04.03.2020

Слитое из бака воздушного судна топливо используется. Топливные баки в самолете. Где находятся? Конструкция. Негерметичность баков и клапанов слива отстоя обнаруживается по следам течи топлива на нижних панелях крыла, нишах шасси или под центропланом. Осн


0

Топливная система на самолете предназначена для размещения топлива и бесперебойной подачи его к двигателям в необходимом количестве и с достаточным давлением на всех заданных режимах и высотах полета.

Топливная система современного самолета включает следующие основные элементы:

баки или отсеки самолета, в которых размещается необходимый для полета запас топлива;

краны управления питанием (переключением баков); краны экстренного отключения подачи топлива к двигателям (противопожарные краны);

краны для слива отстоя топлива из разных точек системы; фильтры для очистки топлива;

насосы, подающие топливо к двигателям и перекачивающие топливо из одних баков в другие;

приборы контроля количества топлива, расхода его и давления; трубопроводы для подачи топлива к двигателям, соединения баков с атмосферой и возврата отсеченного топлива.

Баки. На современных самолетах запасы топлива могут достигать многих десятков тонн. При полетах на значительные расстояния топливо размещают в большом количестве баков, устанавливаемых в крыле и реже в фюзеляже.

В настоящее время применяются три типа топливных баков: жесткие, мягкие и герметичные баки-отсеки.

Жесткие баки выполняются из легких алюминиево-марганцовистых сплавов, которые допускают глубокую штамповку и выколотку, хорошо свариваются, обладают большой эластичностью и устойчивостью против коррозии. Для придания бакам необходимой прочности и жесткости они имеют каркас из продольных и поперечных перегородок и профилей. Поперечные перегородки одновременно служат для уменьшения ударов, возникающих в результате перемещения топлива внутри бака при полете с ускорением. Баки малых размеров могут не иметь внутренних перегородок.

В настоящее время получили широкое применение мягкие баки. Они проще в эксплуатации, более долговечны, имеют меньший вес. Выполняются мягкие баки из специальной резины или капрона. Тонкие резиновые баки выклеиваются на болванках из ткани и одного или двух слоев резины из синтетического полисульфидного (тиоколового) каучука. В такие баки вклеивают резино-металлическую арматуру: фланцы для датчиков топливомера, заправочные горловины, соединительные патрубки, гнезда замков крепления и т. д.

Крепление резиновых тонкостенных баков осуществляется в контейнерах внутри крыла или фюзеляжа.

Бак-отсек представляет собой соответствующим образом загерметизированный внутренний объем части крыла. Герметизация бака-отсека осуществляется синтетическими пленками. Заклепочный шов выполняется герметичным, для чего заклепки предварительно покрываются герметиком. Окончательная герметизация обеспечивается многократным покрытием всей внутренней поверхности жидким герметиком, вулканизирующимся при комнатной температуре.

Крышки эксплуатационных люков баков-отсеков крепятся на болтах с резиновыми уплотнительными кольцами и герметичными (глухими) гайками.

Краны, установленные в системе питания топливом, позволяют управлять подачей его к двигателям от соответствующих баков (или групп баков), а также отключать подачу топлива к вышедшему из строя двигателю. В соответствии с назначением все краны делятся на запорные (перекрывные) и распределительные. По способу управления краны бывают непосредственного и дистанционного управления. По конструкции они могут быть пробковые, золотниковые, клапанные и др.

Дистанционное управление кранами осуществляется при помощи электромеханизмов закрытия крана типа МЗК или сжатым воздухом.

Фильтры. Необходимость очистки топлива, подаваемого в двигатели, от посторонних примесей вызывается наличием в карбюраторах, агрегатах непосредственного впрыска, насосах зазоров размером от десятых до тысячных долей миллиметра, которые необходимо предохранять от попадания в них твердых частиц. Хотя топливо, заправляемое в баки, фильтруется, и баки защищаются от попадания в них механических примесей, в процессе эксплуатации возможно образование продуктов коррозии трубопроводов и агрегатов топливной системы, попадание кусочков резиновых прокладок и т. д. Наличие самых незначительных количеств воды в топливе резко повышает коррозионные свойства его и, кроме того, может привести к засорению трубопроводов в случае появления льда при низких температурах. Особенно опасным является выпадение влаги и образование льда в трубопроводах топливных систем современных высотных самолетов, могущих за короткое время набрать большую высоту, в результате чего образование конденсата резко ускоряется.

В топливных системах летательных аппаратов применяются сетчатые металлические, шелковые, щелевые, металлокерамические, бумажные и механические фильтрующие устройства.

Насосы топливной системы служат для подачи топлива к двигателям в полете на всех высотах, при любых эволюциях и из всех баков или групп баков.

Насосы по назначению разделяются на подкачивающие и перекачивающие, а по типу привода - с приводом от авиадвигателя и с автономным приводом, как правило, от электродвигателя. Из большого разнообразия различных конструкций и типов насосов наибольшее распространение получили коловратные или центробежные насосы низкого давления, поршневые и шестеренчатые - высокого давления.

На современных самолетах обычно устанавливаются два насоса подкачки, один из которых с электрическим приводом размещается в топливном расходном баке или в начале трубопровода подачи топлива, а другой с приводом от авиадвигателя - в конце трубопровода перед насосом подачи (высокого давления). Такая установка насосов обеспечивает надежное питание двигателей топливом.


Насосы перекачки предназначены для перекачки топлива из тех баков, из которых оно должно вырабатываться в первую очередь, в баки расходные, т. е. в баки, из которых топливо направляется непосредственно к двигателям. Выработка топлива из разных баков или групп их диктуется необходимостью сохранить строго определенную центровку самолета в течение всего полета и обеспечить нужную разгрузку крыла.

Трубопроводы топливной системы, обеспечивающие подачу топлива к двигателям, сообщение баков с атмосферой, заправку топливом под давлением, выполняются чаще всего из алюминиевого сплава и шлангов с соединительной арматурой. Наиболее распространенными соединениями трубопроводов являются: дюритовое (гибкое) на стяжных хомутах и ниппельное (жесткое).

В последнее время широко применяются гибкие металлические Рукава, которые хорошо сопротивляются вибрационным нагрузкам, Удобны при монтаже, относительно легки.

На рис. 115 представлена схема топливной системы самолета.

Выработка топлива из баков осуществляется при помощи самолетных подкачивающих насосов, давление на выходе из которых должно быть больше минимально допустимого (обычно около 0,3 кГ/см 2). За насосом подкачки обычно устанавливается обратный клапан, не допускающий обратного движения топлива.

Пожарный кран перекрывает магистраль подачи топлива при неработающем двигателе и в полете при аварийных случаях.

На некоторых самолетах гидравлические сопротивления в магистрали от бака до насоса двигателя достигают большой величины. Это вызвало необходимость включения в топливную магистраль дополнительного двигательного подкачивающего насоса, который обеспечивает нужное давление у основного насоса двигателя.

Если предусматривается охлаждение масла системы смазки двигателя топливом, то в топливной системе устанавливается топливомасляный радиатор.

По мере выработки топлива из бака давление в последнем будет уменьшаться, что может привести к смятию бака. Для предотвращения этого топливные баки сообщаются с атмосферой через дренажные трубопроводы.

На самолетах, летающих на высотах, превышающих 15- 20 тыс. м, создается угроза выброса значительного количества топлива через дренаж. Для устранения этого в баках должно быть создано избыточное давление. Это давление создается инертными газами - азотом, углекислотой и другими, которые одновременно являются средством борьбы с пожаром.

Характерной особенностью топливных систем современных самолетов является большая емкость их баков. Заправить большое количество топлива через верхние обычные горловины баков сложное, трудоемкое дело, поэтому на подавляющем большинстве современных самолетов имеются системы заправки топливом снизу под давлением. Эти системы позволяют осуществить заправку за очень короткое время.

Система заправки топливом каждого самолета состоит из заправочных горловин (одной или двух), щитка управления заправкой, трубопроводов подвода топлива в заправляемые баки или группы баков, заправочных кранов с электрическим дистанционным управлением, поплавковых предохранительных клапанов, исключающих переполнение баков при отказе заправочных кранов.

Для увеличения дальности полета боевых самолетов некоторые типы их могут заправляться топливом в воздухе со специально оборудованного самолета-заправщика.

Вынужденная посадка современного транспортного самолета сразу после взлета, т. е. при максимальном полетном весе, в ряде случаев из-за ограниченной прочности шасси недопустима. Облегчение посадочного веса в этих аварийных случаях может быть достигнуто сливом топлива.

Система аварийного слива топлива в полете должна удовлетворять следующим требованиям: слив определенного количества топлива (достаточно облегчающего самолет) должен быть произведен за ограниченное время порядка 10-15 мин. При этом центровка самолета должна изменяться незначительно. Сливаемое топливо не должно попадать в зону горячих газов.

Система аварийного слива топлива состоит из кранов, трубопроводов и кранов управления сливом.

Используемая литература: "Основы авиации" авторы: Г.А. Никитин, Е.А. Баканов

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера.

Топливо на самолете находится в баках, которые могут быть встроенные , жесткие или гибкие .

a) Встроенные баки – находятся внутри крыла и, в зависимости от типа самолета, в кессоне центроплана и горизонтального стабилизатора. Баки устанавливаются и герметизируются при производстве самолета для хранения большого количества топлива. Преимуществом таких баков является небольшой прирост веса самолета, т.к. конструкция бака сформирована в уже имеющейся конструкции. На всех современных пассажирских самолетах устанавливаются баки данного типа.

b) Жесткие баки – герметичные металлические контейнеры, остановленные на крыле или фюзеляже самолета. Они просты в исполнении, но добавляют вес самолету и требуют крепежную конструкцию. Наиболее распространены среди легких самолетов. Баки данного типа могут устанавливаться снаружи, например, на законцовке крыла, и иметь металлическую или композитную конструкцию.

c) Гибкие баки – герметичные баки, изготовленные из прорезиненной ткани, иногда называются топливными баллонами или мягкими баками. Для баков данного типа требуется конструкция для крепления и поддержки внутри самолета. Они обычно устанавливаются внутри крыла или фюзеляжа, наиболее популярны для военных самолетов, т.к. их можно эффективно герметизировать самостоятельно в случае повреждения в бою.

Внутри баков устанавливаются перегородки для минимизации больших внутренних сил, создаваемых при колебаниях топлива во время маневров самолета, ускорения, замедления или, например, бокового скольжения. У некоторых больших самолетов могут быть установлены дроссельные запорные клапаны, которые пропускают топливо на борт и не пропускают обратно в крыло во время маневров. Топливные баки также содержат вентиляционные клапаны, клапаны дренажа воды, штуцеры заправки и крышки заливной горловины, систему калибровки. У больших самолетов в баках устанавливаются подкачивающие насосы, поплавковые датчики высокого и низкого уровня, клапаны централизованной заправки и фильтры.

Топливная система самолета разработана для хранения и доставки топлива в топливную систему двигателя. Она должна быть способна доставить больше топлива, чем может потреблять двигатель в самой критической фазе полета, чтобы двигатель никогда не испытывал топливного голодания.

На рисунке ниже приведена топливная система легкого однодвигательного самолета. Жесткие топливные баки установлены в крыле и заправляются топливом с верхней части крыла (открытая линия через фильтр верхней части бака). Из баков топливо подается с помощью механического или электрического насоса через селекторный клапан топливного бака и фильтр перед подачей карбюратор. Заливка двигателя производится с помощью подкачивающего насоса, который берет топливо из корпуса фильтра и подает во входной коллектор. Топливная система позволяет отслеживать вместимость и давление топлива, а также дренаж топлива с удалением воды перед полетом.

Рис. 18.1. Топливная система легкого однодвигательного самолета

Многодвигательные самолеты имеют более сложные топливные системы с дополнительными требованиями к высоте и конфигурации двигателя. Топливные баки встроенные и неизменяемые, расположены в крыле. У большинства современных самолетов есть центральный бак – бак в кессоне центроплана между полуплоскостями крыла. Существуют самолеты с топливными системами, имеющими баки на хвостовом оперении (киле или стабилизаторе), которые вместе с увеличением топливной емкости могут применяться для изменения положения ЦТ самолета.

Система будет включать следующие компоненты:

1. Система суфлирования (вентиляции и дренажа) – может содержать вентиляционные клапаны и уравнительный дренажный бак. Позволяет выравнивать давление воздуха в баке над топливом с наружным давлением, а также может пропускать воздух скоростного напора для частичного наддува баков в полете, что способствует формированию потока топлива и помогает уменьшить кипение топлива на высоте. Любое топливо, попадающее в систему суфлирования, скапливается в уравнительном дренажном баке и возвращается обратно в основные баки. Вентиляционное пространство в каждом топливном баке согласно требованиям JAR 23 и JAR 25 составляет 2% от объема бака.

2. Фильтры (экраны) – используются для предотвращения попадания любых частиц из бака в подкачивающие насосы.

3. Подкачивающие насосы – обычно устанавливаются попарно в каждом баке для подачи топлива из бака в двигатель. Эти насосы необходимы высотным самолетам для предотвращения кавитации в насосе с приводом от двигателя. Подкачивающие насосы обычно центробежного типа с приводом от индукционных моторов переменного тока, создают низкое давление (20-40 psi) и высокий расход. В случае двойного отказа подкачивающих насосов в одном главном баке, максимальная высота полета самолета будет ограничена согласно Перечню Минимального Исправного Оборудования (MEL) для предотвращения топливного голодания.

4. Коллектор (распределитель) – подкачивающие насосы устанавливаются в коллектор или распределитель, который всегда содержит расчетное количество топлива (обычно 500 кг), чтобы насосы были постоянно погружены в топливо для предотвращения кавитации насосов в связи с изменением пространственного положения самолета, когда они могут остаться непокрытыми топливом. Коллектор может иметь средства, обеспечивающие замену насосов без слива всего топлива из бака.

5. Клапаны перекрестной подачи и отсечки – обеспечивают подачу топлива из любого бака в любой двигатель и изоляцию в случае отказа или аварии.

6. Поплавковые выключатели высокого и низкого уровня или датчики уровня – выключатели высокого уровня топлива используются для автоматического закрытия клапана заправки, когда бак наполнен во время дозаправки, а выключатели низкого уровня используются для поддержания требуемого минимума топлива в главных баках во время аварийного сброса или слива топлива.

7. Слив топлива – как на легком самолете, любой бак имеет штуцер слива в самой нижней точке для слива воды из бака.

8. Перегородки – устанавливаются в баках для гашения резких колебаний топлива (плескания или разбрызгивания) во время маневрирования.

9. Клапан стравливания давления – на случай избыточного наддува топливного бака из-за отказа для предотвращения повреждений конструкции может быть установлен перепускной клапан.

На следующем рисунке представлена типичная схема системы двухдвигательного реактивного самолета с органами управления и приборами контроля. Заметим, что крыльевые баки разбиты на два элемента: внешнюю и внутреннюю секцию, которые иногда объединяются для сохранения во внешней секции определенного количества топлива, пока уровень топлива во внутренней секции не достигнет определенного значения. Сохранение топлива во внешней секции помогает снизить изгибающую нагрузку на крыло и избегать флаттера.

Рис. 18.2. Схема топливной системы

Нормальная последовательность использования топлива после взлета будет заключаться в первоначальном расходовании топлива из центрального бака, а затем топлива из крыльевых баков. Эта последовательность позволяет снизить изгибающую нагрузку на крыло. Когда подкачивающие насосы более не могут выкачивать топливо из центрального бака, остаток топлива может быть перемещен в бак №1 по линии откачки центрального бака.

Клапан перекрестной подачи позволяет питать оба двигателя с одной стороны или один двигатель с обеих сторон. Впускные клапаны (клапаны подсоса) в баках позволяют питать двигатель с помощью сил гравитации или подсоса от насоса с приводом от двигателя в случае отказа обоих подкачивающих насосов в одном баке.

На контрольной панели показаны переключатели для каждого насоса вместе со световой сигнализацией низкого давления для предупреждения об отказе насоса или низком уровне топлива. Для клапана перекрестной подачи также существует переключатель и индикатор. В баке №1 имеется температурный датчик, передающий сигнал температуры топлива в баке на индикатор контрольной панели.

Клапан отсечки топлива закрывается при работе пожарного рычага соответствующего двигателя, у некоторых самолетов он также управляется переключателем топлива во время процедуры нормального запуска или останова.

Топливо для ВСУ подается из бака №1 при помощи перепускного клапана, если нет работающих подкачивающих насосов, или подача может осуществляться из любого бака при включении подкачивающего насоса соответствующего бака. Отсечной клапан ВСУ обычно управляется автоматической последовательностью запуска или останова.

Дисбаланс топлива в полете между баками №1 и №2 можно скорректировать с помощью переключения подкачивающих насосов и клапана перекрестной подачи (открыть перекрестный клапан и отключить насосы в баке с меньшим количеством топлива до достижения правильного баланса при питании обоих двигателей из бака с большим остатком топлива). При достижении правильного баланса необходимо включить подкачивающие насосы, которые были предварительно отключены, и перекрыть перекрестный клапан. Это восстановит конфигурацию «бак – двигатель» (бак №1 питает двигатель №1, бак №2 питает двигатель №2).

На контрольной панели имеются индикаторы для открытого положения перепускного клапана фильтра НД (блокировка фильтра). Это фильтр низкого давления в топливной системе двигателя, установленный за подогревателем топлива.

Топливная система двигателя предназначена для питания двигателя топливом в процессе запуска и на всех режимах работы. Топливная система двигателя состоит из системы основного топлива и системы пускового топлива.

Топливо на самолете размещено в сообщающихся между собой топливных баках под избыточным давлением 0, 1 кг. на см. кв.

Топливная система самолета обеспечивает подачу топлива из баков к двигателям в заданной последовательности на всех режимах работы самолета и при любом положении его в воздухе. Топливная система включает в себе баки, в которых размещается топливо; агрегаты, устройства и топливопроводы для заправки топливом баков на земле; агрегаты, устройства и трубопроводы, обеспечивающие подачу топлива из баков к двигателям; систему питания двигателей при действии нулевых и отрицательных перегрузок; приборы и устройства для контроля работы топливной системы на земле и в воздухе; агрегаты, устройства и трубопроводы наддува и дренажа топливных баков.

топливо размещается в двух фюзеляжных баках-отсеках - баке №1 (переднем) и баке №2 (заднем), в баке в центроплане, расположенным над баком №2, в крыльевых баках (по одному в каждой консоли). всего в самолете Су-25 5 топливных баков. Под консоли крыла самолета можно установить 4 подвесных топливных бака, по два под каждую консоль. Суммарная эксплуатационная емкость топливных баков составляет 3660 литров, в том числе емкость фюзеляжных топливных баков составляет 2386 литра, емкость бака-отсека каждой консоли составляет 637 литров. Топливо из подвесных топливных баков выдавливается в бак №1 воздухом с избыточным давлением 0, 65 кг. на см. кв. Каждый бак имеет емкость 80 литров.

Расходным баком является бак № 2, расположенный в центре тяжести самолета.

Фюзеляжные и крыльевые баки представляют собой герметичные баки-отсеки, являющиеся элементами конструкции фюзеляжа и крыла самолета.

На боковых поверхностях баков №1 и №2, отделенных от воздушного канала компоновочным зазором и на нижних поверхностях бака в центроплане и бака №1 установлен протектор, который существенно снижает потери топлива при пробоях стенок баков и уменьшает возможность возникновения пожара. Двухслойные проектирующие элементы имеют толщину до 20 мм.

Для обеспечения взрывобезопасности топливных баков фюзеляжа, крыла, центроплана и подвесных баков их внутренние объемы заполнены пористым заполнителем - пенополиуретаном. Для обеспечения защиты от пожара смежных отсеков, расположенных рядом с первым и вторым топливными каналами и баками также заполнено пенополиуретаном.

Закладка в баки пенополиуретановых вкладышей производится через монтажные люки.

В подвесные топливные баки пенополиуретановые вкладыши закалываются при разобранном по стыковым шпангоутам баке. Крепление вкладышей в баке осуществляется путем их натяга при помощи лент, а также вследствие того, что вкладыши вырезаются по внешнему контуру баков с припуском.

Система дренажа и наддува обеспечивает в крыльевых и фюзеляжных баках избыточное давление на всех режимах полета, с этой целью все баки соединены дренажными трубопроводами, в которые подается воздух от заборника скоростного напора и системы наддува.

Заправка баков топливом осуществляется двумя способами: - открытым централизованным; - открытым через заливные горловины каждой емкости. При открытом централизованном способе заправка фюзеляжных и крыльевых баков выполняется через заправочную горловину бака №1.

Последовательность выработки топлива из баков обусловлена требованием сохранения центровки самолета в заданных пределах на всех режимах полета. Так как бак №2 - расходный, от вырабатывается в последнюю очередь и поддерживается заполненным на всех режимах работы двигателя за счет перекачки топлива из баков фюзеляжа и крыла. Подача топлива к двигателям обеспечивается тремя способами:

  • - подкачивающим насосом из бака №2 на всех режимах полета при отсутствии нулевых и отрицательных перегрузок;
  • - вытеснением из бачка-аккумулятора при действии нулевых и отрицательных перегрузок;
  • - самотеком через обратные клапаны при отказе насоса. Топливо к насосам, установленным по одному на каждом двигателе, подается из расходного бака насосом подкачки.

Емкость бачка-аккумулятора обеспечивает работу двигателей на нулевых или отрицательных перегрузках в течении 15-ти секунд. При нормальной работе топливной системы бачок-аккумулятор полностью заполнен топливом.

Топливо из крыльевых баков в расходный перекачивается струйными насосами.

Выработка топлива из подвесных топливных баков производится под действием давления наддува. Подвесные топливные баки вырабатываются в первую очередь. Конструктивно подвесной топливный бак выполнен в виде цилиндрической оболочки, подкрепленной шпангоутами, приваренными к ней электросваркой. Для улучшения транспортабельности и условий хранения подвесной бак выполнен разъемным, из трех частей: носовой, средней и хвостовой, соединенных по стыку болтами. Герметичность обеспечивается установкой по разъемам стыковых колец. На хвостовой части подвесного топливного бака установлен стабилизатор, состоящий из двух горизонтально расположенных консолей. Средняя часть подвесного топливного бака - силовая, на ней расположены узлы подвески бака к балочному держателю; в средней части подвесного бака установлена труба, служащая для отбора топлива из бака.

Часть 10. Авиационные динамические насосы (наиболее часто применяются центробежные, но также используются осевые, вихревые и струйные насосы) используются главным образом для перекачивания авиационного топлива. Кроме топливных, на самолетах (пассажирских) используются насосы систем жизнеобеспечения (для чистой воды, санитарные и пр.), а также насосы систем термостабилизации для охлаждения (подогрева) радиоэлектронного оборудования (главным образом радаров и их электроники). Что касается топливных насосов, то в каждом баке самолета (а их может быть более 10) должен быть как минимум один топливный насос, топливные насосы также установлены на двигателях. Таким образом, число топливных насосов разных типоразмеров на самолете может превышать 30. . 40 штук 5. . 10 разных типов Лекции по Ти. ЭУ 1

Основные особенности авиационных насосов: 1. Жесткие ограничения по весу и габаритам (и вытекающая отсюда необходимость повышения частот вращения ротора) 2. Большое разнообразие конструкций из-за сложной конфигурации баков и трубопроводов в самолете 3. Удобство замены (модульная конструкция) 4. Высокая надежность в процессе работы 5. Большое разнообразие систем привода насосов (двигатели переменного тока 400 Гц, постоянного тока 27 и 110 В, гидропривод, пневмопривод и привод непосредственно от двигателя) 6. Необходимость резервирования насосов 7. Возможность работы на жидкостях с большим количеством растворенного воздуха (авиационное топливо может растворять большое количество воздуха) и в сложных кавитационных условиях (вследствие высоких частот вращения и возможных больших температур топлива, особенно в крыльевых баках) 8. Пожарная безопасность (топливо огнеопасно) 9. Большой диапазон режимов работы Лекции по Ти. ЭУ 2

Основные типы топливных насосов – это баковые (внебаковые и кессонные) насосы 1 ступени (как правило, с электроприводом ЭЦН), двигательные насосы с приводом от двигателя (2 ступени) – ДЦН и топливные насосы высокого давления (до 100 кгс/см 2), установленные на двигателе (насосырегуляторы и форсажные насосы). При этом баковые насосы применяются и для перекачивания топлива между баками (например, из внешних баков в расходный или между крыльевыми для уравновешивания самолета – балансировочные насосы БЦН) Лекции по Ти. ЭУ 3

Проблема постоянного снабжения топливом двигателей во всех режимах полета Самолет может совершать самые разнообразные маневры в процессе полета. Особенно это касается высокоманевренных военных самолетов. При этом система подачи топлива должна обеспечивать снабжение двигателей горючим во всех возможных положениях самолета и при разных перегрузках (в том числе отрицательных). Для этого используются различные схемы забора топлива из баков и/или топливные аккумуляторы, обеспечивающие кратковременную подачу топлива в баки при маневре. Лекции по Ти. ЭУ 9

Другой проблемой является работа насоса на жидкостях с высоким газосодержанием (с выделением газа на входе в насос) и при низких значениях кавитационного запаса на входе. Несмотря на наддув баков от компрессора двигателя, за счет нагрева топлива в баках, изменения положения зеркала топлива в баках и отрицательных перегрузок давление на входе в насос может падать почти до давления насыщенного пара для данной жидкости. Кроме того, кавитационные качества сильно зависят от частоты вращения вала насоса, которая для данных насосов высока. Проблема может быть решена следующими основными путями: 1. Снижение содержания газа на входе в лопастное колесо с помощью газосепараторов 2. Применение предвключенных струйных насосов для улучшения работы на газожидкостной смеси и повышения всасывающей способности 3. Использование предвключенных шнеков Лекции по Ти. ЭУ 12

Выбор типа привода для авиационного ЦБН должен производиться исходя из следующих требований: 1. Высокие частоты вращения вала насосов 2. Высокая надежность привода и его компактность, малый вес 3. На самолете обычно есть 2 вида электропитания – постоянный ток (обычно 27 В) и переменный (как правило 100200 В 400 Гц) 4. Насосы должны работать и в аварийных ситуациях, в том числе при сбое электропитания (не все, аварийные) 5. Желательно наличие жесткой характеристики привода для прогнозируемой работы насоса во всех режимах 6. Желательно – возможность управления параметрами двигателя и система его диагностики (реализуется, например, в современных двигателях с электронной коммутацией) 7. Очень важная задача – охлаждение двигателя в замкнутом объеме (обычно перекачиваемой жидкостью) для насосов внутрибакового исполнения Лекции по Ти. ЭУ 17

Исходя из вышеизложенного, для авиационных ЦБН применяются следующие типы приводов: 1. Электродвигатели постоянного тока с частотами вращения как правило от 5000 до 24000 об/мин и мощностью от 25 Вт до 15 КВт (обычно до 1 КВт) 2. Электродвигатели переменного тока (асинхронные, 400 Гц) на те же параметры 3. Пневмопривод (воздушная турбина) с отбором сжатого воздуха от компрессора двигателя 4. Гидропривод (гидротурбина) с питанием рабочей жидкостью (топливом) от насоса, установленного на двигателе 5. Аварийные приводы, например, выкидные воздушные турбины (обычно используются не для ЦБН, а для аварийных генераторов) 6. Наиболее современные – синхронные вентильные двигатели с ротором на постоянных магнитах Лекции по Ти. ЭУ 19

Возможные направления развития авиационных ЦБН 1. Применение герметичных синхронных вентильных электродвигателей с электронной коммутацией со встроенным регулированием по частоте вращения и датчиками состояния агрегата (включая датчики вибродиагностики) 2. Повышение частот вращения роторов насосов для уменьшения их веса и габаритов 3. Более широкое использование в конструкции неметаллических материалов, в т. ч. и в корпусных деталях 4. Использование подшипников скольжения с высокой износостойкостью для повышения ресурса работы Лекции по Ти. ЭУ 39

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

  • I . Общие сведения о топливных системах ЛА ГА и предъявляемые к ней требования
  • II . Оценка технического состояния топливной системы ВС
  • III . Технология ТО топливной системы
  • 3.1 Осмотр и дефектация
  • VIII . Расчёт магистрали слива топлива в полёте самотёком

I. Общие сведения о топливных системах ЛА ГА и предъявляемые к ней требования

Топливная система самолета предназначена для размещения и хранения необходимого для выполнения полета запаса топлива и подачи его в работающие двигатели в необходимом количестве и под требуемым давлением на всех режимах полета .

Основные требования, предъявляемые к топливной системе:

Топливная система должна обеспечивать бесперебойное питание двигателей топливом на всех режимах полета.

В случае выключения подкачивающего насоса топливная система должна обеспечивать питание двигателей от МГ до взлетного режима на высотах до 2000 м с сохранением центровки и кренящих моментов в допустимых пределах.

Ёмкость топливных баков должна быть достаточной для выполнения полета на заданную дальность и должна включать аварийный (аэронавигационный) запас на 45 мин. полёта на крейсерском режиме (по нормам FAR и JAR).

Выработка топлива не должна существенно влиять на центровку ВС.

Топливная система должна быть безопасной в пожарном отношении.

Топливная система должна обеспечивать централизованную заправку, а также должна иметь приспособления для заправки под давлением.

Должна предусматриваться возможность аварийного слива топлива в полёте в случае, если максимальная масса ВС превышает допустимую из условий посадки.

Топливная система должна иметь возможность надежного и непрерывного контроля за очередностью и количеством выработки топлива, как в отдельном баке, так и в группе баков.

Топливная система условно делится на две системы:

внутреннюю, или систему питания двигателей;

внешнюю, или самолетную.

К внутренней системе относятся топливные агрегаты и соединяющие их трубопроводы, установленные на двигателе и поставляемые вместе с двигателем Д-ЗОКУ-154.

Самолетная топливная система состоит из топливных баков и следующих функциональных систем:

питания топливом основных двигателей;

питания топливом двигателя вспомогательной силовой установки;

перекачки топлива;

дренажа топливных баков;

заправки топливом;

системы автоматики расхода и измерения топлива СУИТ4-1Т;

системы измерения расхода топлива СИРТ-1Т.

Топливо на самолете Ту-154 размещено в пяти кессон-баках. Три бака - один бак №1 и два бака № 2 - расположены в центроплане и два бака (баки № 3) - в отъемных частях крыла. Пространство в центроплане между бортовыми нервюрами № 3 и первым и вторым лонжеронами используется в качестве бака №4.

Питание двигателей осуществляется из расходного бака № 1, который пополняется топливом из баков № 2 и 3, а также из бака № 4.

Централизованная заправка баков топливом производится снизу, через две приёмные горловины, установленные в носке центроплана правого крыла. При отказе централизованной заправки под давлением, заправка всех баков (кроме расходного) может производиться через верхние заправочные горловины баков.

Ёмкость топливной системы Ту-154:

Бак № 1 (расходный) 3300кг

Бак № 2 (левый, правый) 9500кг

Бак № 3 (левый, правый) 5425кг

Бак № 4 (фюзеляжный) 6600кг

Общее количество топлива39750кг (при 0,8г/см 3)

Каждый топливный бак представляет собой герметический отсек, образованный лонжеронами, нервюрами и верхней и нижней панелями крыла.

II. Оценка технического состояния топливной системы ВС

Оценка технического состояния топливной системы подразумевает, прежде всего, получение информации о возможных отказах и неисправностях, возможных в данной системе. Основными отказами и неисправностями топливной системы являются:

Отказы подкачивающих насосов из-за разрушения подшипников.

Отказы электромеханизмов запорных заслонок и кранов из-за отказов электродвигателей постоянного тока.

Утечки, вызванные износом уплотнительных колец и втулок, а также внешней негерметичностью соединений.

Падение и колебание давления топлива в результате разрегулирования и выхода из строя топливных насосов, редукционных клапанов и т.д.

Замерзание топлива в трубопроводах вследствие обводнения топлива, а также отказов системы радиаторов, насосов.

Длительное время для контроля технического состояния агрегатов топливной системы используется прибор "Тест", который контролирует состояние топливной системы, используя комплекс параметров:

Время открытия и закрытия заслонки (крана).

Потребляемый электродвигателем ток.

Уровень коммутационного шума (искрения), характеризующий техническое со стояние щеточно-коллекторного устройства электродвигателя.

Для диагностирования подшипников подкачивающих насосов топливной системы используется среднеквадратическое значение уровня виброускорения в характерных диапазонах частот.

Основное внимание при ТО топливных систем следуем уделять их герметичности. В первую очередь проверяются места стыков трубопроводов и агрегатов. Также необходимо проверять заборники системы дренажа.

Отказы и повреждения элементов топливных систем обусловлены:

конструктивно-производственными недостатками;

проявлением неблагоприятных свойств топлива, которые могут оказывать повре ждающее действие и на элементы конструкции двигателя;

нарушениями технологичности технического обслуживания и правил эксплуата ции систем питания двигателей топливом на земле и в полёте;

ошибками, допущенными при ремонте ЛА.

К характерным повреждениям систем относятся следующие:

1)Течь топлива из баков-кессонов и сливных клапанов .

Негерметичность баков и клапанов слива отстоя обнаруживается по следам течи топлива на нижних панелях крыла, нишах шасси или под центропланом. Основная причина течи баков - ослабление заклёпочных соединений панелей баков-кессонов, недоброкачественная их герметизация, а сливных клапанов - разрушение уплотнительных колец.

2 ) Отказы подкачивающих и перекачивающих насосов .

Они связаны с разрушением подшипника электродвигателей (сопровождается шумом при их работе, вибрацией), износом манжет уплотнения насоса и, как следствие, сопровождаются течью топлива из дренажных штуцеров насосов, износом щёток и разрушением коллекторного узла электродвигателя.

3 ) Нарушение работы кранов (пожарных, кольцевания и др .).

Оно происходит по причинам износа и разрушения уплотнений, элементов привода заслонок, отказа электромеханизмов.

4 ) Разрушение корпусов топливных фильтров .

Вызывается повышенными пульсациями топлива в системе.

5 ) Разрушение мембран, окисление контактов сигнализаторов давления .

6 ) Засорение фильтрующих элементов топливных фильтров кристаллами льда при низких температурах наружного воздуха.

топливная система самолет герметичность

Кристаллы льда засоряют фильтр магистрали низкого давления, что приводит к существенному увеличению гидравлического сопротивления магистрали и ухудшению кавитационных характеристик основного топливного насоса. Замерзание отстоя воды в полости подкачивающего насоса может вызвать примерзание его ротора к корпусу и разрушение валика привода насоса при запуске двигателя.

7 ) Засорение фильтрующих элементов и форсунок микрозагрязнениями при высоких температурах топлива (выше 100.110°С).

При этом из топлива в виде осадка выделяется сернистые соединения, оксиды металлов, смолы и твёрдые углеродные частицы, образующиеся в результате разложения термически нестабильных фракций топлива. Этот осадок вызывает также повышенный износ топливных насосов.

8 ) Попадание воздуха в систему .

Оно приводит к нарушению режимов работы топливных регуляторов, колебания частоты вращения ротора и выключению двигателя, кавитации в трубопроводах и насосах. Поэтому после длительной стоянки ЛА воздух удаляют из топливных магистралей через специальные клапаны.

9 ) Разрушения топливных трубопроводов .

Они происходят в результате их колебаний и составляют значительную часть всех отказов усталостного происхождения в ГТД. Разрушение трубопроводов наблюдаются, как правило, в местах концентрации напряжений: в зонах приварки и припайки ниппелей, по переходу цилиндрического участка трубы в развальцованной конический, под зажимами труб и в местах их максимальной изогнутости. Трещины вдоль образующей трубопровода возникают под действием пульсации давления топлива, а окружные трещины - в результате циклического изгиба вибрациями, передаваемыми от корпуса двигателя. Снижению усталостной прочности трубопроводов способствуют искажения формы их поперечного сечения, монтажные напряжения, поверхностные повреждения (вмятины, забоины, риски и т.п.). Поэтому к качеству монтажа трубопроводов предъявляются высокие требования.

III. Технология ТО топливной системы

3.1 Осмотр и дефектация

Основными работами по обслуживанию топливной системы являются: проверка состояния трубопроводов и агрегатов системы, проверка работы подкачивающих и перекачивающих насосов, порционера, топливного насоса ВСУ; проверка герметичности системы питания основных двигателей и перекрывных (пожарных) кранов; работы по заправке и сливу топлива

В процессе эксплуатации необходимо тщательно следить за герметичностью и надежностью всех соединений трубопроводов. При наличии течи по соединениям заменить в них уплотнительные кольца

При демонтаже соединительных металлических муфт трубопроводов надо слить топливо из трубопровода и расконтрить гайки муфты. Специальным ключом ослабить одну гайку, а другую полностью отвернуть. После этого сдвинуть муфту в сторону ослабленной гайки. Снять уплотнительные кольца. При снятых уплотнительных кольцах отвернутая соединительная муфта должна свободно перемещаться по концам труб.

При монтаже соединительной муфты гайки должны наворачиваться на муфту без скручивания уплотнительных резиновых колец

Детали, имеющие на уплотняемых поверхностях забоины, царапины и задиры установке на самолет не подлежат.

При соединении трубопроводов с помощью муфты необходимо обеспечить соосность трубопроводов на стыках. Допускается их несоосность не более 1 мм. Зазор между концами стыкуемых трубопроводов должен быть 9 ± 3 мм.

Осмотреть магистрали топливной и дренажной систем. На трубопроводах не должно быть вмятин, царапин, потертостей. Не допускается контакт между трубопроводами и элементами каркаса самолета.

Убедиться в отсутствии подтеков топлива в местах прокладки трубопроводов и крепления их к агрегатам.

Проверить целостность перемычек металлизации и их крепления

Для крепления трубопроводов, находящихся внутри кессон-баков, для избежания коррозии применять хомуты только с оцинкованной стальной лентой.

При осмотре агрегатов топливной системы необходимо убедиться в отсутствии течи, подтеков, трещин забоин, повреждения лакокрасочного покрытия, ослабления болтов крепления и нарушения центровки.

При осмотре поплавкового устройства порционера обратить особое внимание на состояние поплавков и их рычагов

При проведении работ необходимо следить, чтобы в кессон-баки, трубопроводы и агрегаты не попали посторонние предметы, вода, снег, грязь.

Для демонтажа насосов ЭЦН-323 и ЭЦН-325 необходимо сливать топливо из баков. Демонтаж насоса ЭЦН-319 проводить без слива топлива из бака. Запрещается поднанимать насосы за электропровода.

При монтаже насоса не допускается повреждение защитного кожуха электродвигателя

Перед монтажом агрегатов надо проверять целостность уплотнений, следить, чтобы на резиновых кольцах не было закусываний, подрезов, вмятин, деформаций, сеток старения. Резиновые уплотнительные кольца разрешается смазывать маслом МК-8.

После монтажа насосов проверить их работоспособность включением вручную в пилотской кабине и прослушиванием их.

После ремонта и демонтажа трубопроводов и агрегатов топливной системы необходимо перед первым запуском двигателя произвести промывку трубопроводов подачи топлива к двигателям, посредством включения топливных подкачивающих насосов.

В любое время года необходимо следить за чистотой заборников воздуха системы дренажа топливных баков.

Сливной трубопровод заправочной горловины не должен быть засорён, так как конденсат, находящийся в нем, может замерзнуть, разорвать его, и через этот разрыв топливо будет вытекать из бака.

Проверка работы подкачивающих насосов и герметичности системы питания основных двигателей производится поочередным включением насосов расходного бака.

Загорание сигнальных ламп свидетельствует об исправности насосов и системы сигнализации.

Эту работу, а также работы по проверке функционирования других топливных насосов, электромагнитных кранов и систем, требующих электропитания, осуществлять при включении АЗС систем. Для проверки герметичности системы питания основных двигателей открыть перекрывные краны и после 5 минут (не менее) работы подкачивающих насосов осмотреть топливные магистрали и убедиться в их герметичности. При наличии течи по соединениям трубопроводов между собой и агрегатами заменить уплотнительные резиновые кольца.

При проверке функционирования перекачивающих насосов выключатель переключения управления перекачивающими насосами установить в положение "Ручное". При поочередном включении перекачивающих насосов должны загораться соответствующие им сигнальные лампы, что свидетельствует об исправности насосов и системы сигнализации.

Работоспособность порционера проверяется при включенных топливомере и автомате расхода топлива при автоматическом управлении перекачивающими насосами (переключатель "Автомат - Ручное" должен стоять в положении "Авт. "). По зеленым сигнальным лампам перекачивающих насосов баков № 2 и 3 следить за работой насосов. Погасание этих ламп свидетельствует о том, что порционер неисправен.

Для проверки работоспособности топливного насоса ВСУ и герметичности перекрывных кранов 768600МА магистралей питания основных двигателей, выключатель запуска ВСУ установить во включенное положение, выключатель "Запуск - холодная прокрутка " установить в положение "Запуск".

Загорание табло "Р топлива" на панели запуска ВСУ свидетельствует об исправности насоса. Если после 5 минут работы насоса сигнальные табло "Р топлива" основных двигателей на панели приборов контроля двигателей не погаснут, то перекрывные краны герметичны.

Рукоятки на щитке заправки в открытом или закрытом положении кранов заправки должны быть в одной плоскости; допускается их отклонение от плоскости ±2 мм.

Заправка самолета топливом осуществляется в соответствии с заданием на полет с помощью системы заправки под давлением.

Основным топливом для двигателей самолета и двигателя ВСУ является керосин марок Т-1, ТС-1, Т-7 (ТС-1 Г), Т-7П и смеси указанных марок

Во время заправки самолета топливом необходимо соблюдать меры по обеспечению техники безопасности. До начала работ убедиться, что самолет и топливозаправщик заземлены, установлены упорные колодки под передние и задние колеса главных стоек шасси, а на шп. 67 установлена страховочная штанга, сняты заглушки с заборников системы дренажа. На стоянке должны быть противопожарные средства. Курить и зажигать спички возле самолета запрещается. Запрещаются работы по обслуживанию радио - и прочего электроприборного оборудования и замене аккумуляторов. Топливо, слитое из отстойников топливозаправщика не должно иметь воды и механических примесей. В паспорте на топливо должна быть виза ответственного лица, разрешающего заправку.

Количество заправляемого топлива определяется в соответствии с заданием на полет и графиком его расхода и заправки.

При техническом обслуживании топливной системы самолета необходимо с особой тщательностью соблюдать указания по технике безопасности.

Работы по замене агрегатов, трубопроводов и другие работы, связанные с возможностью открытой течи топлива на землю или на конструкцию самолета, выполнять при обесточенной электросети самолета. Не допускается попадание топлива на электропровода и агрегаты электрооборудования самолета-Работы в топливных кессон-баках надо проводить в спецодежде, в маске или противогазе в присутствии связного для наблюдения.

Спецодежда должна быть из хлопчатобумажной ткани с застежками или пуговицами, не дающими искрения. Связной для наблюдения должен видеть работающего в баке и подаваемые им сигналы в течение всей работы, чтобы принять меры в случае сигнала о помощи. При работе внутри бака вынуть из карманов все ненужные инструменты и личные вещи не брать в бак металлические вещи, с острыми краями

Для предотвращения пожара при заправке самолета надо надежно заземлять самолет, заправочные шланги и топливозаправщики. Под колеса топливо-заправщика установить колодки. Необходимо помнить, что источником пожара могут быть разряды статического электричества и искры, появляющиеся в результате ударов металлических предметов друг о друга. Поэтому во избежание появления разрядов статического электричества запрещается пользоваться при промывочных, работах шерстяными и текстильными материалами.

Горловины кессон-баков и других емкостей с горючими материалами открывать руками, не ударяя по ним металлическими предметами, чтобы не допустить появления искры. Не допускается трение и волочение каких-либо металлических предметов (стремянок, ящиков и т.д.) вблизи самолета или под ним при открытых топливных баках. Не допускается хождение в ботинках, подбитых гвоздями и металлическими пластинам, в непосредственной близости от открытых баков.

3.2 Обслуживание топливной системы

Топливные системы предназначены для подачи необходимого количества топлива к двигателям. Они являются комплексом системы: питания двигателя топливом, дренажа топливных баков, автоматического управления расходом топлива и измерения его количества.

Подкачивающие насосы . ПНЛ проверяют по давлению (где имеются манометры), на слух или по загоранию (погасанию) ламп сигнализации, а также контролируют состояние их уплотнений. Наличие течи топлива из дренажных трубок подкачивающих насосов свидетельствует о нарушении сальниковых уплотнений. Проверяется исправная работа различных кранов (пожарных, перекрывных, перекрёстного питания), насосов подкачки и перекачки, сигнализаторов давления и других приборов контроля работы топливных систем.

Обслуживание топливных баков в эксплуатации сводится к периодическому их осмотру. Неисправностями мягких топливных баков являются: течь их вследствие некачественной склейки стенок баков; отрыв или отслоение от внутреннего слоя накладок (лент крепления) рёбер жидкости;

трещины внутреннего слоя в результате естественного старения резины, а также разрушения в местах заделки фланцев у заливных горловин, ПНЛ и межбаковых соединений.

Контроль внутренних поверхностен мягких баков осуществляется через монтажные люки. Баки вначале продувают в течение 20-30 мин. сжатым воздухом с целью уменьшения концентрации паров топлива. Работают внутри баков в специальном комбинезоне, мягкой обуви и противогазе с удлиненным шлангом, который выводят наружу топливного бака. При отрицательных температурах окружающего воздуха вследствие уменьшения эластичности резины монтаж и демонтаж мягких баков производят после их предварительного прогрева тёплым воздухом с температурой не выше 40-50 градусов.

Моменты затяжки болтов указываются в инструкциях. Их величина зависит от конструкции баков и диаметра болтов.

Проверка бака на герметичность производится путём заливки во всю группу баков топлива с выдержкой в течение 10 ч. Если течи нет, болты крепления крышки монтажного люка контрят и пломбируют, снимают ложную панель, устанавливают съёмную панель и опускают самолёт на колёса.

Дублирование ПНЛ выражается в установке двух параллельно работающих насосов, каждый из которых обладает производительностью, достаточной для самостоятельного питания двигателей топливом. При совместной работе каждый ПНЛ обеспечивает примерно половину расхода топлива двигателями, что снижает потребный кавитационный запас давления и повышает высотность.

Резервирование ПНЛ состоит в том, что при входе из строя одного насоса включается в работу другой. Последний для повышения живучести топливной системы может иметь другой тип привода.

3.3 Обслуживание трубопроводов топливной системы

Трубопроводы служат для соединения агрегатов данной магистрали и подачи жидкости. Они подвергаются деформации и вибрациям в результате влияния на них частей самолёта и двигателя.

Магистраль из жёстких трубопроводов должна иметь гибкие участки для снижения вибрационного воздействия.

Жёсткие трубопроводы изготовляют из дюралюминия, алюминиевомарганцевых сплавов, латуни и стали. Последняя применяется при наличии в магистрали высокого давления (подача топлива к форсункам). Для предохранения от коррозии трубопроводы из алюминиевомарганцевых сплавов анодируются, из стали - оцинковываются.

Гибкие трубопроводы (шланги) применяются для соединения жёстких трубопроводов или на участках, где затруднён монтаж.

При монтаже труб избегают возвышений, в которых мог бы скапливаться воздух, а также прогибов, препятствующих выработке и сливу жидкости из магистрали.

Малый радиус изгиба трубы увеличивает гидравлические сопротивления и концентрацию напряжений.

Выполняют изгиб трубы так, чтобы радиус изгиба (до оси трубы) был не менее трёх её наружных диаметров. В местах, где нельзя изогнуть трубопровод, ставят угольники.

Толщина стенки трубопровода не должна быть меньше 1мм для труб из алюминиевых сплавов и 0,5мм - из стали. Расчётные размеры диаметра и толщины стенки трубы уточняют по размерам, указанным ГОСТ 1947-56 на трубы из алюминия и алюминиевых сплавов и ГОСТ 8734-58 на трубы стальные бесшовные холоднотянутые и холоднокатаные.

Отбортовка . Обращается внимание на то, чтобы трубопроводы были закреплены к элементам конструкции планера специальными колодками или хомутами с прокладками из резины, кожи или фетра. Плохое крепление трубопроводов может явиться причиной их разрушения вследствие усталости материала или перетирания о детали планера, места прохода трубопроводов через перегородки должны быть отбортованы, А трубы на этом участке обшиты кожей (дерматином) или защищены от перетирания резиновыми прокладками.

Монтаж без натяга . При замене жёстких трубопроводов следят, чтобы длина и конфигурация их обеспечивала установку и присоединение трубопроводов без натяга. В свободном состоянии между торцами ниппельного соединения должен быть небольшой (0,5 - 1,0мм) зазор. Признаком правильного соединения трубопроводов является совпадение оси ниппеля с осью штуцера, при этом развальцованная часть трубопровода стыкуется с конусной поверхностью штуцера, а накидная гайка трубопровода навёртывается на штуцер от руки не менее чем на 2/3 длины резьбы.

Устранение течи . Запрещается устранять течь жидкости в резьбовом соединении большим затягиванием гаек. Если после потягивания гаек течь не прекращается, то выясняют причину неисправности и устраняют её. При низких температурах окружающего воздуха подтягивание соединений и резиновыми соединениями производят только после подогрева их тёплым воздухом. Трубопроводы не должны иметь резких изгибов и вмятин, могущих послужить причиной несоосности соединения.

Металлизация. Для хорошего электрического контакта соединяемых трубопроводов и предохранение от скопления в них зарядов статического электричества следят за надёжностью контакта металлизации каждого дюритового соединения. Для этого обращают внимание, чтобы на дюритовых трубках под хомутами проходила полоска алюминиевой фольги, концы которой должны быть загнуты под дюритовую трубку для соприкосновения с металлическими трубками, очищенными в этих местах лакокрасочного покрытия или анодной плёнки.

3.4 Испытание топливной системы самолета на герметичность

Общие испытания топливной системы производятся после заправки самолета на аэродроме для проверки герметичности.

После капитального ремонта производятся испытания трубопроводов топливной системы сжатым воздухом с помощью стендов, оборудованных манометрами и моновакуумметрами. Проверка производится по отдельным магистралям. Магистраль дренажа проверяется при отключенных баках под давлением 1140 мм рт. ст. в течение 10 мин. Падение давления в магистрали не должно превышать 3 мм рт. ст. Магистраль питания испытывается при отключенных баках под давлением воздуха 2 кгс/см 2 Если в течение 15 мин. падение давления не будет, производится испытание магистрали совместно с баками под избыточным давлением воздуха 50 мм рт. ст. измеряемого по моновакуумметру. Воздух во время этого испытания подается через дренажный трубопровод баков, при этом остальные дренажные, сливные и разгрузочные трубопроводы должны быть заглушены, а перекрывные краны закрыты.

Способ обмыливания. Для обнаружения мест с течью (негерметичностью) применяется обмыливание мест соединений, доступных осмотру. Мыльная пена приготовляется или из мыльного корня (ОСТ 4303) или из обычного нейтрального мыла с содержанием щелочи не более 0,05% с добавлением желатина как пенообразующего и глицерина для повышения вязкости.

3.5 Контроль жёсткости топливных баков

Характерными неисправностями жёстких баков являются: разрушение перегородок, коррозия внутренней поверхности днища, обечаек и каркаса бака, особенно около головок, заклепок и из-под уплотнительных прокладок арматуры. На клёпаных баках, не имеющих продольных перегородок, часто наблюдаются трещины в нижней части поперечных перегородок, а иногда и разрывы. Они появляются вследствие большой односторонней нагрузки, создаваемой топливом при наклонном положении баков.

Вышеуказанные неисправности приводят к нарушению жёсткости топливных баков, и, соответственно, отражаются на прочности крыла самолёта в целом.

Коррозия внутренних поверхностей нижних обечаек баков происходит под действием влаги, выделяющейся из топлива на дно. Обечайки клёпаных топливных баков всегда имеют волнистую форму. Между швами крепления перегородок образуется впадины, в которых скапливается вода. Эта вода не может быть слита через сливное отверстие бака. Особенно интенсивно распространяется коррозия в том случае, если баки долго хранятся незаправленными.

Проверка бака на герметичность . После осмотра бак проверяют на герметичность. Если бак штампованный и не имеет внутренних перегородок, то перед испытанием на него надо надеть специальное приспособление, предохраняющее бак от раздутия. Испытания производят под давлением 0,2кгс/см 2 .

Меры безопасности при осмотре баков . Осмотр внутренней конструкции бака производят до его пропарки с подсветом взрывобезопасной низковольтной электрической лампой или карманным фонарем с длинным хоботом; лампа фонаря должна быть защищена от повреждений. Взрывобезопасная лампа помещается в герметичном стеклянном колпачке с углекислотой. Если колпачок разобьётся, давление газа снизится и пневматическое выключающее устройство прекратит подачу тока.

3.6 Контроль мягких топливных баков

Неисправности баков. Основными неисправностями мягких баков являются трещины в местах переходов, а утолщениям стенок под арматуру и крышку бака. Эти трещины проявляются в результате неаккуратного снятия баков при низких температурах.

Проверка бака на герметичность производится путём заливки во всю группу баков топлива с выдержкой в течение 10 часов. Если течи нет, болты крепления крышки монтажного люка контрят и пломбируют.

Испытания снятых баков на герметичность производят в специальном контейнере путём заливки топлива под давлением 0,25кгс/см, или ремонтируемое место промазывают мыльной пеной и в баки создают избыточное давление 0,2кгс/см 2 , в течение 5-10 мин. В случае негерметичности, в мыльной пене будут видны выходящие из бака пузырьки воздуха.

3.7 Контроль топливных баков-отсеков крыла

Перед испытанием бака-отсека на герметичность заклёпочные швы бака промазывают меловой водой и высушивают. Проверку на герметичность производят наполнением бака-отсека топливом и выдержкой под давлением 0,1кгс/см" в течение одного часа, а без давления 3 часа. Места течи обнаруживаются по появлению пятен на меловой обмазке.

3.8 Испытание трубопроводов на прочность

Испытание на прочность производят 1-2% -ным раствором хромпика (ГОСТ 2652-48) в чистой воде под давлением, в 1,5 раз превышающим рабочее, в течение 3-5мин. Для трубопроводов из нержавеющей стали может применяться чистая вода без добавки хромпика. Герметичность проверяется обычно сжатым воздухом в аквариуме, помещённом в бронекамере. Сначала в течение 3 мин. внутрь трубопровода подаётся избыточное давление 2-Зкгс/см, затем оно поднимается до значения, близкого к рабочему, и выдерживается также около 3 мин. Применяемый воздух должен быть относительно сухим с точкой росы около - 40°С.

После испытания трубопроводы продувают воздухом и просушивают при температуре около +150 С.

Хромпик калиевый технический (бихромат калия технический) К2Сг207 - калиевая соль двухромовой кислоты-кристаллы оранжево-красного цвета. Выпускают (ГОСТ 2652-67) высшего сорта с содержанием основного вещества 99,6%, 1-го сорта-99,3% и 2-ого-99,0%. "

Отбраковка трубопроводов . Трубопроводы бракуют при наличии следующих дефектов: повреждений развальцовки; скручивания, надрывов, трещин, разницы в толщине стенок свыше 0,1мм и общего утонения стенок более чем на 0,3мм; западания развальцовки в ниппеле; овальности, составляющей более 20% внешнего диаметра; вмятин, рисок (более 0,2мм глубиной) и надиров, превышающих допустимые; повреждений ниппеля, трещин, забоин, деформаций увеличенного зазора между обоймой ниппеля и трубопроводом; повреждений накидной гайки, трещин, деформаций, забоин на резьбе.

На трубопроводах продольные риски более опасны, т.к. внутреннее давление стремится разорвать трубу вдоль образующей, поэтому допустимая глубина продольных рисок 0,1мм. На трубопроводах, не снятых с самолётов, разрешается оставлять без выправления вмятины глубиной 0,5мм.

3.9 Коррозионные поражения трубопроводов

Основными видами коррозионных повреждений трубопроводов являются: коррозионные поражения внутренней поверхности трубопроводов при наличии в рабочей жидкости (газе) коррозионноактивных компонентов и примесей.

Коррозионные поражения наружной поверхности трубопроводов сопровождаются образованием сквозных раковин или раковин различной глубины.

Как правило, очагами возникновения коррозионных раковин служат участки с повреждённым защитным покрытием и места скопления грязи и других коррозионных веществ. Загрязнённые участки служат зонами конденсации влаги, что создаёт благоприятные условия для возникновения химической или электрохимической коррозии материала трубопроводов.

Для предотвращения коррозионного поражения трубопроводов следят за сохранностью их защитных покрытий, а также за тем, чтобы на трубопроводы, особенно в местах их крепления, и под защитную обшивку трубопроводов не попадала влага. Для этого плотно закрывают все крышки люков, тщательно укрывают самолет чехлами, своевременно прочищают дренажные отверстия и т.д.

Защитные покрытия трубопроводов оберегают от повреждения, от попадания на них кислот и щелочей, а поражённые участки покрытия своевременно восстанавливают.

Дефекты трубопроводов, вызванные неправильным обслуживанием:

повреждение лакокрасочного покрытия трубопроводов в процессе их демонтажа и монтажа, а также при монтаже и демонтаже агрегатов и деталей, размещённых вблизи трубопроводов, вследствие неосторожного обращения с инструментом;

резкие перегибы (надламывание) трубопроводов, допущенные в процессе их де монтажа и монтажа; аналогичные перегибы трубопроводов образуются также из-за наличия в них монтажных напряжений;

нанесение на трубопроводы вмятин, царапин и других повреждений вследствие небрежного обращения с инструментом в процессе выполнения монтажно-демонтажных работ;

смятие трубопроводов вследствие неправильного подбора отбортовочных колодок (диаметр выемок колодок меньше диаметра трубопровода);

скручивание трубопроводов в процессе затягивания ниппельного соединения и др.

Большинство из перечисленных дефектов являются следствием небрежного обращения обслуживающего персонала с инструментом в процессе выполнения монтажно-демонтажных работ. Сопутствующим фактором служит эксплуатационное несовершенство технологических систем, затруднённый подход к агрегатам или к соединениям трубопроводов.

Фиксация соединения. Ряд дефектов является следствием неправильного монтажа и демонтажа трубопроводов. В частности, частым дефектом является скручивание трубопроводов, которое возникает в том случае, когда затягивание накидной гайки ниппельного соединения осуществляется без фиксации штуцера агрегата или переходника другим ключом.

Как правило, штуцеры или переходники, поставленные и закреплённые в агрегате в предшествующие монтажу трубопроводов сроки, в процессе работы получают некоторое ослабление затяжки и поэтому имеют возможность проворачиваться вместе с накидной гайкой, ниппелем и трубкой при затягивании ниппельного соединения. Необходимо поэтому во всех случаях при затягивании ниппельного соединения фиксировать штуцер вторым ключом.

Деформация деталей соединения. При неточной подгонке конической части трубопровода к конусу сочленяемого штуцера (перекос) возникает негерметичность соединения, которая не устраняется даже при попытке дополнительного завёртывания накидной гайки. В то же время чрезмерное затягивание накидной гайки обычно ведёт к деформации деталей соединения.

VIII. Расчёт магистрали слива топлива в полёте самотёком

Слив топлива в полёте используют в случае, когда необходимо быстро уменьшить посадочный вес самолёта, либо при необходимости быстрого изменения центровки. Для Ту-154, максимальный посадочный вес которого 78000кг, а взлётный колеблется в районе 100-102т, это означает необходимость слива до 24000кг топлива. Однако слить самотёком можно не всё топливо, а только ту его часть, которая находится в кессон-баках №3 правом и левом (всего 10850кг). Слив топлива осуществляется через два сливных крана по трубопроводам диаметром D=0,036m.

Определяем время слива топлива из баков:

Сорт топлива ТС-1.

а) рассчитываю объём топлива в одном баке №3

V = = 6.497 м 3

б) составлю уравнение определения времени слива элементарного объёма топлива

dt=

где dV - элементарный объём топлива, Q - расход топлива через магистраль слива; в) учитывая, что элементарный объём dV = F Ч dH (площадь зеркала жидкости в баке на толщину слоя), преобразую выражение для определения времени слива

dt= =

г) считая, что средняя высота топливного кессона №3 Н?0,5м, определяем усреднённую площадь зеркала топлива в баке

д) интегрируя выражение (3) по высоте бака, определяю время слива топлива из бака через сливной трубопровод (задаваясь при этом такими величинами, как площадь сливного насадка f = 0010174м2 и коэффициент скорости истечения из насадка ц=0,82)

t =

и, учитывая, что топливо сливается самотёком (и при отсутствии наддува бака), окончательно определяю время слива топлива из баков №3:

Размещено на Allbest.ru

Подобные документы

    Проектирование прибора непрерывного контроля за изменением центровки самолета по мере выработки топлива в баках. Особенности компоновки военно-транспортного самолета Ил-76, влияние расхода топлива на его центровку. Выбор прибора, определяющего центр масс.

    дипломная работа , добавлен 02.06.2015

    Назначение и условия работы форсунки Д50 топливной системы тепловоза. Основные ее неисправности, причины их возникновения и способы предупреждения; осмотр и контроль технического состояния. Технология ремонта деталей и необходимое для этого оборудование.

    курсовая работа , добавлен 14.01.2011

    Техническое описание самолета. Система управления самолетом. Противопожарная и топливная система. Система кондиционирования воздуха. Обоснование проектных параметров. Аэродинамическая компоновка самолета. Расчет геометрических характеристики крыла.

    курсовая работа , добавлен 26.05.2012

    Показатели технического состояния топливной аппаратуры. Влияние качества очистки топлива на работу техники. Факторы, влияющие на производительность насосных элементов и неравномерность подачи топлива. Главные особенности проверки и регулировки форсунок.

    реферат , добавлен 16.12.2013

    Геометрические и аэродинамические характеристики самолета. Летные характеристики самолета на различных этапах полета. Особенности устойчивости и управляемости самолета. Прочность самолета. Особенности полета в неспокойном воздухе и в условиях обледенения.

    книга , добавлен 25.02.2010

    Классификация и задачи предприятий автомобильного транспорта. Особенности технического обслуживания и ремонта топливной аппаратуры. Техническая характеристика автомобиля. Ремонт деталей и узлов топливной аппаратуры. Сборка и регулировка агрегатов.

    курсовая работа , добавлен 28.06.2004

    Конструктивные и аэродинамические особенности самолета. Аэродинамические силы профиля крыла самолета Ту-154. Влияние полетной массы на летные характеристики. Порядок выполнения взлета и снижения самолета. Определение моментов от газодинамических рулей.

    курсовая работа , добавлен 01.12.2013

    Расчёт и построение поляр дозвукового пассажирского самолета. Определение минимального и макимального коэффициентов лобового сопротивления крыла и фюзеляжа. Сводка вредных сопротивлений самолета. Построение поляр и кривой коэффициента подъемной силы.

    курсовая работа , добавлен 01.03.2015

    Требования к военно-транспортному стратегическому самолету с грузоподъемностью 120 т и дальностью полета 6500 км. Выбор схемы самолета и сочетания основных параметров самолета и его систем. Расчет геометрических, весовых и энергетических характеристик.

    курсовая работа , добавлен 28.06.2011

    Аэродинамическая компоновка самолета. Фюзеляж, крыло кессонного типа, оперение, кабина экипажа, система управления, шасси, гидравлическая система, силовая установка, топливная система, кислородное оборудование, система кондиционирования воздуха.