюминиевые шины и кабели примерно на 60% легче, чем медные».

Однако главным показателем все же является проводимость. Al марки Al6101 имеет практически половинную проводимость Cu (56%). Различие в соотношениях массы и электрической проводимости выглядит примерно так, на один фунт Al приходится приблизительно 1,85 фунта Cu. Например, сборка медных шин весит 550 фунтов, а алюминиевых 300 фунтов. Такое различие в весе может помочь сэкономить не только на материалах, но и на транспортировке и даже погрузке-разгрузке.

Применение меди и алюминия в различных электроустановках

Алюминий в электроустановках

Практически во всем мире применяется в линиях электропередач ЛЭП и распределительных устройствах. Это вызвано меньшим весом и ценой по сравнению с Cu, что позволяет уменьшать количество опор высоковольтных линий при передаче электрической энергии на значительные расстояния.

В осветительных установках и различных соединителях ранее использовались латунные контакты. Сейчас они активно заменяются алюминиевыми контактами.

Медь в электроустановках

Очень распространена в коммуникационных электроустановках – тут главный ее плюс гибкость, так как позволяет легко вести монтаж на сложных участках и при этом не ломается.

Электрические двигатели и трансформаторы – вызвано тем, что данные устройства должны иметь минимальные габариты и максимальную производительность, а так как проводимость и гибкость меди намного лучше алюминия практически все производители электродвигателей и трансформаторов используют ее в своих изделиях.

Обоюдное применение меди и алюминия

Оба материала могут активно применятся при монтаже проводки в зданиях. В прошлом веке все внутренние сети выполняли алюминиевыми проводами. Это позволяло существенно экономить, так как длина проводки могла достигать нескольких километров. В современных жилых домах для монтажа проводки используют медь. Ее плюсы тоже очевидны – лучше проводимость (меньшее сечение) и лучшая эластичность.

У многих сложился стереотип, что алюминиевые кабели и шины это плохо. Но при правильном их применении можно сэкономить средства и получить хорошую проводимость.

Такие электротехнические устройства как электрические шины, трансформаторы, электрические кабели также используют оба материала.

Чистый алюминий - довольно мягкий металл - почти втрое мягче меди, поэтому даже сравнительно толстые алюминиевые пластинки и стержни легко согнуть, но когда алюминий образует сплавы (их известно огромное множество), его твердость может возрасти в десятки раз. Наиболее широко применяются:

Бериллий добавляется для уменьшения окисления при повышенных температурах. Небольшие добавки бериллия (0

01 - 0,05%) применяют в алюминиевых литейных сплавах для улучшения текучести в производстве деталей двигателей внутреннего сгорания (поршней и головок цилиндров).

Бор вводят для повышения электропроводимости и как рафинирующую добавку. Бор вводится в алюминиевые сплавы, используемые в атомной энергетике (кроме деталей реакторов), т.к он поглощает нейтроны, препятствуя распространению радиации. Бор вводится в среднем в количестве 0,095 - 0,1%.

Висмут. Металлы с низкой температурой плавления, такие как висмут, свинец, олово, кадмий вводят в алюминиевые сплавы для улучшения обрабатываемости резанием. Эти элементы образуют мягкие легкоплавкие фазы, которые способствуют ломкости стружки и смазыванию резца.

Галлий добавляется в количестве 0,01 - 0,1% в сплавы, из которых далее изготавливаются расходуемые аноды.

Железо. В малых количествах (»0,04%) вводится при производстве проводов для увеличения прочности и улучшает характеристики ползучести. Так же железо уменьшает прилипание к стенкам форм при литье в кокиль.

Индий. Добавка 0,05 - 0,2% упрочняют сплавы алюминия при старении, особенно при низком содержании меди. Индиевые добавки используются в алюминиево-кадмиевых подшипниковых сплавах.

Примерно 0,3% кадмия вводят для повышения прочности и улучшения коррозионных свойств сплавов.

Кальций придаёт пластичность. При содержании кальция 5% сплав обладает эффектом сверхпластичности.

Кремний является наиболее используемой добавкой в литейных сплавах. В количестве 0,5 - 4% уменьшает склонность к трещинообразованию. Сочетание кремния с магнием делают возможным термоуплотнение сплава.

Магний. Добавка магния значительно повышает прочность без снижения пластичности, повышает свариваемость и увеличивает коррозионную стойкость сплава.

Медь упрочняет сплавы, максимальное упрочнение достигается при содержании меди 4 - 6%. Сплавы с медью используются в производстве поршней двигателей внутреннего сгорания, высококачественных литых деталей летательных аппаратов.

Олово улучшает обработку резанием.

Титан. Основная задача титана в сплавах - измельчение зерна в отливках и слитках, что очень повышает прочность и равномерность свойств во всём объёме.

Алюминий - один из самых распространенных и дешевых металлов. Без него трудно представить себе современную жизнь. Недаром алюминий называют металлом 20 века. Он хорошо поддается обработке: ковке, штамповке, прокату, волочению, прессованию. Чистый алюминий - довольно мягкий металл; из него делают электрические провода, детали конструкций, фольгу для пищевых продуктов, кухонную утварь и "серебряную" краску. Этот красивый и легкий металл широко используют в строительстве и авиационной технике. Алюминий очень хорошо отражает свет. Поэтому его используют для изготовления зеркал - методом напыления металла в вакууме.

В авиа - и машиностроении, при изготовлении строительных конструкций, используют значительно более твердые сплавы алюминия, т.к они обладают высокими прочностными характеристиками. Один из самых известных - сплав алюминия с медью и магнием (дуралюмин, или просто "дюраль"; название происходит от немецкого города Дюрена). Дуралюмины обладают хорошим сочетанием прочности и пластичности, но имеют при этом не высокую коррозионную стойкость Типичным представителем дуралюмина является сплав Д16 содержащий 4,3% Сu.1.5%Mg.0.6% Mn. Этот сплав после закалки приобретает особую твёрдость и становится примерно в 7 раз прочнее чистого алюминия. В то же время он почти втрое легче железа. Его получают, сплавляя алюминий с небольшими добавками меди, магния, марганца, кремния и железа. Широко распространены силумины - литейные сплавы алюминия с кремнием. Производятся также высокопрочные, криогенные (устойчивые к морозам) и жаропрочные сплавы. На изделия из алюминиевых сплавов легко наносятся защитные и декоративные покрытия. Сравнительно дешевая алюминиевая бронза (до 11% Al) обладает высокими механическими свойствами, она устойчива в морской воде и даже в разбавленной соляной кислоте. Из алюминиевой бронзы в СССР с 1926 по 1957 чеканились монеты достоинством 1, 2, 3 и 5 копеек.

4. Применение алюминия и его сплавов в промышленности и быту

4.1 Авиация

Современная авиационная техника - это техника для длительной эксплуатации (более 40 000 летных часов). Ее изделия находятся под воздействием циклических нагрузок, температуры и атмосферной среды. Из-за сильного аэродинамического нагрева материал обшивки и отдельные элементы разогреваются до весьма высокой температуры при сверхзвуковых скоростях до 153 С и при гиперзвуковых - до 390 С. В последнее время не без основания отдают предпочтение материалам средней прочности при высоких значениях их пластичности.

При выборе материала одной из важнейших эксплуатационных характеристик для полетных конструкций является статистическая выносливость и усталостная прочность. Невысокие значения усталостной прочности алюминиевых сплавов - один из основных недостатков при использовании их в деталях, подтвержденных высоким динамическим нагрузкам.

Материалы, применяемые в самолетостроении, должны также обладать высокими коррозионными свойствами: при этом контакт материала с окружающей средой (атмосферой) следует рассматривать с учетом температурно-временного фактора. Сверхзвуковая авиация, наряду с перечисленными, выдвигает дополнительные, более жесткие требования к материалам: работоспособность при повышенных акустических нагрузках, ползучесть и ее влияние на изменение геометрических размеров конструкции в процессе эксплуатации (с учетом длительности ресурса), уровень температурных и усталостных напряжений, которые возникают в конструкции при полете на сверхзвуковых скоростях.

В России при изготовлении авиационной техники успешно используются упрочняемые термической обработкой высокопрочные алюминиевые сплавы Al-Zn-Mg-Cu и сплавы средней и повышенной прочности Al-Mg-Cu. Они являются конструкционным материалом для обшивки и внутреннего сплавного набора элементов планера самолета (фюзеляж, крыло, киль и др.).

При изготовлении гидросамолетов предусмотрено применение свариваемых коррозионно-стойких магнолиевых сплавов (AМг 5, Амг 6) и сплавов Al-Zn-Mg (1915, В92, 1420). Планер легкого самолета (фюзеляж, крылья и хвостовое оперение), как правило, изготавливаются из алюминиевого сплава Д16.

В конструкции самолетов гражданского флота используют в основном сплавы Д16, Д19, В95, В96 в качестве материалов для фюзеляжа, крыше и киля. Обшивка верхней поверхности крыла выполняется из сплавов типа В95, хорошо работающих на сжатие. Детали растянутой зоны крыла и обшивка фюзеляжа, вспомогательные лонжероны и нероворы изготавливаются из высокопрочного сплава типа Д16, В95. Сплавы эти рекомендуются для силовых деталей, которые воспринимают большие эксплуатационные нагрузки. Прессованные полуфабрикаты из сплавов В95 и В96 поступают на изготовление киля крупногабаритных самолетов. Обшивка в зоне двигателя, подвергающаяся нагреву, в основном, изготавливаются из сплавов Д16, Д19.

Такие металлы как алюминий и медь применяются в электропроводке гораздо чаще других металлов, поскольку являются очень хорошими и недорогими проводниками.



Но какой же конкретно материал (медь или алюминий) лучше по своим проводящим свойствам. В данной статье мы попытаемся выяснить это.


Начнем сперва с физического описания этих материалов. Медь представляет собой мягкий и ковкий металл с ярким золотисто-коричневым оттенком. Алюминий представляет собой серебристый металл, который легче и прочнее меди.


Теперь поговорим о проводимости этих материалов. Эти два металла близки по шкале проводимости, причем медь имеет более желательную характеристику. Проводимость меди составляет около 0.6 МОм/см, а алюминия – около 0.4 МОм/см.


Что же касается сопротивления проводника? Провод длиной в один метр с поперечным сечением в один квадратный миллиметр имеет сопротивление 1.7 миллиома (0,0017 Ом), если он сделан из меди, и 2.5 миллиома (0,0025 Ом), если это алюминиевый провод.


Каково же их использование в проводке? Благодаря отличным электрическим свойствам медь широко используется для электропроводки. При распределении электроэнергии иногда вместо меди используется алюминий. Впрочем, цена на алюминий несколько выше и составляет примерно одну треть от стоимости меди.


У алюминия в составе проводов есть еще один немаловажный недостаток. Алюминий когда-то очень широко использовался в домашней электропроводке, но он легко коррозировал, что могло привести к высокому сопротивлению и накоплению тепла в точках соединения. Из-за этой опасности в 1970-х годах использование алюминиевой проволоки было ограничено. Поэтому медь на сегодняшний день в электропроводке можно увидеть гораздо чаще.



.
   Если Вы хотите, чтобы интересные и полезные материалы выходили чаще, и было меньше рекламы,
   Вы можее поддержать наш проект, пожертвовав любую сумму на его развитие.

Алюминий, свойства, марки, применение

АЛЮМИНИЙ, СВОЙСТВА, МАРКИ, ПРИМЕНЕНИЕ. Алюминий относится к группе легких металлов. Плотность его равна 2,7г/см3. Доступность, большая проводимость, а также стойкость к атмосферной коррозии позволили широко применять алюминий в электротехнике. Недостатками алюминия являются невысокая механическая прочность при растяжении и повышенная мягкость даже у твердотянутого алюминия. Алюминий - металл серебристого цвета, или серебристо-белого. Температура плавления его 658-660є, а температурный коэффициент расширения равен 24*10-6/єС. Алюминий быстро покрывается тонкой пленкой окисла, которая надежно защищает металл от проникновения кислорода, поэтому голые (неизолированные) провода алюминия могут длительно работать на открытом воздухе. Оксидная пленка на алюминиевых проводах обладает значительным электрическим сопротивлением, поэтому в местах соединения алюминиевых проводов могут образовываться большие переходные сопротивления. Зачистку мест соединения проводов обычно производят под слоем вазелина во избежание окисления алюминия на воздухе. При увлажнении мест соединения алюминиевых проводов, с другими проводами из других металлов (медных, железных) полученных механическим способом (болтовые соединения) могут образоваться гальванические пары с заметной электродвижущей силой. При этом алюминиевый провод будет разрушаться местными токами. Чтобы избежать образования гальванических паров во влажной атмосфере, места соединения о другими проводами из других металлов должны быть тщательно защищены от влаги лакированием и другими способами. Непосредственную коррозию алюминия вызывают оксиды азота (NO), хлор (CI), сернистый газ (SO2), соляная и серные кислоты и другие агенты. Надежные соединения проводов друг с другом, а также с проводами из других металлов осуществляется с помощью холодной или горячей сварки. Чем выше химическая чистота алюминия, тем он лучше сопротивляется коррозии. Поэтому наиболее чисть сорта алюминия с содержанием чистого металла 99,5% идут для изготовления электродов в электрических конденсаторах, для изготовления алюминиевой фольги и обмоточных проводов малых диаметров 0,05 -0,08 мм. Применяют проводниковый алюминий содержащий чистого металла не менее 99,7%. Для изготовления проволоки применяют алюминий с содержанием чистого металла не менее 99,5%. Алюминиевую проволоку изготовляют путем волочения и прокатки. Проволока из алюминия бывает трех видов марок: АМ (мягкая отожженная), АПТ (полутвердая) и АТ (твердая не отожженная). Проволоку выпускают диаметром от 0,08 до 10 мм.

Характеристика свойств меди и алюминия

Плотность алюминия - 2,7г/см3, меди - 8,90г/см3.

Температура плавления алюминия - 658 - 660°С, меди - 1083°С.

Температурный коэффициент расширения:

Алюминия - 24*10-6/°С; меди - 17*10-61/ єС.

Температурный коэффициент эл. сопротивления:

алюминия - a= +0,00423 1/°С, медь а= +0,00400 1/°С.

Предел прочности при растяжении:

АМ:Gв = 7,5 ч 8,0 кг/м2 АТ:Gв = 10 ч 18 кг/мм2

ММ:Gв = 2,0 ч 2,5 кг/мм2 МТ:Gв = 35 ч 40 кг/мм2

Относительное удлинение

АТ дn = 0,5 ч 2,5% ММ дn = 15 ч 40%

МТ дn = 0,5 ч 2,2% AМ дn = 10 ч 26%

Удельное сопротивление

АТ с = 0,0282 ч 0,0283 ом*мм2 /м

МТ с = 0,0177 ч 0,0180ом*мм2/м

AM с = 0,0279 ч 0,280 ом*мм2/м

ММ с = 0,01750 ч 0,01755 ом*мм2/м