16.10.2019

Космическая скорость в лаборатории. Продолжение. Американский аппарат с ионным двигателем установил рекорд скорости среди космических кораблей


Наш читатель Никита Агеев спрашивает: в чем основная проблема межзвездных перелетов? Ответ, как и , потребует большой статьи, хотя на вопрос можно ответить и единственным символом: c .

Скорость света в вакууме, c, равна примерно тремстам тысячам километров в секунду, и превысить ее невозможно. Следовательно, нельзя и добраться до звезд быстрее, чем за несколько лет (свет идет 4,243 года до Проксимы Центавра, так что космический корабль не сможет прибыть еще быстрее). Если добавить время на разгон и торможение с более-менее приемлемым для человека ускорением, то получится около десяти лет до ближайшей звезды.

В каких условиях лететь?

И этот срок уже существенное препятствие сам по себе, даже если отвлечься от вопроса «как разогнаться до скорости, близкой к скорости света». Сейчас не существует космических кораблей, которые позволяли бы экипажу автономно жить в космосе столько времени — космонавтам постоянно привозят свежие припасы с Земли. Обычно разговор о проблемах межзвездных перелетов начинают с более фундаментальных вопросов, но мы начнем с сугубо прикладных проблем.

Даже спустя полвека после полета Гагарина инженеры не смогли создать для космических кораблей стиральную машину и достаточно практичный душ, а рассчитанные на условия невесомости туалеты ломаются на МКС с завидной регулярностью . Перелет хотя бы к Марсу (22 световые минуты вместо 4 световых лет) уже ставит перед конструкторами сантехники нетривиальную задачу: так что для путешествия к звездам потребуется как минимум изобрести космический унитаз с двадцатилетней гарантией и такую же стиральную машину.

Воду для стирки, мытья и питья тоже придется либо брать с собой, либо использовать повторно. Равно как и воздух, да и еду тоже необходимо либо запасать, либо выращивать на борту. Эксперименты по созданию замкнутой экосистемы на Земле уже проводились, однако их условия все же сильно отличались от космических хотя бы наличием гравитации. Человечество умеет превращать содержимое ночного горшка в чистую питьевую воду, но в данном случае требуется суметь сделать это в невесомости, с абсолютной надежностью и без грузовика расходных материалов: брать к звездам грузовик картриджей для фильтров слишком накладно.

Стирка носков и защита от кишечных инфекций могут показаться слишком банальными, «нефизическими» ограничениями на межзвездные полеты - однако любой опытный путешественник подтвердит, что «мелочи» вроде неудобной обуви или расстройства желудка от незнакомой пищи в автономной экспедиции могут обернуться угрозой для жизни.

Решение даже элементарных бытовых проблем требует столь же серьезной технологической базы, как и разработка принципиально новых космических двигателей. Если на Земле изношенную прокладку в бачке унитаза можно купить в ближайшем магазине за два рубля, то уже на марсианском корабле нужно предусмотреть либо запас всех подобных деталей, либо трехмерный принтер для производства запчастей из универсального пластикового сырья.

В ВМС США в 2013 году всерьез занялись трехмерной печатью после того, как оценили затраты времени и средств на ремонт боевой техники традиционными методами в полевых условиях. Военные рассудили, что напечатать какую-нибудь редкую прокладку для снятого с производства десять лет назад узла вертолета проще, чем заказать деталь со склада на другом материке.

Один из ближайших соратников Королева, Борис Черток, писал в своих мемуарах «Ракеты и люди» о том, что в определенный момент советская космическая программа столкнулась с нехваткой штепсельных контактов. Надежные соединители для многожильных кабелей пришлось разрабатывать отдельно.

Кроме запчастей для техники, еды, воды и воздуха космонавтам потребуется энергия. Энергия будет нужна двигателю и бортовому оборудованию, так что отдельно придется решить проблему с мощным и надежным ее источником. Солнечные батареи не годятся хотя бы по причине удаленности от светил в полете, радиоизотопные генераторы (они питают «Вояджеры» и «Новые горизонты») не дают требуемой для большого пилотируемого корабля мощности, а полноценные ядерные реакторы для космоса до сих пор делать не научились.

Советская программа по созданию спутников с ядерной энергоустановкой была омрачена международным скандалом после падения аппарата «Космос-954» в Канаде, а также рядом отказов с менее драматичными последствиями; аналогичные работы в США свернули еще раньше. Сейчас созданием космической ядерной энергоустановки намерены заняться в Росатоме и Роскосмосе, но это все-таки установки для ближних перелетов, а не многолетнего пути к другой звездной системе.

Возможно, вместо ядерного реактора в будущих межзвездных кораблях найдут применение токамаки. О том, насколько сложно хотя бы правильно определить параметры термоядерной плазмы, в МФТИ этим летом . Кстати, проект ITER на Земле успешно продвигается: даже те, кто поступил на первый курс, сегодня имеют все шансы приобщиться к работе над первым экспериментальным термоядерным реактором с положительным энергетическим балансом.

На чем лететь?

Для разгона и торможения межзвездного корабля обычные ракетные двигатели не годятся. Знакомые с курсом механики, который читают в МФТИ в первом семестре, могут самостоятельно рассчитать то, сколько топлива потребуется ракете для набора хотя бы ста тысяч километров в секунду. Для тех, кто еще не знаком с уравнением Циолковского, сразу озвучим результат - масса топливных баков получается существенно выше массы Солнечной системы.

Уменьшить запас топлива можно за счет повышения скорости, с которой двигатель выбрасывает рабочее тело, газ, плазму или что-то еще, вплоть до пучка элементарных частиц. В настоящее время для перелетов автоматических межпланетных станций в пределах Солнечной системы или для коррекции орбиты геостационарных спутников активно используют плазменные и ионные двигатели, но у них есть ряд других недостатков. В частности, все такие двигатели дают слишком малую тягу, ими пока нельзя придать кораблю ускорение в несколько метров на секунду в квадрате.

Проректор МФТИ Олег Горшков - один из признанных экспертов в области плазменных двигателей. Двигатели серии СПД - производят в ОКБ «Факел», это серийные изделия для коррекции орбиты спутников связи.

В 1950-е годы разрабатывался проект двигателя, который бы использовал импульс ядерного взрыва (проект Orion), но и он далек от того, чтобы стать готовым решением для межзвездных полетов. Еще менее проработан проект двигателя, который использует магнитогидродинамический эффект, то есть разгоняется за счет взаимодействия с межзвездной плазмой. Теоретически, космический корабль мог бы «засасывать» плазму внутрь и выбрасывать ее назад с созданием реактивной тяги, но тут возникает еще одна проблема.

Как выжить?

Межзвездная плазма - это прежде всего протоны и ядра гелия, если рассматривать тяжелые частицы. При движении со скоростями порядка сотни тысяч километров в секунду все эти частицы приобретают энергию в мегаэлектронвольты или даже десятки мегаэлектронвольт - столько же, сколько имеют продукты ядерных реакций. Плотность межзвездной среды составляет порядка ста тысяч ионов на кубический метр, а это значит, что за секунду квадратный метр обшивки корабля получит порядка 10 13 протонов с энергиями в десятки МэВ.

Один электронвольт, эВ , это та энергия, которую приобретает электрон при пролете от одного электрода до другого с разностью потенциалов в один вольт. Такую энергию имеют кванты света, а кванты ультрафиолета с большей энергией уже способны повредить молекулы ДНК. Излучение или частицы с энергиями в мегаэлектронвольты сопровождает ядерные реакции и, кроме того, само способно их вызывать.

Подобное облучение соответствует поглощенной энергии (в предположении, что вся энергия поглощается обшивкой) в десятки джоулей. Причем эта энергия придет не просто в виде тепла, а может частично уйти на инициацию в материале корабля ядерных реакций с образованием короткоживущих изотопов: проще говоря, обшивка станет радиоактивной.

Часть налетающих протонов и ядер гелия можно отклонять в сторону магнитным полем, от наведенной радиации и вторичного излучения можно защищаться сложной оболочкой из многих слоев, однако эти проблемы тоже пока не имеют решения. Кроме того, принципиальные сложности вида «какой материал в наименьшей степени будет разрушаться при облучении» на стадии обслуживания корабля в полете перейдут в частные проблемы - «как открутить четыре болта на 25 в отсеке с фоном в пятьдесят миллизиверт в час».

Напомним, что при последнем ремонте телескопа «Хаббл» у астронавтов поначалу не получилось открутить четыре болта, которые крепили одну из фотокамер. Посовещавшись с Землей, они заменили ключ с ограничением крутящего момента на обычный и приложили грубую физическую силу. Болты стронулись с места, камеру успешно заменили. Если бы прикипевший болт при этом сорвали, вторая экспедиция обошлась бы в полмиллиарда долларов США. Или вовсе бы не состоялась.

Нет ли обходных путей?

В научной фантастике (часто более фантастической, чем научной) межзвездные перелеты совершаются через «подпространственные туннели». Формально, уравнения Эйнштейна, описывающие геометрию пространства-времени в зависимости от распределенных в этом пространстве-времени массы и энергии, действительно допускают нечто подобное - вот только предполагаемые затраты энергии удручают еще больше, чем оценки количества ракетного топлива для полета к Проксиме Центавра. Мало того, что энергии нужно очень много, так еще и плотность энергии должна быть отрицательной.

Вопрос о том, нельзя ли создать стабильную, большую и энергетически возможную «кротовую нору» - привязан к фундаментальным вопросам об устройстве Вселенной в целом. Одной из нерешенных физических проблем является отсутствие гравитации в так называемой Стандартной модели - теории, описывающей поведение элементарных частиц и три из четырех фундаментальных физических взаимодействий. Абсолютное большинство физиков довольно скептически относится к тому, что в квантовой теории гравитации найдется место для межзвездных «прыжков через гиперпространство», но, строго говоря, попробовать поискать обходной путь для полетов к звездам никто не запрещает.

Однако, в космосе все по-другому, некоторые явления просто необъяснимы и никаким законам не поддаются в принципе. Например, запущенный несколько лет назад спутник, или другие объекты будут вращаться по своей орбите и никогда не упадут. Почему так происходит, с какой скоростью летит ракета в космос ? Физики предполагают, что есть центробежная сила, которая нейтрализует действие гравитации.

Проделав небольшой эксперимент, мы можем сами, не выходя из дома, это понять и ощутить. Для этого нужно взять нитку и привязать к одному концу небольшой груз, далее нить раскрутить по окружности. Мы почувствуем, что чем выше скорость, тем траектория у груза будет четче, а нить больше натягивается, если ослабить силу, скорость вращения объекта уменьшится и риск того, что груз упадет, возрастает в несколько раз. Вот с такого небольшого опыта мы и начнем развивать нашу тему - скорость в космосе .

Становится понятно, что высокая скорость позволяет любому объекту преодолевать силу притяжения. Что касается космических объектов, любых у них у каждого своя скорость, она разная. Определяется четыре основных вида такой скорости и самая маленькая из них первая. Именно на такой скорости летит корабль на орбиту Земля.

Для того чтобы вылететь за ее пределы нужна вторая скорость в космосе . На третьей скорости полностью преодолевается тяготение и можно вылететь за пределы солнечной системы. Четвертая скорость ракеты в космосе позволит покинуть саму галактику, это примерно 550 км/с. Нам всегда было интересна скорость ракеты в космосе км ч, при выходе на орбиту она равняется 8 км/с, за ее пределы - 11 км/с, то есть, развивая свои возможности до 33 000 км/ч. Ракета наращивает постепенно скорость, полноценный разгон начинается с высоты 35 км. Скорость выхода в космос составляет 40000 км/ч.

Скорость в космосе: рекорд

Максимальная скорость в космосе - рекорд, установленный 46 лет назад, до сих пор держится, его совершили астронавты, принимавшие участие в миссии «Аполлон 10». Облетев Луну, обратно они возвращались, когда скорость космического корабля в космосе составляла 39 897 км/час. В ближайшем будущем планируется отправить в пространство невесомости корабль «Орион», который будет выводить космонавтов на низкую околоземную орбиту. Возможно, тогда удастся побить 46-летний рекорд. Скорость света в космосе - 1 млрд км/час. Интересно, сможем ли мы преодолеть такое расстояние со своей максимально доступной скоростью в 40 000 км/час. Вот какая скорость в космосе развивается у света, но мы это не ощущаем здесь.

Теоретически человек может перемещаться со скоростью несколько меньшей скорости света. Однако это повлечет за собой колоссальный вред, особенно для неподготовленного организма. Ведь для начала такую скорость нужно развить, приложить усилие, чтобы безопасно ее снизить. Потому как быстрое ускорение и замедление может стать смертельным для человека.

В древние времена считалось, что Земля неподвижна, никого не интересовал вопрос о скорости ее вращения по орбите, потому как таких понятий в принципе не существовало. Но и сейчас дать однозначный ответ на вопрос сложно, потому что величина неодинаковая в разных географических точках. Ближе к экватору скорость будет выше, в районе юга Европы она равняется 1200 км/час, вот такая средняя скорость Земли в космосе .

Сегодня полеты в космос не относятся к фантастическим историям, но, к сожалению, современный космический корабль еще очень сильно отличается от тех, которые показывают в фильмах.

Данная статья предназначена для лиц старше 18 лет

А вам уже исполнилось 18?

Космические корабли России и

Космические корабли будущего

Космический корабль: какой он

На

Космический корабль, как он работает?

Масса современных космолетов напрямую связана с тем, как высоко они летают. Главная задача пилотируемых космолетов ‒ безопасность.

Спускаемый аппарат СОЮЗ стал первой космической серией Советского Союза. В этот период между СССР и США шла гонка вооружения. Если сравнивать размеры и подход к вопросу строительства, то руководство СССР делало все для скорейшего покорения космоса. Понятно, почему сегодня не строят аналогичные аппараты. Вряд ли кто-то возьмется строить по схеме, в которой отсутствует личное пространство космонавтов. Современные космолеты оборудованы и комнатами для отдыха экипажа, и спускаемой капсулой, главной задачей которой является в тот момент, как осуществляется посадка, сделать ее максимально мягкой.

Первый космический корабль: история создания

Отцом космонавтики справедливо считается Циолковский. На основе его учений Годдрадпостроил ракетный двигатель.

Ученые, которые трудились в Советском Союзе, стали первыми, кто сконструировал и смог запустить искусственный спутник. Также они стали первыми, кто изобрел возможность запуска в космос живого существа. Штаты осознают, что Союз стал первым, кто создал летательный аппарат, способный выйти в космос с человеком. Отцом ракетостроения справедливо называют Королева, который вошел в историю как тот, кто придумал, как преодолеть земное притяжение, и смог создать первый пилотируемый космический корабль. Сегодня даже малыши знают, в каком году запустили первый корабль с человеком на борту, но мало кто помнит о вкладе Королева в этот процесс.

Экипаж и его безопасность во время полета

Главная задача сегодня — безопасность экипажа, ведь он проводит много времени на высоте полета. При строении летательного устройства важно, из какого металла его делают. В ракетостроении используются следующие типы металлов:

  1. Алюминий ‒ позволяет значительно увеличить размеры космолета, поскольку отличается легкостью.
  2. Железо ‒ замечательно справляется со всеми нагрузками на корпус корабля.
  3. Медь ‒ обладает высокойтеплопроводимостью.
  4. Серебро ‒ надежно связывает медь и сталь.
  5. Из титановых сплавов изготавливают баки для жидкого кислорода и водорода.

Современная система жизнеобеспечения позволяет создать привычную для человека атмосферу. Многие мальчишки видят, как они летают в космосе, забывая об очень большой перегрузке космонавта при старте.

Самый большой космический корабль в мире

Среди боевых кораблей большой популярностью пользуются истребители и перехватчики. Современный грузовой корабль имеет следующую классификацию:

  1. Зонд — это исследовательский корабль.
  2. Капсула — грузовой отсек для доставки или спасательных операций экипажа.
  3. Модуль — на орбиту выводится беспилотным носителем. Современные модули делятся на 3 категории.
  4. Ракета. Прототипом для создания послужили военные разработки.
  5. Челнок — многоразовые конструкции для доставки необходимого груза.
  6. Станции — самые большие космические корабли. Сегодня в открытом космосе находятся не только русские, но и французские, китайские и другие.

Буран — космический корабль, вошедший в историю

Первым космическим кораблем, вышедшим в космос, стал Восток. После федерация ракетостроения СССР начала выпуск кораблей Союз. Намного позже стали выпускать Клиперы и Русь. На все эти пилотируемые проекты федерация возлагает огромные надежды.

В 1960 году корабль Восток своим полетом доказал возможность выхода человека в космос. 12 апреля 1961 года Восток 1 совершил виток вокруг Земли. А вот вопрос, кто летал на корабле Восток 1, почему-то вызывает затруднение. Может быть дело в том, что мы просто не знаем, что свой первый полет Гагарин совершил именно на этом корабле? В том же году впервые на орбиту вышел корабль Восток 2, в котором находилось сразу два космонавта, один из которых вышел за пределы корабля в космосе. Это был прогресс. А уже в 1965 году Восход 2 смог выйти в открытый космос. История корабля восход 2 была экранизирована.

Восток 3 установил новый мировой рекорд по времени пребывания корабля в космосе. Последним кораблем серии стал Восток 6.

Американский шатл серии Аполлон открыл новые горизонты. Ведь в 1968 Аполлон 11 смог первым приземлиться на Луну. Сегодня существует несколько проектов по разработке космопланов будущего, такие как Гермес и Колумб.

Салют — серия межорбитальных космических станций Советского Союза. Салют 7 известна тем, что потерпела крушение.

Следующим космолетом, история которого вызывает интерес, стал Буран, кстати, интересно, где он сейчас находится. В 1988 году он совершил свой первый и последний полет. После многоразовых разборов и перевозок путь передвижения Бурана потерялся. Известное последнее местонахождение космического корабля Буранв Сочи, работы по нему законсервированы. Однако буря вокруг этого проекта до сих пор не утихла, и дальнейшая судьба заброшенного проекта Буран вызывает интерес у многих. А в Москве внутри макета космолета Буран на ВДНХ создан интерактивный музейный комплекс.

Джемини — серия кораблей американских конструкторов. Заменили проект Меркурий и смогли сделать спираль на орбите.

Американские корабли с названием Спейсшатл стали своеобразными челноками, совершая более 100 полетов между объектами. Вторым Спейсшатлом стал Челенджер.

Не может не заинтересовать история планеты Нибиру, которая признана кораблем-надзирателем. Нибиру уже дважды приближалась на опасное расстояние к Земле, но оба раза столкновения удалось избежать.

Драгон — космолет, который в 2018 году должен был совершить полет на планету Марс. В 2014 году федерация, ссылаясь на технические характеристики и состояние корабля Дракон, отложила запуск. Не так давно произошло еще одно событие: компания Боинг сделала заявление, что также начала разработки по созданию марсохода.

Первым в истории многоразовым кораблем универсалом должен был стать аппарат под названием Заря. Заря — это первая разработка транспортного корабля многоразового использования, на который федерация полагала очень большие надежды.

Прорывом считается возможность использования ядерных установок в космосе. Для этих целей начались работы по транспортно-энергетическому модулю. Параллельно ведутся разработки по проекту Прометей — компактному ядерному реактору для ракет и космолетов.

Китайский корабль Шэньчжоу 11 стартовал в 2016 году с двумя астронавтами, которые должны были провести в космосе 33 дня.

Скорость космического корабля (км/ч)

Минимальной скоростью, с которой можно выйти на орбиту вокруг Земли считается 8 км/с. Сегодня нет надобности разрабатывать самый быстрый в мире корабль, поскольку мы находимся в самом начале космического пространства. Ведь максимальная высота, которой мы смогли достичь в космосе, всего 500 км. Рекорд самого быстрого передвижения в космосе был установлен в 1969 году, и пока побить его не удалось. На космическом корабле Аполлон 10 трое космонавтов, побывав на орбите Луны, возвращались домой. Капсула, которая должна была доставить их из полета, сумела развить скорость 39,897 км/ч. Для сравнения давайте рассмотрим, с какой скоростью летит космическая станция. Максимально она может развиться до 27 600 км/ч.

Заброшенные космические корабли

Сегодня для космолетов, пришедших в негодность, создали кладбище втихом океане, где могут найти свой последний приют десятки заброшенных космических кораблей. Катастрофы космических кораблей

В космосе случаются катастрофы, часто забирающие жизни. Наиболее частыми, как ни странно, являются аварии, которые происходят из-за столкновения с космическим мусором. При столкновении орбита движения объекта смещается и становится причиной крушения и повреждений, часто становящихся причиной взрыва. Самой известной катастрофой является гибель пилотируемого американского корабля Челленджер.

Ядерный двигатель для космических кораблей 2017

Сегодня ученые работают над проектами по созданию атомного электродвигателя. Эти разработки подразумевают покорение космоса с помощью фотонных двигателей. Российские ученные планируют уже в скором будущем приступить к испытаниям термоядерного двигателя.

Космические корабли России и США

Стремительный интерес к космосу возник в годы Холодной войны между СССР и США. Американские ученые признали в российских коллегах достойных соперников. Советское ракетостроение продолжало развиваться, и после распада государства его приемником стала Россия. Конечно, космолеты, накоторых летают российские космонавты, значительно отличаются от первых кораблей. Более того, сегодня, благодаря успешным разработкам американских ученых, космические корабли стали многоразовыми.

Космические корабли будущего

Сегодня все больший интерес вызывают проекты, в результате которых человечество сможет совершать более длительные путешествия. Современные разработки уже готовят корабли к межзвездным экспедициям.

Место, откуда запускают космические корабли

Увидеть своими глазами запуск космического корабля на старте — мечта многих. Возможно, это связано с тем, что первый запуск не всегда приводит к желаемому результату. Но благодаря Интернету мы можем увидеть, как взлетает корабль. Учитывая тот факт, что наблюдающим за запуском пилотируемого корабля следует находиться достаточно далеко, мы можем представить, что находимся на взлетной площадке.

Космический корабль: какой он внутри?

Сегодня, благодаря музейным экспонатам, мы воочию можем увидеть устройство таких кораблей, как Союз. Конечно, изнутри первые корабли были очень простыми. Интерьер более современных вариантов выдержан в спокойных тонах. Устройство любого космического корабля обязательно пугает нас множеством рычажков и кнопочек. И это добавляет гордости за тех, кто смог запомнить, как устроен корабль, и, тем более, научился управлять им.

На каких космических кораблях летают сейчас?

Новые космические корабли своим внешним видом подтверждают, что фантастика стала действительностью. Сегодня никого уже не удивишь тем, что стыковка космических кораблей — реальность. И мало кто помнит о том, что первая в мире такая стыковка произошла еще в далеком 1967 году...

С какой скоростью летит ракета в космос.?

  1. абстрактная наука-пораждает иллюзии у зрителя
  2. Если на околоземную орбиту то 8 км в сек.
    Если за пределы то 11 км в сек. Примерно так.
  3. 33000 км/ч
  4. Точный - со скоростью 7,9 км/секунд выходя она (ракета) будет врашатся вокруг земли, если со скоростью 11 км/ секунд то это уже парабола, т. е. она чуть дальше поедить, есть вероятность что может и не верннутся
  5. 3-5км/с, учитывайте скорость вращения земли вокруг солнца
  6. Рекорд скорости космического аппарата (240 тыс. км/ч) был установлен американо-германским солнечным зондом Гелиос-Б, запущенным 15 января 1976 г.

    Самая высокая скорость, с которой когда либо передвигался человек (39897 км/ч), была развита основным модулем Аполлона 10 на высоте 121,9 км от поверхности Земли при возвращении экспедиции 26 мая 1969 г. На борту космического корабля были командир экипажа полковник ВВС США (ныне бригадный генерал) Томас Паттен Стаффорд (род. в Уэтерфорде, штат Оклахома, США, 17 сентября 1930 г.), капитан 3-го ранга ВМФ США Юджин Эндрю Сернан (род. в Чикаго, штат Иллинойс, США, 14 марта 1934 г.) и капитан 3-го ранга ВМС США (ныне капитан 1-го ранга в отставке) Джон Уотте Янг (род. в Сан Франциско, штат Калифорния, США, 24 сентября 1930 г.).

    Из женщин наивысшей скорости (28115 км/ч) достигла младший лейтенант ВВС СССР (ныне подполковник-инженер, летчик-космонавт СССР) Валентина Владимировна Терешкова (род. 6 марта 1937 г.) на советском космическом корабле Восток 6 16 июня 1963 г.

  7. 8 км/сек, чтобы преодолеть притяжение Земли
  8. в чрной дыре можно разагнатся до субсветовой скоросте
  9. Чушь, бездумно усвоеная со школы.
    8 или точнее 7,9 км/с - это первая космическая скорость - скорость горизонтального движения тела непосредственно над поверхностью Земли, при которой тело не падает, а остается спутником Земли с круговой орбитой на этой самой высоте, т. е. над поверхностью Земли (и это без учета сопротивления воздуха) . Таким образом ПКС - это абстрактная величина, связывающая между собой параметры космического тела: радиус и ускорение свободного падения на поверхности тела, и не имеющая никакого практического значения. На высоте 1000 км скорость кругового орбитального движения будет уже другой.

    Ракета наращивает скорость постепенно. Например Ракета-носитель Союз имеет через 117.6 с после старта на высоте 47.0 км имеет скорость 1.8 км/с, на 286.4 с полета на высоте 171.4 км, 3.9 км/с. Примерно через 8.8 мин. после старта на высоте 198.8 км скорость КА составляет 7.8 км/с.
    А вывод орбитального корабля на околоземную орбиту из верхней точки полета ракеты-носителя осуществляется уже активным маневрированием самого ОК. И скорость его зависит от параметров орбиты.

  10. Вс это бред. Важную роль играет не скорость, а сила тяги ракеты. При высоте в 35км начинается полноценный разгон до ПКС (первая космическая скорость) до 450км высоты, постепенно придавая курс направлению вращения Земли. Таким образом сохраняется высота и сила тяги во время преодоления плотных слов атмосферы. В двух словах - не нужно расгонять одновременно горизонтальную и вертикальную скорости, значительное отклонение в горизонтальном направлении происходит на 70% нужной высоты.
  11. на какой
    высоте летит космический корабль.

Одним из величайших достояний человечества является международная космическая станция, или МКС. Для ее создания и работы на орбите объединилось несколько государств: Россия, некоторые страны Европы, Канада, Япония и США. Этот аппарат свидетельствует о том, что можно добиться многого, если постоянно сотрудничать странам. Об этой станции знают все люди планеты и многие задаются вопросами о том, на какой высоте летает МКС и по какой орбите. Сколько космонавтов там побывало? А правда ли, что туда пускают туристов? И это далеко не все, что интересно человечеству.

Строение станции

МКС состоит из четырнадцати модулей, в которых располагаются лаборатории, склады, комнаты отдыха, спальни, хозпомещения. На станции даже имеется спортзал с тренажерами. Весь этот комплекс работает на солнечных батареях. Они огромны, величиной со стадион.

Факты об МКС

За время своей работы станция вызывала немало восхищений. Этот аппарат является величайшим достижением человеческих умов. По своей конструкции, назначению и особенностям его можно назвать совершенством. Конечно, может быть, лет через 100 на Земле начнут строить космические корабли другого плана, но пока что, на сегодняшний день, этот аппарат - достояние человечества. Об этом свидетельствуют следующие факты об МКС:

  1. За время своего ее существования на МКС космонавтов побывало около двухсот. Также здесь были туристы, которые просто прилетели посмотреть на Вселенную с орбитальной высоты.
  2. Станцию видно с Земли невооруженным глазом. Эта конструкция является самой большой среди искусственных спутников, и ее легко можно увидеть с поверхности планеты без какого-то увеличивающего устройства. Есть карты, на которых можно посмотреть, в какое время и когда аппарат пролетает над городами. По ним легко отыскать сведения о своем населенном пункте: увидеть расписание полета над регионом.
  3. Для сборки станции и поддержания ее в рабочем состоянии космонавты вышли более 150 раз в открытый космос, проведя там около тысячи часов.
  4. Управляется аппарат шестью астронавтами. Система жизнеобеспечения обеспечивает непрерывное присутствие на станции людей с момента ее первого запуска.
  5. Международная космическая станция - это уникальное место, где проводятся самые разные лабораторные эксперименты. Ученые делают уникальные открытия в области медицины, биологии, химии и физики, физиологии и метеонаблюдений, а также в других областях науки.
  6. На аппарате используются гигантские солнечные батареи, размер которых достигает площади территории футбольного поля с его конечными зонами. Их вес - почти триста тысяч килограмм.
  7. Батареи способны полностью обеспечивать работу станции. За их работой тщательно следят.
  8. На станции есть мини-дом, оснащенный двумя ванными и спортзалом.
  9. За полетом следят с Земли. Для контроля разработаны программы, состоящие из миллионов строк кода.

Космонавты

С декабря 2017 года экипаж МКС состоит из следующих астрономов и космонавтов:

  • Антон Шкаплеров - командир МКС-55. Он дважды был на станции - в 2011-2012 и в 2014-2015 гг. За 2 полета он прожил на станции 364 дня.
  • Скит Тингл - бортинженер, астронавт НАСА. Этот космонавт не имеет опыта космических полетов.
  • Норишиге Канаи - бортинженер, астронавт Японии.
  • Александр Мисуркин. Первый его полет был совершен в 2013 году длительностью 166 суток.
  • Макр Ванде Хай не имеет опыта полетов.
  • Джозеф Акаба. Первый полет совершил в 2009 году в составе «Дискавери», а второй полет был осуществлен в 2012 году.

Земля из космоса

Из космоса на Землю открываются уникальные виды. Об этом свидетельствуют фотографии, видеосъемки астронавтов и космонавтов. Увидеть работу станции, космические пейзажи можно, если посмотреть онлайн-трансляции со станции МКС. Однако некоторые камеры бывают выключенными, что связано с техработами.