16.10.2019

Космические рекорды. Космическая ракета: виды, технические характеристики. Первые космические ракеты и космонавты


Выбор некоторых параметров орбиты Международной космической станции не всегда очевиден . К примеру, станция может находиться на высоте от 280 до 460 километров, и из-за этого она постоянно испытывает затормаживающее воздействие верхних слоёв атмосферы нашей планеты. Каждые сутки МКС теряет примерно по 5 см/с скорости и 100 метров высоты. Поэтому периодически приходится поднимать станцию, сжигая топливо грузовиков ATV и «Прогресс». Почему же нельзя поднять станцию выше, чтобы избежать этих затрат?

Заложенный при проектировании диапазон и текущее реальное положение диктуются сразу несколькими причинами. Каждый день астронавты и космонавты получают высокие дозы радиации , и за отметкой 500 км её уровень резко повышается . А предел за полугодовое пребывание установлен всего на ползиверта, на всю карьеру отведён всего лишь зиверт. Каждый зиверт увеличивает риск онкологических заболеваний на 5,5 процента.

На Земле от космических лучей мы защищены радиационным поясом магнитосферы нашей планеты и атмосферой, но они работают слабее в ближнем космосе. В некоторых частях орбиты (Южно-атлантическая аномалия является таким пятном повышенной радиации) и за её пределами иногда могут проявляться странные эффекты : в закрытых глазах появляются вспышки. Это космические частицы проходят через глазные яблоки, другие толкования утверждают, что частицы возбуждают ответственные за зрение части мозга. Подобное может не только мешать спать, но и в лишний раз неприятно напоминает о высоком уровне радиации на МКС.

Кроме того, «Союзы» и «Прогрессы», которые сейчас являются основными кораблями смены экипажа и снабжения, сертифицированы на работу на высоте до 460 км. Чем выше находится МКС, тем меньше груза можно будет доставить. Меньше смогут принести и ракеты, которые отправляют новые модули для станции. С другой стороны, чем ниже МКС, тем сильнее она тормозится, то есть больше доставляемого груза должно быть топливом для последующей коррекции орбиты.

Научные задачи могут быть выполнены на высоте в 400-460 километров. Наконец, на положение станции влияет космический мусор - вышедшие из строя спутники и их обломки, которые имеют огромную скорость относительно МКС, что делает столкновение с ними фатальным.

В Сети есть ресурсы, позволяющие следить за параметрами орбиты Международной космической станции. Можно получить относительно точные текущие данные , либо отследить их динамику . На момент написания этого текста МКС находилась на высоте примерно в 400 километров.

Разгонять МКС могут элементы, расположенные в задней части станции: это грузовики «Прогресс» (чаще всего) и ATV, при необходимости - служебный модуль «Звезда » (крайне редко). На иллюстрации до ката работает европейский ATV. Станцию поднимают часто и понемногу: коррекция происходит примерно раз в месяц маленькими порциями порядка 900 секунд работы двигателя, у «Прогрессов» используют двигатели поменьше, чтобы не сильно влиять на ход экспериментов.

Двигатели могут включить единожды, таким образом увеличится высота полёта на другой стороне планеты. Такие операции используют для маленьких подъёмов, поскольку меняется эксцентриситет орбиты.

Также возможна коррекция с двумя включениями, при которой второе включение сглаживает орбиту станции до окружности.

Некоторые параметры диктуются не только научными данными, но и политикой. Космическому аппарату возможно придать любую ориентацию, но при запуске более экономичным будет использовать скорость, которую даёт вращение Земли. Таким образом, дешевле запускать аппарат на орбиту с наклоном, равным широте, а манёвры потребуют дополнительного расхода топлива: больше для движения к экватору, меньше при движении к полюсам. Наклон орбиты МКС в 51,6 градуса может показаться странным: аппараты НАСА, запускаемые с мыса Канаверал, традиционно имеют наклонение примерно в 28 градусов.

Когда обсуждалось местоположение будущей станции МКС, то решили, что будет более экономичным отдать предпочтение российской стороне. Также такие параметры орбиты позволяют видеть больше поверхности Земли.

Но Байконур находится на широте в приблизительно 46 градусов, почему же тогда обычным для российских запусков является наклонение в 51,6 °? Дело в том, что к востоку есть сосед, который не слишком обрадуется, если на него что-то будет падать. Поэтому орбиту наклоняют к 51,6 °, чтобы при запуске никакие части космического аппарата ни при каких обстоятельствах не могли упасть на Китай и Монголию.

Эта статья представит читателю такую интереснейшую тему, как космическая ракета, ракета-носитель и весь тот полезный опыт, который это изобретение принесло человечеству. Также будет рассказано и о полезных грузах, доставляемых в космическое пространство. Освоение космоса началось не так давно. В СССР это была середина третьей пятилетки, когда окончилась Вторая мировая война. Космическая ракета разрабатывалась во многих странах, однако даже США обогнать нас на том этапе не удалось.

Первые

Первой в удачном запуске ушла из СССР космическая ракета-носитель с искусственным спутником на борту 4 октября 1957 года. Спутник ПС-1 удалось вывести на околоземную орбиту. Нужно отметить, что для этого понадобилось создать шесть поколений, и только седьмого поколения космические ракеты России смогли развить нужную для выхода в околоземное пространство скорость - восемь километров в секунду. Иначе невозможно преодолеть притяжение Земли.

Это стало возможным в процессе разработок баллистического оружия дальнего радиуса, где применялось форсирование двигателя. Не следует путать: космическая ракета и космический корабль - это разные вещи. Ракета - средство доставки, а корабль крепится на неё. Вместо него там может быть что угодно - космическая ракета может нести на себе и спутник, и оборудование, и ядерную боеголовку, что всегда служило и до сих пор служит сдерживанием для ядерных держав и стимулом к сохранению мира.

История

Первыми теоретически обосновали запуск космической ракеты русские учёные Мещерский и Циолковский, которые уже в 1897 году описали теорию её полёта. Значительно позже эту идею подхватили Оберт и фон Браун из Германии и Годдард из США. Именно в этих трёх странах началась работа над задачами реактивного движения, создания твёрдотопливных и жидкостных реактивных двигателей. Лучше всех эти вопросы решались в России, по крайней мере твёрдотопливные двигатели уже широко использовались во Второй мировой войне ("Катюши"). Жидкостные реактивные двигатели лучше получились в Германии, создавшей первую баллистическую ракету - "Фау-2".

После войны команда Вернера фон Брауна, прихватив чертежи и разработки, нашла приют в США, а СССР вынужден был довольствоваться небольшим количеством отдельных узлов ракеты без какой бы то ни было сопроводительной документации. Остальное придумали сами. Ракетная техника развивалась стремительно, всё более увеличивая дальность и массу несомого груза. В 1954 году началась работа над проектом, благодаря которому СССР смог первым осуществить полет космической ракеты. Это была межконтинентальная двухступенчатая баллистическая ракета Р-7, которую вскоре модернизировали для космоса. Она получилась на славу - исключительно надёжная, обеспечившая множество рекордов в освоении космического пространства. В модернизированном виде её используют до сих пор.

"Спутник" и "Луна"

В 1957 году первая космическая ракета - та самая Р-7 - вывела на орбиту искусственный "Спутник-1". США чуть позже решили повторить такой запуск. Однако в первую попытку их космическая ракета в космосе не побывала, она взорвалась на старте - даже в прямом эфире. "Авангард" был сконструирован чисто американской командой, и он не оправдал надежд. Тогда проектом занялся Вернер фон Браун, и в феврале 1958 года старт космической ракеты удался. А в СССР тем временем модернизировали Р-7 - к ней была добавлена третья ступень. В результате скорость космической ракеты стала совсем другой - была достигнута вторая космическая, благодаря которой появилась возможность покидать орбиту Земли. Ещё несколько лет серия Р-7 модернизировалась и совершенствовалась. Менялись двигатели космических ракет, много экспериментировали с третьей ступенью. Следующие попытки были удачными. Скорость космической ракеты позволяла не просто покинуть орбиту Земли, но и задуматься об изучении других планет Солнечной системы.

Но сначала внимание человечества было практически полностью приковано к естественному спутнику Земли - Луне. В 1959 году к ней вылетела советская космическая станция "Луна-1", которая должна была совершить жёсткую посадку на лунной поверхности. Однако аппарат из-за недостаточно точных расчётов прошёл несколько мимо (в шести тысячах километров) и устремился к Солнцу, где и пристроился на орбиту. Так у нашего светила появился первый собственный искусственный спутник - случайный подарок. Но наш естественный спутник недолго находился в одиночестве, и в этом же 1959-м к нему прилетела "Луна-2", выполнив свою задачу абсолютно правильно. Через месяц "Луна-3" доставила нам фотографии обратной стороны нашего ночного светила. А в 1966-м прямо в Океане Бурь мягко приземлилась "Луна-9", и мы получили панорамные виды лунной поверхности. Лунная программа продолжалась ещё долго, до той поры, когда американские космонавты на ней высадились.

Юрий Гагарин

День 12 апреля стал одним из самых знаменательных дней в нашей стране. Невозможно передать мощь народного ликования, гордости, поистине счастья, когда объявили о первом в мире полёте человека в космос. Юрий Гагарин стал не только национальным героем, ему рукоплескал весь мир. И потому 12 апреля 1961 года - день, триумфально вошедший в историю, стал Днём космонавтики. Американцы срочно попытались ответить на этот беспрецедентный шаг, чтобы разделить с нами космическую славу. Через месяц состоялся вылет Алана Шепарда, но на орбиту корабль не выходил, это был суборбитальный полёт по дуге, а орбитальный у США получился только в 1962-м.

Гагарин полетел в космос на космическом корабле "Восток". Это особая машина, в которой Королёв создал исключительно удачную, решающую множество всевозможных практических задач космическую платформу. Тогда же, в самом начале шестидесятых, разрабатывался не только пилотируемый вариант космического полёта, но был выполнен и проект фото-разведчика. "Восток" вообще имел множество модификаций - более сорока. И сегодня эксплуатируются спутники из серии "Бион" - это прямые потомки корабля, на котором совершён первый полёт человека в космос. В этом же 1961 году гораздо более сложная экспедиция была у Германа Титова, который целые сутки провёл в космосе. Соединённые Штаты смогли это достижение повторить только в 1963 году.

"Восток"

Для космонавтов на всех кораблях "Восток" было предусмотрено катапультное кресло. Это было мудрым решением, поскольку одно-единственное устройство выполняло задачи и на старте (аварийное спасение экипажа), и мягкую посадку спускаемого аппарата. Конструкторы сосредоточили усилия на разработке одного устройства, а не двух. Это уменьшало технический риск, в авиации система катапульт в то время уже была отлично отработана. С другой стороны, огромный выигрыш во времени, чем если проектировать принципиально новое устройство. Ведь космическая гонка продолжалась, и её выигрывал с довольно большим отрывом СССР.

Таким же образом приземлился и Титов. Ему повезло опуститься на парашюте около железной дороги, по которой ехал поезд, и его немедленно сфотографировали журналисты. Система посадки, которая стала самой надёжной и мягкой, разработана в 1965 году, в ней используется гамма-высотомер. Она служит и до сих пор. В США этой технологии не было, именно поэтому все их спускаемые аппараты, даже новые Dragon SpaceX не приземляются, а приводняются. Только шаттлы являются исключением. А в 1962 году СССР уже начал групповые полёты на космических кораблях "Восток-3" и "Восток-4". В 1963 году отряд советских космонавтов пополнился первой женщиной - Валентина Терешкова побывала в космосе, став первой в мире. Тогда же Валерий Быковский поставил не побитый до сих пор рекорд длительности одиночного полёта - он пробыл в космосе пять суток. В 1964 году появился многоместный корабль "Восход", США и тут отстали на целый год. А в 1965-м Алексей Леонов вышел в открытый космос!

"Венера"

В 1966 году СССР начал межпланетные перелёты. Космический корабль "Венера-3" совершил жёсткую посадку на соседнюю планету и доставил туда глобус Земли и вымпел СССР. В 1975-м "Венере-9" удалось совершить мягкую посадку и передать изображение поверхности планеты. А "Венера-13" сделала цветные панорамные снимки и звукозапись. Серия АМС (автоматические межпланетные станции) для изучения Венеры, а также окружающего космического пространства продолжает совершенствоваться и сейчас. На Венере условия жёсткие, а достоверной информации о них практически не было, разработчики ничего не знали ни о давлении, ни о температуре на поверхности планеты, всё это, естественно, осложняло исследование.

Первые серии спускаемых аппаратов даже плавать умели - на всякий случай. Тем не менее поначалу полёты удачными не были, зато впоследствии СССР настолько преуспел в венерианских странствиях, что эту планету стали называть русской. "Венера-1" - первый из космических аппаратов в истории человечества, предназначенный для полёта на другие планеты и их исследования. Был запущен в 1961 году, через неделю потерялась связь от перегрева датчика. Станция стала неуправляемой и смогла сделать только первый в мире пролёт вблизи Венеры (на расстоянии около ста тысяч километров).

По стопам

"Венера-4" помогла нам узнать, что на этой планете двести семьдесят один градус в тени (ночная сторона Венеры), давление до двадцати атмосфер, а сама атмосфера - девяносто процентов углекислого газа. А ещё этот космический аппарат обнаружил водородную корону. "Венера-5" и "Венера-6" многое поведали нам о солнечном ветре (потоки плазмы) и его структуре вблизи планеты. "Венера-7" уточнила данные о температуре и давлении в атмосфере. Всё оказалось ещё сложнее: температура ближе к поверхности была 475 ± 20°C, а давление выше на порядок. На следующем космическом аппарате было переделано буквально всё, и через сто семнадцать суток "Венера-8" мягко привенерилась на дневной стороне планеты. На этой станции был фотометр и множество дополнительных приборов. Главное - была связь.

Оказалось, что освещение на ближайшей соседке почти не отличается от земного - как у нас в пасмурный день. Да там не просто пасмурно, погодка разгулялась по-настоящему. Картины увиденного аппаратурой просто ошеломили землян. Помимо этого, был исследован грунт и количество аммиака в атмосфере, измерена скорость ветра. А "Венера-9" и "Венера-10" смогли показать нам "соседку" по телевизору. Это первые в мире записи, переданные с другой планеты. А сами эти станции и теперь искусственные спутники Венеры. На эту планету последними летали "Венера-15" и "Венера-16", которые тоже стали спутниками, предварительно снабдив человечество абсолютно новыми и нужными знаниями. В 1985 году продолжением программы стали "Вега-1" и "Вега-2", которые изучали не только Венеру, но и комету Галлея. Следующий полёт планируется в 2024 году.

Кое-что о космической ракете

Поскольку параметры и технические характеристики у всех ракет отличаются друг от друга, рассмотрим ракету-носитель нового поколения, например "Союз-2.1А". Она является трёхступенчатой ракетой среднего класса, модифицированным вариантом "Союза-У", который весьма успешно эксплуатируется с 1973 года.

Данная ракета-носитель предназначена для того, чтобы обеспечить запуск космических аппаратов. Последние могут иметь военное, народнохозяйственное и социальное назначение. Эта ракета может выводить их на разные типы орбит - геостационарные, геопереходные, солнечно-синхронные, высокоэллиптические, средние, низкие.

Модернизация

Ракета предельно модернизирована, здесь создана принципиально иная цифровая система управления, разработанная на новой отечественной элементной базе, с быстродействующей бортовой цифровой вычислительной машиной с гораздо большим объёмом оперативной памяти. Цифровая система управления обеспечивает ракету высокоточным выведением полезных нагрузок.

Кроме того, установлены двигатели, на которых усовершенствованы форсуночные головки первой и второй ступеней. Действует другая система телеизмерений. Таким образом повысилась точность выведения ракеты, её устойчивость и, разумеется, управляемость. Масса космической ракеты не увеличилась, а полезный выводимый груз стал больше на триста килограммов.

Технические характеристики

Первая и вторая ступени ракеты-носителя оснащены жидкостными ракетными двигателями РД-107А и РД-108А от НПО "Энергомаш" имени академика Глушко, а на третьей ступени установлен четырёхкамерный РД-0110 от КБ "Химавтоматики". Ракетным топливом служат жидкий кислород, являющийся экологически чистым окислителем, а также слаботоксичное горючее - керосин. Длина ракеты - 46,3 метра, масса на старте - 311,7 тонн, а без головной части - 303,2 тонны. Масса конструкции ракеты-носителя - 24,4 тонны. Компоненты топлива весят 278,8 тонн. Лётные испытания "Союза-2.1А" начались в 2004 году на космодроме Плесецк, и прошли они успешно. В 2006-м ракета-носитель произвела первый коммерческий полёт - вывела на орбиту европейский метеорологический космический аппарат "Метоп".

Нужно сказать, что у ракет разные возможности вывода полезной нагрузки. Носители есть лёгкие, средние и тяжёлые. Ракета-носитель "Рокот", например, выводит космические аппараты на околоземные низкие орбиты - до двухсот километров, а потому ей по силам нагрузка в 1,95 тонн. А вот "Протон" - тяжёлого класса, на низкую орбиту он может вывести 22,4 тонн, на геопереходную - 6,15, а на геостационарную - 3,3 тонны. Рассматриваемая нами ракета-носитель предназначена для всех площадок, которыми пользуется "Роскосмос": Куру, Байконур, Плесецк, Восточный, и работает в рамках совместных российско-европейских проектов.

Солнечная система уже давно не представляет особого интереса для фантастов. Но, что удивительно, и у некоторых ученых наши «родные» планеты не вызывают особого вдохновения, хотя они еще практически не исследованы.

Едва прорубив окно в космос, человечество рвется в неведомые дали, причем уже не только в мечтах, как раньше.
Еще Сергей Королев обещал в скором времени полеты в космос «по профсоюзной путевке», но этой фразе уже полвека, а космическая одиссея по-прежнему удел избранных - слишком дорогое удовольствие. Однако же два года назад HACA запустило грандиозный проект 100 Year Starship, который предполагает поэтапное и многолетнее создание научного и технического фундамента для космических полетов.


Эта беспрецедентная программа должна привлечь ученых, инженеров и энтузиастов со всего мира. Если все увенчается успехом, уже через 100 лет человечество будет способно построить межзвездный корабль, а по Солнечной системе мы будем перемещаться, как на трамваях.

Так какие же проблемы нужно решить, чтобы звездные полеты стали реальностью?

ВРЕМЯ И СКОРОСТЬ ОТНОСИТЕЛЬНЫ

Звездоплавание автоматических аппаратов кажется некоторым ученым почти решенной задачей, как это ни странно. И это при том, что совершенно нет никакого смысла запускать автоматы к звездам с нынешними черепашьими скоростями (примерно 17 км/с) и прочим примитивным (для таких неведомых дорог) оснащением.

Сейчас за пределы Солнечной системы ушли американские космические аппараты «Пионер-10» и «Вояджер-1», связи с ними уже нет. «Пионер-10» движется в сторону звезды Альдебаран. Если с ним ничего не случится, он достигнет окрестностей этой звезды... через 2 миллиона лет. Точно так же ползут по просторам Вселенной и другие аппараты.

Итак, независимо от того, обитаем корабль или нет, для полета к звездам ему нужна высокая скорость, близкая к скорости света. Впрочем, это поможет решить проблему полета только к самым близким звездам.

«Даже если бы мы умудрились построить звездный корабль, который сможет летать со скоростью, близкой к скорости света, - писал К. Феоктистов, - время путешествий только по нашей Галактике будет исчисляться тысячелетиями и десятками тысячелетий, так как диаметр ее составляет около 100 000 световых лет. Но на Земле-то за это время пройдет намного больше».

Согласно теории относительности, ход времени в двух движущихся одна относительно другой системах различен. Так как на больших расстояниях корабль успеет развить скорость очень близкую к скорости света, разница во времени на Земле и на корабле будет особенно велика.

Предполагается, что первой целью межзвездных полетов станет альфа Центавра (система из трех звезд) - наиболее близкая к нам. Со скоростью света туда можно долететь за 4,5 года, на Земле за это время пройдет лет десять. Но чем больше расстояние, тем сильней разница во времени.

Помните знаменитую «Туманность Андромеды» Ивана Ефремова? Там полет измеряется годами, причем земными. Красивая сказка, ничего не скажешь. Однако эта вожделенная туманность (точнее, галактика Андромеды) находится от нас на расстоянии 2,5 миллиона световых лет.



По некоторым расчетам, путешествие займет у космонавтов более 60 лет (по звездолетным часам), но на Земле-то пройдет целая эра. Как встретят космических «неадертальцев» их далекие потомки? Да и будет ли жива Земля вообще? То есть возвращение в принципе бессмысленно. Впрочем, как и сам полет: надо помнить, что мы видим галактику туманность Андромеды такой, какой она была 2,5 млн лет назад - столько идет до нас ее свет. Какой смысл лететь к неизвестной цели, которой, может, уже давно и не существует, во всяком случае, в прежнем виде и на старом месте?

Значит, даже полеты со скоростью света обоснованны только до относительно близких звезд. Однако аппараты, летящие со скоростью света, живут пока лишь в теории, которая напоминает фантастику, правда, научную.

КОРАБЛЬ РАЗМЕРОМ С ПЛАНЕТУ

Естественно, в первую очередь ученым пришла мысль использовать в двигателе корабля наиболее эффективную термоядерную реакцию - как уже частично освоенную (в военных целях). Однако для путешествия в оба конца со скоростью, близкой к световой, даже при идеальной конструкции системы, требуется отношение начальной массы к конечной не менее чем 10 в тридцатой степени. То есть звездолет будет походить на огромный состав с топливом величиной с маленькую планету. Запустить такую махину в космос с Земли невозможно. Да и собрать на орбите - тоже, недаром ученые не обсуждают этот вариант.

Весьма популярна идея фотонного двигателя, использующего принцип аннигиляции материи.

Аннигиляция - это превращение частицы и античастицы при их столкновении в какие-либо иные частицы, отличные от исходных. Наиболее изучена аннигиляция электрона и позитрона, порождающая фотоны, энергия которых и будет двигать звездолет. Расчеты американских физиков Ронана Кина и Вей-мин Чжана показывают, что на основе современных технологий возможно создание аннигиляционного двигателя, способного разогнать космический корабль до 70% от скорости света.

Однако дальше начинаются сплошные проблемы. К сожалению, применить антивещество в качестве ракетного топлива очень непросто. Во время аннигиляции происходят вспышки мощнейшего гамма-излучения, губительного для космонавтов. Кроме того, контакт позитронного топлива с кораблем чреват фатальным взрывом. Наконец, пока еще нет технологий для получения достаточного количества антивещества и его длительного хранения: например, атом антиводорода «живет» сейчас менее 20 минут, а производство миллиграмма позитронов обходится в 25 миллионов долларов.

Но, предположим, со временем эти проблемы удастся разрешить. Однако топлива все равно понадобится очень-очень много, и стартовая масса фотонного звездолета будет сравнима с массой Луны (по оценке Константина Феоктистова).

ПОРВАЛИ ПАРУС!

Наиболее популярным и реалистичным звездолетом на сегодняшний день считается солнечный парусник, идея которого принадлежит советскому ученому Фридриху Цандеру.

Солнечный (световой, фотонный) парус - это приспособление, использующее давление солнечного света или лазера на зеркальную поверхность для приведения в движение космического аппарата.
В 1985 году американским физиком Робертом Форвардом была предложена конструкция межзвездного зонда, разгоняемого энергией микроволнового излучения. Проектом предусматривалось, что зонд достигнет ближайших звезд за 21 год.

На XXXVI Международном астрономическом конгрессе был предложен проект лазерного звездолета, движение которого обеспечивается энергией лазеров оптического диапазона, расположенных на орбите вокруг Меркурия. По расчетам, путь звездолета этой конструкции до звезды эпсилон Эридана (10,8 световых лет) и обратно занял бы 51 год.

«Маловероятно, что по данным, полученным в путешествиях по нашей Солнечной системе, мы сможем существенно продвинуться вперед в понимании мира, в котором мы живем. Естественно, мысль обращается к звездам. Ведь раньше подразумевалось, что полеты около Земли, полеты к другим планетам нашей Солнечной системы не являются конечной целью. Проложить дорогу к звездам представлялось главной задачей».

Эти слова принадлежат не фантасту, а конструктору космических кораблей и космонавту Константину Феоктистову. По мнению ученого, ничего особо нового в Солнечной системе уже не обнаружится. И это при том, что человек пока долетел только до Луны...


Однако за пределами Солнечной системы давление солнечного света приблизится к нулю. Поэтому существует проект разгона солнечного парусника лазерными установками с какого-нибудь астероида.

Все это пока теория, однако первые шаги уже делаются.

В 1993 году на российском корабле «Прогресс М-15» в рамках роекта «Знамя-2» был впервые развернут солнечный парус 20-метровой ширины. При стыковке «Прогресса» со станцией «Мир» ее экипаж установил на борту «Прогресса» агрегат развертывания отражателя. В итоге отражатель создал яркое пятно 5 км в ширину, которое прошло через Европу в Россию со скоростью 8 км/с. Пятно света имело светимость, примерно эквивалентную полной Луне.



Итак, преимущество солнечного парусника - отсутствие топлива на борту, недостатки - уязвимость конструкции паруса: по сути, это тонкая фольга, натянутая на каркас. Где гарантия, что по дороге парус не получит пробоин от космических частиц?

Парусный вариант может подойти для запуска автоматических зондов, станций и грузовых кораблей, но непригоден для пилотируемых полетов с возвратом. Существуют и другие проекты звездолетов, однако они, так или иначе, напоминают вышеперечисленные (с такими же масштабными проблемами).

СЮРПРИЗЫ В МЕЖЗВЕЗДНОМ ПРОСТРАНСТВЕ

Думается, путешественников во Вселенной поджидает множество сюрпризов. К примеру, едва высунувшись за пределы Солнечной системы, американский аппарат «Пионер-10» начал испытывать силу неизвестного происхождения, вызывающую слабое торможение. Высказывалось много предположений, вплоть до о неизвестных пока эффектах инерции или даже времени. Однозначного объяснения этому феномену до сих пор нет, рассматриваются самые различные гипотезы: от простых технических (например, реактивная сила от утечки газа в аппарате) до введения новых физических законов.

Другой аппарат, «Вояд-жер-1», зафиксировал на границе Солнечной системы область с сильным магнитным полем. В нем давление заряженных частиц со стороны межзвездного пространства заставляет поле, создаваемое Солнцем, уплотняться. Также аппарат зарегистрировал:

  • рост количества высокоэнергетических электронов (примерно в 100 раз), которые проникают в Солнечную систему из межзвездного пространства;
  • резкий рост уровня галактических космических лучей - высокоэнергетических заряженных частиц межзвездного происхождения.
И это только капля в море! Впрочем, и того, что сегодня известно о межзвездном океане, достаточно, чтобы поставить под сомнение саму возможность бороздить просторы Вселенной.

Пространство между звездами не пустое. Везде есть остатки газа, пыли, частицы. При попытке движения со скоростью, близкой к скорости света, каждый столкнувшийся с кораблем атом будет подобен частице космических лучей большой энергии. Уровень жесткой радиации при такой бомбардировке недопустимо повысится даже при полетах к ближайшим звездам.

А механическое воздействие частиц при таких скоростях уподобится разрывным пулям. По некоторым расчетам, каждый сантиметр защитного экрана звездолета будет непрерывно обстреливаться с частотой 12 выстрелов в минуту. Ясно, что никакой экран не выдержит такого воздействия на протяжении нескольких лет полета. Или должен будет иметь неприемлемую толщину (десятки и сотни метров) и массу (сотни тысяч тонн).



Собственно, тогда звездолет будет состоять в основном из этого экрана и топлива, которого потребуется несколько миллионов тонн. В силу этих обстоятельств полеты на таких скоростях невозможны, тем паче, что по дороге можно нарваться не только на пыль, но и на что-то покрупнее, или попасть в ловушку неизвестного гравитационного поля. И тогда гибель опять-таки неминуема. Таким образом, если и удастся разогнать звездолет до субсветовой скорости, то до конечной цели он не долетит - слишком много препятствий встретится ему на пути. Поэтому межзвездные перелеты могут осуществляться лишь с существенно меньшими скоростями. Но тогда фактор времени делает эти полеты бессмысленными.

Получается, что решить проблему транспортировки материальных тел на галактические расстояния со скоростями, близкими к скорости света, нельзя. Бессмысленно ломиться через пространство и время с помощью механической конструкции.

КРОТОВАЯ НОРА

Фантасты, стараясь побороть неумолимое время, сочинили, как «прогрызать дырки» в пространстве (и времени) и «сворачивать» его. Придумали разнообразные гиперпространственные скачки от одной точки пространства до другой, минуя промежуточные области. Теперь к фантастам присоединились ученые.

Физики принялись искать экстремальные состояния материи и экзотические лазейки во Вселенной, где можно передвигаться со сверхсветовой скоростью вопреки теории относительности Эйнштейна.



Так появилась идея кротовой норы. Эта нора осуществляет смычку двух частей Вселенной подобно прорубленному тоннелю, соединяющему два города, разделенные высокой горой. К сожалению, кротовые норы возможны только в абсолютном вакууме. В нашей Вселенной эти норки крайне неустойчивы: они попросту могут сколлапсировать до того, как туда попадет космический корабль.

Однако для создания стабильных кротовых нор можно использовать эффект, открытый голландцем Хендриком Казимиром. Он заключается во взаимном притяжении проводящих незаряженных тел под действием квантовых колебаний в вакууме. Оказывается, вакуум не совсем пуст, в нем происходят колебания гравитационного поля, в котором спонтанно возникают и исчезают частицы и микроскопические кротовые норы.

Остается только обнаружить одну из нор и растянуть ее, поместив между двумя сверхпроводящими шарами. Одно устье кротовой норы останется на Земле, другое космический корабль с околосветовой скоростью переместит к звезде - конечному объекту. То есть звездолет будет как бы пробивать тоннель. По достижении звездолетом пункта назначения кротовая нора откроется для реальных молниеносных межзвездных путешествий, продолжительность которых будет исчисляться минутами.

ПУЗЫРЬ ИСКРИВЛЕНИЯ

Сродни теории кротовых нор пузырь искривления. В 1994 году мексиканский физик Мигель Алькубьерре выполнил расчеты согласно уравнениям Эйнштейна и нашел теоретическую возможность волновой деформации пространственного континуума. При этом пространство будет сжиматься перед космическим кораблем и одновременно расширяться позади него. Звездолет как бы помещается в пузырь искривления, способный передвигаться с неограниченной скоростью. Гениальность идеи состоит в том, что космический корабль покоится в пузыре искривления, и законы теории относительности не нарушаются. Движется при этом сам пузырь искривления, локально искажающий пространство-время.

Несмотря на невозможность перемещаться быстрее света, ничто не препятствует перемещению пространства или распространению деформации пространства-времени быстрее света, что, как полагают, и происходило сразу после Большого взрыва при образовании Вселенной.

Все эти идей пока не укладываются в рамки современной науки, однако в 2012 году представители НАСА заявили о подготовке экспериментальной проверки теории доктора Алькубьерре. Как знать, может, и теория относительности Эйнштейна когда-нибудь станет частью новой глобальной теории. Ведь процесс познания бесконечен. А значит, однажды мы сможем прорваться чрез тернии к звездам.

Ирина ГРОМОВА

С какой скоростью летит ракета в космос.?

  1. абстрактная наука-пораждает иллюзии у зрителя
  2. Если на околоземную орбиту то 8 км в сек.
    Если за пределы то 11 км в сек. Примерно так.
  3. 33000 км/ч
  4. Точный - со скоростью 7,9 км/секунд выходя она (ракета) будет врашатся вокруг земли, если со скоростью 11 км/ секунд то это уже парабола, т. е. она чуть дальше поедить, есть вероятность что может и не верннутся
  5. 3-5км/с, учитывайте скорость вращения земли вокруг солнца
  6. Рекорд скорости космического аппарата (240 тыс. км/ч) был установлен американо-германским солнечным зондом Гелиос-Б, запущенным 15 января 1976 г.

    Самая высокая скорость, с которой когда либо передвигался человек (39897 км/ч), была развита основным модулем Аполлона 10 на высоте 121,9 км от поверхности Земли при возвращении экспедиции 26 мая 1969 г. На борту космического корабля были командир экипажа полковник ВВС США (ныне бригадный генерал) Томас Паттен Стаффорд (род. в Уэтерфорде, штат Оклахома, США, 17 сентября 1930 г.), капитан 3-го ранга ВМФ США Юджин Эндрю Сернан (род. в Чикаго, штат Иллинойс, США, 14 марта 1934 г.) и капитан 3-го ранга ВМС США (ныне капитан 1-го ранга в отставке) Джон Уотте Янг (род. в Сан Франциско, штат Калифорния, США, 24 сентября 1930 г.).

    Из женщин наивысшей скорости (28115 км/ч) достигла младший лейтенант ВВС СССР (ныне подполковник-инженер, летчик-космонавт СССР) Валентина Владимировна Терешкова (род. 6 марта 1937 г.) на советском космическом корабле Восток 6 16 июня 1963 г.

  7. 8 км/сек, чтобы преодолеть притяжение Земли
  8. в чрной дыре можно разагнатся до субсветовой скоросте
  9. Чушь, бездумно усвоеная со школы.
    8 или точнее 7,9 км/с - это первая космическая скорость - скорость горизонтального движения тела непосредственно над поверхностью Земли, при которой тело не падает, а остается спутником Земли с круговой орбитой на этой самой высоте, т. е. над поверхностью Земли (и это без учета сопротивления воздуха) . Таким образом ПКС - это абстрактная величина, связывающая между собой параметры космического тела: радиус и ускорение свободного падения на поверхности тела, и не имеющая никакого практического значения. На высоте 1000 км скорость кругового орбитального движения будет уже другой.

    Ракета наращивает скорость постепенно. Например Ракета-носитель Союз имеет через 117.6 с после старта на высоте 47.0 км имеет скорость 1.8 км/с, на 286.4 с полета на высоте 171.4 км, 3.9 км/с. Примерно через 8.8 мин. после старта на высоте 198.8 км скорость КА составляет 7.8 км/с.
    А вывод орбитального корабля на околоземную орбиту из верхней точки полета ракеты-носителя осуществляется уже активным маневрированием самого ОК. И скорость его зависит от параметров орбиты.

  10. Вс это бред. Важную роль играет не скорость, а сила тяги ракеты. При высоте в 35км начинается полноценный разгон до ПКС (первая космическая скорость) до 450км высоты, постепенно придавая курс направлению вращения Земли. Таким образом сохраняется высота и сила тяги во время преодоления плотных слов атмосферы. В двух словах - не нужно расгонять одновременно горизонтальную и вертикальную скорости, значительное отклонение в горизонтальном направлении происходит на 70% нужной высоты.
  11. на какой
    высоте летит космический корабль.

Продолжительность непрерывного пребывания человека в условиях космического полёта:

В ходе эксплуатации станции «Мир» установлены абсолютные мировые рекорды продолжительности непрерывного пребывания человека в условиях космического полёта:
1987 год — Юрий Романенко (326 сут 11 час 38 мин);
1988 год — Владимир Титов, Муса Манаров (365 сут 22 час 39 мин);
1995 год — Валерий Поляков (437 сут 17 час 58 мин).

Суммарное время пребывания человека в условиях космического полёта:

Установлены абсолютные мировые рекорды продолжительности суммарному времени пребывания человека в условиях космического полёта на станции «Мир»:
1995 год — Валерий Поляков - 678 сут 16 час 33 мин (за 2 полёта);
1999 год — Сергей Авдеев - 747 сут 14 час 12 мин (за 3 полёта).

Выходы в открытый космос:

На ОС «Мир» совершено 78 выходов в открытый космос (включая три выхода в разгерметизированый модуль «Спектр») общей продолжительностью 359 час 12 мин. В выходах участвовали: 29 российских космонавтов, 3 астронавта США, 2 астронавта Франции, 1 астронавт ЕКА (гражданин Германии). Сунита Уильямс — астронавтка NASA, стала рекордсменкой мира среди женщин по продожительности работы в открытом космосе. Американка отработала на МКС более полугода (9 ноября 2007 г.) вместе с двумя экипажами и совершила четыре выхода в открытый космос.

Космический долгожитель:

По сведениям авторитетного научного дайджеста New Scientist, Сергей Константинович Крикалев по состоянию на среду 17 августа 2005 г. пробыл на орбите 748 дней, тем самым побив прежний рекорд, установленый Сергеем Авдеевым — во время его трех полетов на станцию Мир (747 сут 14 час 12 мин). Перенесенные Крикалевым разнообразные физические и психические нагрузки характеризуют его, как одного из самых выносливых и успешно адаптирующихся астронавтов в истории космонавтики. Кандидатура Крикалева неоднократно избиралась для выполнения довольно сложных миссий. Врач и психолог Университета штата Техас Дэвид Массон характеризует космонавта как самого лучшего, кого только можно найти.

Длительность космического полёта среди женщин:

Среди женщин мировые рекорды длительности космического полёта по программе «Мир» установили:
1995 год — Елена Кондакова (169 сут 05 час 1 мин); 1996 год - Шеннон Люсид, США (188 сут 04 час 00 мин, в том числе на станции «Мир» - 183 сут 23 час 00 мин).

Наиболее длительные космические полёты иностранных граждан:

Из иностранных граждан наиболее длительные полёты по программе «Мир» совершили:
Жан-Пьер Эньере (Франция) — 188 сут 20 час 16 мин;
Шеннон Люсид (США) — 188 сут 04 час 00 мин;
Томас Райтер (ЕКА, Германия) — 179 сут 01 час 42 мин.

Космонавты, совершившие шесть и более выходов в открытый космос на станции «Мир»:

Анатолий Соловьёв — 16 (77 час 46 мин),
Сергей Авдеев — 10 (41 час 59 мин),
Александр Серебров — 10 (31 час 48 мин),
Николай Бударин — 8 (44 час 00 мин),
Талгат Мусабаев — 7 (41 час 18 мин),
Виктор Афанасьев — 7 (38 час 33 мин),
Сергей Крикалёв — 7 (36 час 29 мин),
Муса Манаров — 7 (34 час 32 мин),
Анатолий Арцебарский — 6 (32 час 17 мин),
Юрий Онуфриенко — 6 (30 час 30 мин),
Юрий Усачёв — 6 (30 час 30 мин),
Геннадий Стрекалов — 6 (21 час 54 мин),
Александр Викторенко — 6 (19 час 39 мин),
Василий Циблиев — 6 (19 час 11 мин).

Первый пилотируемый космический корабль:

Первый пилотируемый космический полет зарегистрированный Международной федерацией аэронавтики (МФА основана в 1905 г.) совершил на корабле «Восток» 12 апреля 1961 г. летчик космонавт СССР майор ВВС СССР Юрий Алексеевич Гагарин (1934...1968). Из официальных документов МФА следует, что корабль стартовал с космодрома Байконур в 6 ч 07 мин по Гринвичу и приземлился вблизи деревни Смеловки Терновского района Саратовской обл. СССР через 108 мин. Максималъная высота полета корабля «Восток» протяженностью 40868,6 км составляла 327 км с максимальной скоростью 28260 км/ч.

Первая женщина в космосе:

Первой женщиной облетевшей Землю по космической орбите была младший лейтенант ВВС СССР (ныне подполковник инженер летчик космонавт СССР) Валентина Владимировна Терешкова (род. 6 марта 1937 г.), стартовавшая на корабле «Восток 6» с космодрома Байконур Казахстан СССР, в 9 ч 30 мин по Гринвичу 16 июня 1963 г. и приземлившаяся в 8 ч 16 мин 19 июня после по лета, который продолжался 70 ч 50 мин. За это время она совершила более 48 полных оборотов вокруг Земли (1971000 км).

Самый старый и самый молодой астронавты:

Старейшим среди 228 космонавтов Земли был Карл Гордон Хенице (США), который в возрасте 58 лет принял участие в 19-м полете корабля многоразового использования «Челленджер» 29 июля 1985 г. Самым молодым был майор ВВС СССР (в настоящее время генерал-лейтенант летчик космонавт СССР) Герман Степанович Титов (род. 11 сентября 1935 г.) который был запущен на корабле «Восток 2» 6 августа 1961 г. в возрасте 25 лет 329 дней.

Первый выход в открытый космос:

Первым в открытое космическое пространство 18 марта 1965 г. из космического корабля «Восход 2» вышел подполковник ВВС СССР (ныне генерал майор, летчик космонавт СССР) Алексей Архипович Леонов (род. 20 мая 1934 г.) Он удалился от корабля на расстояние до 5 м и провел в открытом космосе вне шлюзовой камеры 12 мин 9 с.

Первый выход в открытый космос женщины:

В 1984-м году Светлана Савицкая первой из женщин вышла в открытый космос, проработав за пределами станции «Салют-7» 3 часа 35 минут. До того как стать космонавткой, Светлана установила три мировых рекорда по парашютному спорту в групповых прыжках из стратосферы и 18 авиационных рекордов на реактивных самолетах.

Рекорд продолжительности выходов в открытый космос среди женщин:

Астронавт NASA Санита Лин Уильямс (Sunita Lyn Williams) установила рекорд продолжительности выходов в открытый космос для женщин. Она провела за бортом станции 22 часа 27 минут, превысив предыдущее достижение более чем на 21 час. Рекорд был поставлен в ходе работы на внешней части МКС 31 января и 4 февраля 2007 года. Уильямс осуществляла подготовку станции к продолжению строительства вместе с Майклом Лопесом-Алегрией.

Первый автономный выход в открытый космос:

Капитан ВМС США Брюс Маккандлес второй (род. 8 июня 1937 г.) был первым человеком, работавшим в открытом космосе без фала 7 февраля 1984 г. он покинул космический челнок «Челленджер», находившийся на высоте 264 км над Гавайями в скафандре с автономной ранцевой двигательной установкой. Разработка этого космического костюма обошлась в 15 млн. долл.

Самый длительный пилотируемый полет:

Полковник ВВС СССР Владимир Георгиевич Титов (род. 1 января 1951 г.) и бортинженер Муса Хираманович Манаров (род. 22 марта 1951 г.) стартовали на космическом корабле «Союз-М4» 21 декабря 1987 г. к космической станции «Мир» и приземлились на корабле «Союз-ТМ6» (вместе с французским космонавтом Жан Лу Кретьеном) на запасной посадочной площадке близ Джезказгана, Казахстан, СССР, 21 декабря 1988 г., пробыв в космосе 365 суток 22 ч 39мин 47с.

Самое далекое путешествие в космосе :

Советский космонавт Валерий Рюмин провел почти целый год в космическом корабле, который за эти 362 дня совершил 5750 оборотов вокруг Земли. При этом Рюмин проделал путь в 241 миллион километров. Это равно расстоянию от Земли до Марса и обратно на Землю.

Самый опытный космический путешественник:

Самым опытным космическим путешественником является полковник ВВС СССР, летчик-космонавт СССР Юрий Викторович Романенко (род. в 1944 г.), который за 3 полета провел в космосе 430 суток 18 ч 20 мин в 1977...1978, в 1980 и в 1987 гг.

Самый большой экипаж:

Самый большой экипаж состоял из 8 космонавтов (в его составе была 1 женщина), стартовавших 30 октября 1985 г. на корабле многоразового использования «Челленджер».

Наибольшее число людей в космосе:

Наибольшее число космонавтов, когда либо находившихся одновременно в космосе, равно 11: 5 американцев на борту «Челленджера», 5 русских и 1 индиец на борту орбитальной станции «Салют 7» в апреле 1984 г., 8 американцев на борту «Челленджера» и 3 русских на борту орбитальной станции «Салют 7» в октябре 1985 г., 5 американцев на борту космического челнока, 5 русских и 1 француз на борту орбитальной станции «Мир» в декабре 1988 г.

Самая высокая скорость:

Самая высокая скорость, с которой когда либо передвигался человек (39897 км/ч), была развита основным модулем «Аполлона 10» на высоте 121,9 км от поверхности Земли при возвращении экспедиции 26 мая 1969 г. На борту космического корабля были командир экипажа полковник ВВС США (ныне бригадный генерал) Томас Паттен Стаффорд (род. в Уэтерфорде, штат Оклахома, США, 17 сентября 1930 г.), капитан 3-го ранга ВМФ США Юджин Эндрю Сернан (род. в Чикаго, штат Иллинойс, США, 14 марта 1934 г.) и капитан 3-го ранга ВМС США (ныне капитан 1-го ранга в отставке) Джон Уотте Янг (род. в Сан Франциско, штат Калифорния, США, 24 сентября 1930 г.).
Из женщин наивысшей скорости (28115 км/ч) достигла младший лейтенант ВВС СССР (ныне подполковник-инженер, летчик-космонавт СССР) Валентина Владимировна Терешкова (род. 6 марта 1937г.) на советском космическом корабле «Восток 6» 16 июня 1963 г.

Самая молодая космонавтка:

Самая молодая на сегодня космонавтка — Стефани Уилсон. Она родилась 27 сентября 1966 года и на 15 дней моложе Аньюше Ансари.

Первое живое существо, побывавшего в космосе:

Собака Лайка, которую 3 ноября 1957 года вывели на орбиту вокруг Земли на втором советском спутнике, была первым живым существом в космосе. Лайка умерла в мучениях от удушья, когда кончился кислород.

Рекордное время пребывания на Луне:

Экипаж «Аполлона 17» собрал рекордный вес (114,8 кг) образцов горных пород и фунта во время работы вне космического корабля продолжительностью 22 ч 5 мин. В состав экипажа входили капитан 3-го ранга ВМФ США Юджин Эндрю Сернан (род. в Чикаго, штат Иллинойс, США, 14 марта 1934 г.) и доктор Харрисон Шмитт (род. в Сайта Розе, штат Нью Мексико, США, 3 июля 1935 г.), ставший 12-м человеком, побывавшим на Луне. Астронавты находились на лунной поверхности в течение 74 ч 59 мин в ходе самой длительной лунной экспедиции, продолжавшейся 12 суток 13 ч 51 мин с 7 по 19 декабря 1972 г.

Первый человек, побывавший на Луне:

Нил Олден Армстронг (род. в Уопаконета, штат Огайо, США, 5 августа 1930 г., предки шотландского и немецкого происхождения), командир космического корабля «Аполлон 11», стал первым человеком, ступившим на поверхность Луны в районе Моря Спокойствия в 2 ч 56 мин 15 с по Гринвичу 21 июля 1969 г. За ним из лунного модуля «Игл» вышел полковник ВВС США Эдвин Юджин Олдрин младший (род. в Монтклэре, штат Нью Джерси, США, 20 января 1930 г.

Самая большая высота космического полета:

Самой большой высоты достиг экипаж «Аполлона 13», находясь в апоселении (т. е. в самой дальней точке своей траектории) в 254 км от лунной поверхности на расстоянии 400187 км от поверхности Земли в 1 ч 21 мин но Гринвичу 15 апреля 1970 г. В составе экипажа были капитан ВМФ США Джеймс Артур Ловелл младший (род. в Кливленде, штат Огайо, США, 25 марта 1928 г.), Фред Уоллес Хейс-младший (род. в Билокси, штат Миссури, США, 14 ноября 1933 г.) и Джон Л. Суиджерт (1931...1982). Рекорд высоты для женщин (531 км) установила американский астронавт Кэтрин Салливан (род. в Патерсоне, штат Нью Джерси, США, 3 октября 1951 г.) во время полета на корабле многоразового использования 24 апреля 1990 г.

Самая высокая скорость космического аппарата:

Первым космическим аппаратом, достигшим 3-й космической скорости, позволяющей выйти за пределы Солнечной системы, стал «Пионер-10». Ракета-носитель «Атлас-СЛВ ЗС» с модифицированной 2-й ступенью «Центавр-Д» и 3-й ступенью «Тиокол-Те-364-4» 2 марта 1972 г. покинула Землю с небывалой для того времени скоростью 51682 км/ч. Рекорд скорости космического аппарата (240 км/ч) был установлен американо-германским солнечным зондом «Гелиос-Б», запущенным 15 января 1976 г.

Максимальное сближение космического аппарата с Солнцем:

16 апреля 1976 г. научно-исследовательская автоматическая станция «Гелиос-Б» (США — ФРГ) приблизилась к Солнцу на расстояние 43,4 млн. км.

Первый искусственный спутник Земли:

Первый искусственный спутник Земли был успешно запущен ночью 4 октября 1957 г. на орбиту высотой 228,5/946 км и со скоростью более 28565 км/ч с космодрома Байконур, к северу от Тюратама, Казахстан, СССР (275 км восточнее Аральского моря). Спутник сферической формы был официально зарегистрирован как объект «1957 альфа 2», весил 83,6 кг имел диаметр 58 см и, просуществовав предположительно 92 дня сгорел 4 января 1958 г. Ракета носитель, модифицированная Р 7 длиной 29,5 м была разработана под руководством Главного конструктора С. П. Королева (1907...1966) который также руководил всем проектом запуска ИС3.

Самый удаленный искусственный объект:

«Пионер-10», запущенный с мыса Канаверал, Космический центр им. Кеннеди, штат Флорида, США, пересек 17 октября 1986 г. орбиту Плутона, удаленную от Земли на 5,9 млрд км. К апрелю 1989г. он находился за самой дальней точкой орбиты Плутона и продолжает удаляться в космос со скоростью 49 км/ч. В 1934 г. н. э. он приблизится на минимальное расстояние к звезде «Росс-248», удаленной от нас на 10,3 световых года. Еще до наступления 1991 г. космический аппарат «Вояджер-1», двигающийся с большей скоростью, будет находиться дальше, чем «Пионер-10».

Один из двух космических «Путешественников» Voyager, запущенный с Земли в 1977 году, за 28 лет полета удалился от Солнца на 97 а. е. (14,5 млрд. км) и является сегодня самым удаленным искусственным объектом. Voyager-1 преодолел границу гелиосферы, то есть области, где солнечный ветер встречается с межзвездной средой, в 2005 году. Теперь путь аппарата, летящего со скоростью 17 км/с, лежит в зону ударной волны. Voyager-1 будет работоспособен вплоть до 2020 года. Однако весьма вероятно, что сведения с Voyager-1 перестанут поступать на Землю уже в конце 2006 года. Дело в том, что в NASA намечено сокращение на 30% бюджета в части исследований Земли и Солнечной системы.

Самый тяжелый и самый большой космический объект:

Самым тяжелым выведенным на околоземную орбиту объектом была 3-я ступень американской ракеты «Сатурн 5» с космическим кораблем «Аполлон-15», весившая до выхода на промежуточную селеноцентрическую орбиту 140512 кг. Американский радиоастрономический спутник «Эксплорер-49», запущенный 10 июня 1973 г., весил всего 200 кг, но размах его антенн был равен 415 м.

Самая мощная ракета:

Советская космическая транспортная система «Энергия», впервые запущенная 15 мая 1987 г. с космодрома Байконур, имеет вес при полной нагрузке 2400 т и развивает тягу более 4 тыс. т. Ракета способна вывести на околоземную орбиту полезный груз массой до 140 м, максимальный диаметр — 16 м. В основном модуленая установка, используемая в СССР. К основному модулю прикреплены 4 ускорителя, каждый из которых имеет 1 двигатель РД 170, работающий на жидком кислороде и керосине. Модификация ракеты с 6 ускорителями и верхней ступенью способна вывести на околоземную орбиту полезный груз массой до 180 т, доставить на Луну груз массой 32 т и 27 т - на Венеру или Марс.

Рекорд дальности полета среди исследовательских аппаратов на солнечной энергии:

Космический зонд Stardust поставил своеобразный рекорд дальности полета среди всех исследовательских аппаратов на солнечной энергии — в настоящее время он удален от Солнца на расстояние в 407 миллионов километров. Основная цель автоматического аппарата - сближение с кометой, сбор пыли.

Первый амоходный аппарат на внеземных космических объектах:

Первый самоходный аппарат, предназначенный для работы на других планетах и их спутниках в автоматическом режиме, — советский «Луноход 1» (масса - 756 кг, длина с открытой крышкой - 4,42 м, ширина - 2,15 м, высота - 1,92 м), доставленный на Луну космическим аппаратом «Луна 17» и начавший движение в Море Дождей по команде с Земли 17 ноября 1970 г. Всего он проехал 10 км 540 м, преодолевая подъемы до 30°, пока не остановился 4 октября 1971 г., проработав 301 сутки 6 ч 37 мин. Прекращение работы было вызвано выработкой ресурсов его изотопного источника теплоты «Луноход-1» детально обследовал лунную поверхность площадью 80 тыс. м2, передал на Землю более 20 тыс. ее снимков и 200 телепанорам.

Рекорд скорости и дальности передвижения по Луне:

Рекорд скорости и дальности передвижения по Луне установил американский колесный луноход «Ровер», доставленный туда кораблем «Аполлон 16». Он развил скорость 18 км/ч вниз по склону и проехал расстояние 33,8 км.

Самый дорогой космический проект:

Общая стоимость американской программы полетов человека в космос, включая последнюю экспедицию на Луну «Аполлона 17», составила около 25.541.400.000 долларов. Первые 15 лет космической программы СССР, с 1958 по сентябрь 1973 г., по западным оценкам, стоили 45 млрд долл. Стоимость программы НАСА «Шаттл» (запуск кораблей многоразового использования) до старта «Колумбии» 12 апреля 1981 г. составила 9,9 млрд долл.