15.10.2019

Как построить интервальный ряд распределения в статистике. Интервальный вариационный ряд


Описание изменений варьирующего признака осуществляется с помощью рядов распределения.

Статистический ряд распределения - это упорядоченное распределение единиц статистической совокупности на отдельные группы по определенному варьирующему признаку.

Статистические ряды, построенные по качественному признаку называют атрибутивными . Если в основе ряда распределения лежит количественный признак, то ряд является вариационным .

В свою очередь вариационные ряды делят на дискретные и интервальные. В основе дискретного ряда распределения лежит дискретный (прерывный) признак, принимающий конкретные числовые значения (число правонарушений, число обращений граждан за юридической помощью). Интервальный ряд распределения строится на основе непрерывного признака, который может принимать любые значения из заданного диапазона (возраст осужденного, срок лишения свободы и т.д.)

Любой статистический ряд распределения содержит два обязательных элемента – варианты ряда и частоты. Варианты (x i ) – отдельные значения признака, которые он принимает в ряду распределения. Частоты (f i ) – это числовые значения, показывающие сколько раз встречаются те или иные варианты в ряду распределения. Сумма всех частот называется объемом совокупности.

Частоты, выраженные в относительных единицах (долях или процентах) называются частостями (w i ). Сумма частостей равна единице, если Частости выражены в долях единицы, или 100, если они выражаются в процентах. Использование частостей позволяет производить сравнение вариационных рядов с разным объемом совокупности. Частости определяются по следующей формуле:

Для построения дискретного ряда ранжируются все встречающиеся в ряду индивидуальные значения признака, а затем подсчитываются частоты повторений каждого значения. Оформляется ряд распределения в идее таблицы, состоящей из двух строк и столбцов, в одной из которых приводятся значения вариантов ряда x i , во второй – значения частот f i .

Рассмотрим пример построения дискретного вариационного ряда.

Пример 3.1 . По данным УМВД зарегистрировано преступлений, совершенных в городе N несовершеннолетними в возрасте.

17 13 15 16 17 15 15 14 16 13 14 17 14 15 15 16 16 15 14 15 15 14 16 16 14 17 16 15 16 15 13 15 15 13 15 14 15 13 17 14.

Построить дискретный ряд распределения.

Решение .

Сначала необходимо проранжировать данные о возрасте несовершеннолетних, т.е. записать их в порядке возрастания.

13 13 13 13 13 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 17 17 17 17 17



Таблица 3.1

Таким образом, частоты отображают количество человек данного возраста, например, 5 человек имеют возраст 13 лет, 8 человек – 14 лет, и т.д.

Построение интервальных рядов распределения осуществляют аналогично выполнению равноинтервальной группировки по количественному признаку, то есть вначале определяют оптимальное число групп, на которые будет разбита совокупность, устанавливаются границы интервалов по группам и подсчитываются частоты.

Проиллюстрируем построение интервального ряда распределения на следующем примере.

Пример 3.2 .

Построить интервальный ряд по следующей статистической совокупности – заработной плате юриста в конторе, тыс. руб.:

16,0 22,2 25,1 24,3 30,5 32,0 17,0 23,0 19,8 27,5 22,0 18,9 31,0 21,5 26,0 27,4

Решение.

Примем оптимальное количество групп равноинтервальной группировки для данной статистической совокупности, равное 4 (у нас 16 вариантов). Следовательно, численность каждой группы равна:

а величина каждого интервала будет равна:

Границы интервалов определяем по формулам:

,

где - соответственно нижняя и верхняя границы i-го интервала.

Опуская промежуточные вычисления границ интервалов, заносим их значения (варианты) и количество юристов (частоты), имеющих з/п в пределах каждого интервала, в таблицу 3.2, которая и иллюстрирует полученный интервальный ряд.

Таблица 3.2

Анализ статистических рядов распределения может производиться с использованием графического метода. Графическое представление рядов распределения позволяет наглядно проиллюстрировать закономерности распределения исследуемой совокупности путем ее изображения в виде полигона, гистограммы и кумуляты. Остановимся на каждом из перечисленных графиков.

Полигон – ломаная, отрезки которой соединяют точки с координатами (x i ;f i ). Обычно полигон используют для изображения дискретных рядов распределения. Для его построения на оси абсцисс откладывают ранжированные индивидуальные значения признака x i , на оси ординат – соответствующие этим значениям частоты. В результате, соединив отрезками точки, соответствующие данным, отмеченным по осям абсцисс и ординат, получают ломаную, называемую полигоном. Приведем пример построения полигона частот.

Для иллюстрации построения полигона возьмем результат решения примера 3.1 на построение дискретного ряда – рисунок 1. По оси абсцисс отложен возраст осужденных, по оси ординат – количество несовершеннолетних осужденных, имеющих данный возраст. Анализируя данный полигон, можно сказать, что наибольшее количество осужденных – 14 человек, имеют возраст 15 лет.

Рисунок 3.1 – Полигон частот дискретного ряда.

Полигон можно построить и для интервального ряда, в этом случае по оси абсцисс откладывают середины интервалов, а по оси ординат – соответствующие им частоты.

Гистограмма – ступенчатая фигура, состоящая из прямоугольников, основаниями которых служат интервалы значения признака, а высоты равны соответствующим частотам. Гистограмма применяется только для изображения интервальных рядов распределения. Если интервалы являются неравными, то для построения гистограммы на оси ординат откладывают не частоты, а отношение частоты к ширине соответствующего интервала. Гистограмму можно преобразовать в полигон распределения, если середины ее столбиков соединить между собой отрезками.

Для иллюстрации построения гистограммы возьмем результаты построения интервального ряда из примера 3.2– рисунок 3.2.

Рисунок 3.2 – Гистограмма распределения заработной платы юристов.

Для графического изображения вариационных рядов также используют кумуляту. Кумулята – кривая, изображающая ряд накопленных частот и соединяющая точки с координатами (x i ;f i нак ). Накопленные частоты вычисляются последовательным суммированием всех частот ряда распределения и показывают число единиц совокупности, имеющих значение признака не больше, чем указанное. Проиллюстрируем вычисление накопленных частот для вариационного интервального ряда, представленного в примере 3.2 – таблица 3.3.

Таблица 3.3

Для построения кумуляты дискретного ряда распределения по оси абсцисс откладывают ранжированные индивидуальные значения признака, а по оси ординат – соответствующие им накопленные частоты. При построении кумулятивной кривой интервального ряда первая точка будет иметь абсциссу, равную нижней границе первого интервала, а ординату, равную 0. Все последующие точки должны соответствовать верхним граница интервалов. Построим кумуляту, используя данные таблицы 3.3 – рисунок 3.3.

Рисунок 3.3 – Кумулятивная кривая распределения заработной платы юристов.

Контрольные вопросы

1. Понятие статистического ряда распределения, его основные элементы.

2. Виды статистических рядов распределения. Их краткая характеристика.

3. Дискретные и интервальные ряды распределения.

4. Методика построения дискретных рядов распределения.

5. Методика построения интервальных рядов распределения.

6. Графическое изображение дискретных рядов распределения.

7. Графическое изображение интервальных рядов распределения.

Задачи

Задача 1 . Имеются следующие данные об успеваемости 25 студен­тов группы по ТГП в сессию: 5, 4, 4, 4, 3, 2, 5, 3, 4, 4, 4, 3, 2, 5, 2, 5, 5, 2, 3, 3, 5, 4, 2, 3, 3. Постройте дискретный вариационный ряд распределения студентов по баллам оценок, получен­ных в сессию. Для полученного ряда рассчитайте Частости, накопленные Частости, накопленные частоты. Сделайте выводы.

Задача 2 . В колонии содержатся 1000 осужденных, их распределение по возрасту представлено в таблице:

Изобразите данный ряд графически. Сделайте выводы.

Задача 3 . Имеются следующие данные о сроках лишения свободы заключенных:

5; 4; 2; 1; 6; 3; 4; 3; 2; 2; 3; 1; 17; 6; 2; 8; 5; 11; 9; 3; 5; 6; 4; 3; 10; 5; 25; 1; 12; 3; 3; 4; 9; 6; 5; 3; 4; 3; 5; 12; 4; 13; 2; 4; 6; 4; 14; 3; 11; 5; 4; 13; 2; 4; 6; 4; 14; 3; 11; 5; 4; 3; 12; 6.

Постройте интервальный ряд распределения заключенных по срокам лишения свободы. Сделайте выводы.

Задача 4 . Имеются следующие данные о распределении осужденных в области за изучаемый период по возрастным группам:

Изобразите данный ряд графически, сделайте выводы.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ЗАДАЧА 1

Имеются следующие данные о заработной плате работников на предприятии:

Таблица 1.1

Размер заработной платы в усл. ден. ед.

Требуется построить интервальный ряд распределения, по которому найти;

1) среднюю заработную плату;

2) среднее линейное отклонение;

4) среднее квадратическое отклонение;

5) размах вариации;

6) коэффициент осцилляции;

7) линейный коэффициент вариации;

8) простой коэффициент вариации;

10) медиану;

11) коэффициент асимметрии;

12) показатель асимметрии Пирсона;

13) коэффициент эксцесса.

Решение

Как известно, варианты (значения признано) расположены в порядке возрастания образуют дискретный вариационный ряд. При большом числе вариант (больше 10) даже в случае дискретной вариации строятся интервальные ряды.

Если составляется интервальный ряд с ровными интервалами, то размах вариации делится на указанное число интервалов. При этом, если полученное значение целое и однозначное (что бывает редко), то длина интервала принимается равной этому числу. В остальных случаях производится округление обязательно в сторону увеличения, так чтобы последняя оставляемая цифра была чётной. Очевидно, с увеличением длины интервала расширяется размах вариации на величину, равной произведению числа интервалов: на разность расчетной и первоначальной длины интервала

а) Если величина расширения размаха вариации незначительна, то ее либо прибавляют к наибольшему либо вычитают из наименьшего значения признака;

б) Если величина расширения размаха вариации ощутима, то, чтобы не произошло смешения центра размаха, ее примерно делят пополам одновременно прибавляя к наибольшему и вычитая из наименьшего значений признака.

Если составляется интервальный ряд с неравными интервалами, то процесс упрощается, но по-прежнему длина интервалов должна выражаться числом с последней чётной цифрой, что значительно упрощает последующие расчёты числовых характеристик.

30 - объем выборки.

Составим интервальный ряд распределения, используя формулу Стерджеса:

K = 1 + 3.32*lg n,

K - число групп;

K = 1 + 3.32*lg 30 = 5,91=6

Находим размах признака - заработная плата работников на предприятии - (х) по формуле

R= xmaх - xmin и делим на 6; R= 195-112=83

Тогда длина интервала будет l пер=83:6=13.83

Началом первого интервала будет 112. Прибавляя к 112 l рас=13,83, получим его конечное значение 125,83, которое одновременно является началом второго интервала и т.д. конец пятого интервала - 195.

При нахождении частот следует руководствоваться правилом: «если значение признака совпадает с границей внутреннего интервала, то его следует относить к предыдущему интервалу».

Получим интервальный ряд частот и накопительных частот.

Таблица 1.2

Следовательно, 3 работника имеют зар. плату от 112 до 125,83 усл.ден.ед. Наибольшая зар. плата от 181,15 до 195 усл.ден.ед. только у 6-ті работников.

Для расчёта числовых характеристик интервальный ряд преобразуем в дискретный, взяв в качестве вариант середины интервалов:

Таблица 1.3

14131,83

По формуле взвешенного среднего арифметического

усл.ден.ед.

Среднее линейное отклонение:

где xi - значение изучаемого признака у i-той единицы совокупности,

Средняя величина изучаемого признака.

Размещено на http://www.allbest.ru/

LРазмещено на http://www.allbest.ru/

Усл.ден.ед.

Среднее квадратическое отклонение:

Дисперсия:

Относительный размах вариации (коэффициент осцилляции): с= R:,

Относительное линейное отклонение: q = L:

Коэффициент вариации: V = у:

Коэффициент осцилляции показывает относительную колеблемость крайних значений признака около среднего арифметического, а коэффициент вариации характеризует степень и однородности совокупности.

с= R: = 83 / 159,485*100% = 52,043%

Таким образом, разница между крайними значениями на 5,16% (=94,84%-100%) меньше среднего значения заработной платы работников на предприятии.

q = L: = 17,765/ 159,485*100% =11,139 %

V = у: = 21,704/ 159,485*100% = 13,609%

Коэффициент вариации меньше 33%, что говорит о слабой вариации заработной платы работников на предприятии, т.е. о том, что средняя величина является типической характеристикой заработной плате работников (совокупность однородная).

В интервальных рядах распределения мода определяется по формуле -

Частота модального интервала, т. е. интервала, содержащего наибольшее число вариант;

Частота интервала, предшествующего модальному;

Частота интервала, следующего за модальным;

Длина модального интервала;

Нижняя граница модального интервала.

Для определения медианы в интервальном ряду воспользуемся формулой

где - кумулятивная (накопленная) частота интервала, предшествующего медианному;

Нижняя граница медианного интервала;

Частота медианного интервала;

Длина медианного интервала.

Медианный интервал - интервал, накопленная частота которого (=3+3+5+7) превышает половину суммы частот - (153,49; 167,32).

Рассчитаем асимметрию и эксцесс для чего составим новую рабочую таблицу:

Таблица 1.4

Фактические данные

Расчетные данные

Рассчитаем момент третьего порядка

Следовательно, асимметрия равна

Так как 0,3553 0,25, то асимметрия признается значительной.

Рассчитаем момент четвертого порядка

Следовательно, эксцесс равен

Так как < 0, то эксцесс является плосковершинным.

Степень асимметрии может быть определена с помощью коэффициента асимметрии Пирсона (Аs): осцилляция выборка стоимость товарооборот

где -- средняя арифметическая ряда распределения; -- мода; -- среднее квадратическое отклонение.

При симметричном (нормальном) распределении = Мо, следовательно, коэффициент асимметрии равен нулю. Если Аs > 0, то больше моды, следовательно, имеется правосторонняя асимметрия.

Если As < 0, то меньше моды, следовательно, имеется левосторонняя асимметрия. Коэффициент асимметрии может изменяться от -3 до +3.

Распределение не является симметричным, а имеет левостороннюю асимметрию.

ЗАДАЧА 2

Какова должна быть численность выборки, чтобы с вероятностью 0,954 ошибка выборки не превышала 0,04, если на основе предыдущих обследований известно, что дисперсия равна 0,24?

Решение

Объем выборки при бесповторном отборе рассчитывается по формуле:

t - коэффициент доверия (при вероятности 0,954 он равен 2,0; определяется по таблицам интегралов вероятности),

у2=0,24 - среднее квадратическое отклонение;

10000 чел. - численность выборки;

Дх =0,04 - предельная ошибка выборочной средней.

С вероятностью 95,4% можно утверждать, что численность выборки, обеспечивающая относительную погрешность не более 0,04, должна составлять не менее 566 семей.

ЗАДАЧА 3

Имеются следующие данные о доходах от основной деятельности предприятия, млн. руб.

Для анализа ряда динамики определите следующие показатели:

1) цепные и базисные:

Абсолютные приросты;

Темпы роста;

Темпы прироста;

2) средний

Уровень ряда динамики;

Абсолютный прирост;

Темп роста;

Темп прироста;

3) абсолютное значение 1% прироста.

Решение

1. Абсолютный прирост (Д у) - это разность между последующим уровнем ряда и предыдущим (или базисным):

цепной: Ду = уi - yi-1,

базисный: Ду = уi - y0,

уi - уровень ряда,

i - номер уровня ряда,

y0 - уровень базисного года.

2. Темп роста (Ту) - это отношение последующего уровня ряда и предыдущего (или базисного 2001 г.):

цепной: Ту = ;

базисный: Ту =

3. Темп прироста (Т Д ) - это отношение абсолютного прироста к предыдущему уровню, выраженное в %.

цепной: Ту = ;

базисный: Ту =

4. Абсолютное значение 1% прироста (А) - это отношение цепного абсолютного прироста к темпу прироста, выраженному в %.

А =

Средний уровень ряда рассчитывается по формуле средней арифметической.

Средний уровень доходов от основной деятельности за 4 года:

Средний абсолютный прирост рассчитывается по формуле:

где n - число уровней ряда.

В среднем за год доходы от основной деятельности выросли на 3,333 млн. руб.

Среднегодовой темп роста рассчитывается по формуле средней геометрической:

уn - конечный уровень ряда,

у0 - начальный уровень ряда.

Ту = 100% = 102,174 %

Среднегодовой темп прироста рассчитывается по формуле:

Т? = Ту - 100% = 102,74% - 100% = 2,74%.

Таким образом, в среднем за год доходы от основной деятельности предприятия увеличивались на 2,74%.

ЗАДАЧ А 4

Вычислить:

1. Индивидуальные индексы цен;

2. Общий индекс товарооборота;

3. Агрегатный индекс цен;

4. Агрегатный индекс физического объема продажи товаров;

5. Абсолютный прирост стоимости товарооборота и разложите по факторам (за счет изменения цен и количества проданных товаров);

6. Сделать краткие выводы по всем полученным показателям.

Решение

1. По условию, индивидуальные индексы цен по изделиям А, Б, В составили -

iрA=1.20; iрБ=1,15; iрВ=1.00.

2. Общий индекс товарооборота рассчитаем по формуле:

I w = = 1470/1045*100% = 140,67 %

Товарооборот вырос на 40,67 % (140,67%-100%).

В среднем цены на товары выросли на 10,24%.

Сумма дополнительных расходов покупателей от роста цен:

w(p) = ? p1q1 - ? p0q1 = 1470 - 1333,478= 136,522 млн. руб.

В результате роста цен покупателям пришлось дополнительно израсходовать 136,522 млн. руб.

4. Общий индекс физического объема товарооборота:

Физический объем товарооборота вырос на 27,61 %.

5. Определим общее изменение товарооборота во втором периоде по сравнению с первым периодом:

w = 1470- 1045 = 425 млн.руб.

за счет изменения цен:

W(р) = 1470 - 1333,478 = 136,522 млн. руб.

за счет изменения физического объема:

w(q) = 1333,478 - 1045= 288,478 млн. руб.

Товарооборот товаров увеличился на 40,67%. Цены в среднем по 3-м товарам выросли на 10,24%. Физический объем товарооборота увеличился на 27,61%.

В целом объем реализации увеличился на 425 млн.руб., в том числе за счет роста цен он вырос на 136,522 млн. руб., а за счет увеличения объемов продаж - на 288,478 млн. руб.

ЗАДАЧА 5

По 10 заводам одной отрасли имеются следующие данные.

№ завода

Выпуск продукции, тыс. шт. (Х)

На основе приведенных данных:

I) для подтверждения положений логического анализа о наличии корреляционной прямолинейной зависимости между факторным признаком (объемом выпуска продукции) и результативным признаком (расходом электроэнергии) нанесите исходные данные на график корреляционного поля и сделайте выводы о форме связи, укажите ее формулу;

2) определите параметры уравнения связи и нанесите полученную при этом теоретическую линию на график корреляционного поля;

3) исчислите линейный коэффициент корреляции,

4) поясните значения показателей, полученных в пунктах 2) и 3);

5) используя полученную модель, сделайте прогноз о возможном расходе электроэнергии на заводе с объемом производства 4,5 тыс. шт.

Решение

Данные признака - объем выпуска продукции (фактор), обозначим через хi; признака - расход электроэнергии (результат) через уi; точки с координатами (х, у) наносим на корреляционное поле ОХУ.

Точки корреляционного поля расположены вдоль некоторой прямой. Следовательно, связь - линейная, будем искать уравнение регрессии в виде прямой Уx=ax+b. Для его нахождения воспользуемся системой нормальных уравнений:

Составим расчетную таблицу.

По найденным средним составляем систему и решаем её относительно параметров а и b:

Итак, получим уравнение регрессии у на х: = 3,57692 х + 3,19231

Строим линию регрессии на корреляционном поле.

Подставляя в уравнение регрессии значения х из столбца 2, получим расчетные (столбец 7) и сравниваем их с данными у, что отражено в столбце 8. Кстати, правильность расчетов подтверждается и совпадением средних значений у и.

Коэффициент линейной корреляции оценивает тесноту зависимости между признаками х и у и рассчитывается по формуле

Угловой коэффициент прямой регрессии а (при х) характеризует направление выявленной зависимости признаков: при а>0 одинаковы, при а<0- противоположны. Его абсолютная величина - мера изменения результативного признака при изменении факторного на единицу измерения.

Свободный член прямой регрессии выявляет направление, а его абсолютное значение - количественную меру влияния на результативный признак всех прочих факторов.

Если < 0, то ресурс факторного признака отдельного объекта используется с меньшей, а при >0 с большей результативностью, чем в среднем по всему множеству объектов.

Проведём послерегрессионный анализ.

Коэффициент при х прямой регрессии равен 3,57692 >0, следовательно, с увеличением (уменьшением) выпуска продукции растёт (падает) расход электроэнергии. Увеличение выпуска продукции на 1 тыс. шт. даёт в среднем рост расход электроэнергии на 3,57692 тыс. кВт.ч.

2. Свободный член прямой регрессии равен 3,19231,следовательно, влияние прочих факторов увеличивает силу воздействия выпуска продукции на расход электроэнергии в абсолютном измерении на 3,19231 тыс. кВт.ч.

3. Коэффициент корреляции 0,8235 выявляет весьма тесную зависимость расхода электроэнергии от выпуска продукции.

По уравнению регрессионной модели легко делать прогнозы. Для этого в уравнение регрессии подставляют значения х - объем выпуска продукции и прогнозируют расход электроэнергии. При этом значения х можно брать не только в пределах заданного размаха, но и вне его.

Сделаем прогноз о возможном расходе электроэнергии на заводе с объемом производства 4,5 тыс. шт.

3,57692*4,5 + 3,19231= 19,288 45 тыс. кВт.ч.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Захаренков С.Н. Социально-экономическая статистика: Учеб.-практ пособие. -Мн.: БГЭУ, 2002.

2. Ефимова М.Р., Петрова Е.В., Румянцев В.Н. Общая теория статистики. - М.: ИНФРА - М., 2000.

3. Елисеева И.И. Статистика. - М.: Проспект, 2002.

4. Общая теория статистики / Под общ. ред. О.Э. Башиной, А.А. Спирина. - М.: Финансы и статистика, 2000.

5. Социально-экономическая статистика: Учеб.-практ. пособие / Захаренков С.Н. и др. - Мн.: ЕГУ, 2004.

6. Социально-экономическая статистика: Учеб. пособие. / Под ред. Нестерович С.Р. - Мн.: БГЭУ, 2003.

7. Теслюк И.Е., Тарловская В.А., Терлиженко Н. Статистика.- Минск, 2000.

8. Харченко Л.П. Статистика. - М.: ИНФРА - М, 2002.

9. Харченко Л.П., Долженкова В.Г., Ионин В.Г. Статистика. - М.: ИНФРА - М, 1999.

10. Экономическая статистика / Под ред. Ю.Н. Иванова - М., 2000.

Размещено на Allbest.ru

...

Подобные документы

    Расчет средней арифметической для интервального ряда распределения. Определение общего индекса физического объема товарооборота. Анализ абсолютного изменения общей стоимости продукции за счет изменения физического объема. Расчет коэффициента вариации.

    контрольная работа , добавлен 19.07.2010

    Сущность оптового, розничного и общественного товарооборота. Формулы расчета индивидуальных, агрегатных индексов товарооборота. Расчет характеристик интервального ряда распределения - среднего арифметического, моды и медианы, коэффициента вариации.

    курсовая работа , добавлен 10.05.2013

    Расчет планового и фактического объема продаж, процента выполнения плана, абсолютного изменения товарооборота. Определение абсолютного прироста, средних темпов роста и прироста денежных доходов. Расчет структурных средних: моды, медианы, квартиля.

    контрольная работа , добавлен 24.02.2012

    Интервальный ряд распределения банков по объему прибыли. Нахождение моды и медианы полученного интервального ряда распределения графическим методом и путем расчетов. Расчет характеристик интервального ряда распределения. Вычисление средней арифметической.

    контрольная работа , добавлен 15.12.2010

    Формулы определения средних величин интервального ряда - моды, медианы, дисперсии. Расчет аналитических показателей рядов динамики по цепной и базисной схемам, темпов роста и прироста. Понятие сводного индекса себестоимости, цен, затрат и товарооборота.

    курсовая работа , добавлен 27.02.2011

    Понятие и назначение, порядок и правила построения вариационного ряда. Анализ однородности данных в группах. Показатели вариации (колеблемости) признака. Определение среднего линейного и квадратического отклонения, коэффициента осцилляции и вариации.

    контрольная работа , добавлен 26.04.2010

    Понятие моды и медианы как типичных характеристик, порядок и критерии их определения. Нахождение моды и медианы в дискретном и интервальном вариационном ряду. Квартили и децили как дополнительные характеристики вариационного статистического ряда.

    контрольная работа , добавлен 11.09.2010

    Построение интервального ряда распределения по группировочному признаку. Характеристика отклонения распределения частот от симметричной формы, расчет показателей эксцесса и ассиметрии. Анализ показателей бухгалтерского баланса или отчёта о прибылях.

    контрольная работа , добавлен 19.10.2014

    Преобразование эмпирического ряда в дискретный и интервальный. Определение средней величины по дискретному ряду с использованием ее свойств. Расчет по дискретному ряду моды, медианы, показателей вариации (дисперсия, отклонение, коэффициент осцилляции).

    контрольная работа , добавлен 17.04.2011

    Построение статистического ряда распределения организаций. Графическое определение значения моды и медианы. Теснота корреляционной связи с использованием коэффициента детерминации. Определение ошибки выборки среднесписочной численности работников.

Что такое группировка статистических данных, и как она связана с рядами распределения, было рассмотрено этой лекции, там же можно узнать, о том что такое дискретный и вариационный ряд распределения.

Ряды распределения одна из разновидностей статистических рядов (кроме них в статистике используются ряды динамики), используются для анализа данных о явлениях общественной жизни. Построение вариационных рядов вполне посильная задача для каждого. Однако есть правила, которые необходимо помнить.

Как построить дискретный вариационный ряд распределения

Пример 1. Имеются данные о количестве детей в 20 обследованных семьях. Построить дискретный вариационный ряд распределения семей по числу детей .

0 1 2 3 1
2 1 2 1 0
4 3 2 1 1
1 0 1 0 2

Решение:

  1. Начнем с макета таблицы, в которую затем мы внесем данные. Так как ряды распределения имеют два элемента, то таблица состоять будет из двух колонок. Первая колонка это всегда варианта – то, что мы изучаем – ее название берем из задания (конец предложения с заданием в условиях) — по числу детей – значит наша варианта это число детей.

Вторая колонка это частота – как часто встречается наша варианта в исследуемом явление – название колонки так же берем из задания — распределения семей – значит наша частота это число семей с соответствующим количеством детей.

  1. Теперь из исходных данных выберем те значения, которые встречаются хотя бы один раз. В нашем случае это

И расставим эти данные в первой колонке нашей таблицы в логическом порядке, в данном случае возрастающем от 0 до 4. Получаем

И в заключение подсчитаем, сколько же раз встречается каждое значение варианты.

0 1 2 3 1

2 1 2 1 0

4 3 2 1 1

1 0 1 0 2

В результате получаем законченную табличку или требуемый ряд распределения семей по количеству детей.

Задание . Имеются данные о тарифных разрядах 30 рабочих предприятия. Построить дискретный вариационный ряд распределения рабочих по тарифному разряду. 2 3 2 4 4 5 5 4 6 3

1 4 4 5 5 6 4 3 2 3

4 5 4 5 5 6 6 3 3 4

Как построить интервальный вариационный ряд распределения

Построим интервальный ряд распределения, и посмотрим чем же его построение отличается от дискретного ряда.

Пример 2. Имеются данные о величине полученной прибыли 16 предприятий, млн. руб. — 23 48 57 12 118 9 16 22 27 48 56 87 45 98 88 63. Построить интервальный вариационный ряд распределения предприятий по объему прибыли, выделив 3 группы с равными интервалами.

Общий принцип построения ряда, конечно же, сохраниться, те же две колонки, те же варианта и частота, но в здесь варианта будет располагаться в интервале и подсчет частот будет вестись иначе.

Решение:

  1. Начнем аналогично предыдущей задачи с построения макета таблицы, в которую затем мы внесем данные. Так как ряды распределения имеют два элемента, то таблица состоять будет из двух колонок. Первая колонка это всегда варианта – то, что мы изучаем – ее название берем из задания (конец предложения с заданием в условиях) — по объему прибыли – значит, наша варианта это объем полученной прибыли.

Вторая колонка это частота – как часто встречается наша варианта в исследуемом явление – название колонки так же берем из задания — распределения предприятий – значит наша частота это число предприятий с соответствующей прибылью, в данном случае попадающие в интервал.

В итоге макет нашей таблицы будет выглядеть так:

где i – величина или длинна интервала,

Хmax и Xmin – максимальное и минимальное значение признака,

n – требуемое число групп по условию задачи.

Рассчитаем величину интервала для нашего примера. Для этого среди исходных данных найдем самое большое и самое маленькое

23 48 57 12 118 9 16 22 27 48 56 87 45 98 88 63 – максимальное значение 118 млн. руб., и минимальное 9 млн. руб. Проведем расчет по формуле.

В расчете получили число 36,(3) три в периоде, в таких ситуациях величину интервала нужно округлить до большего, чтобы после подсчетов не потерялось максимальное данное, именно поэтому в расчете величина интервала 36,4 млн. руб.

  1. Теперь построим интервалы – наши варианты в данной задаче. Первый интервал начинают строить от минимального значения к нему добавляется величина интервала и получается верхняя граница первого интервала. Затем верхняя граница первого интервала становится нижней границей второго интервала, к ней добавляется величина интервала и получается второй интервал. И так далее столько раз сколько требуется построить интервалов по условию.

Обратим внимание если бы мы не округлили величину интервала до 36,4, а оставили бы ее 36,3, то последнее значение у нас бы получилось 117,9. Именно для того чтобы не было потери данных необходимо округлять величину интервала до большего значения.

  1. Проведем подсчет количества предприятий попавших в каждый конкретный интервал. При обработке данных необходимо помнить, что верхнее значение интервала в данном интервале не учитывается (не включается в этот интервал), а учитывается в следующем интервале (нижняя граница интервала включается в данный интервал, а верхняя не включается), за исключением последнего интервала.

При проведении обработки данных лучше всего отобранные данные обозначить условными значками или цветом, для упрощения обработки.

23 48 57 12 118 9 16 22

27 48 56 87 45 98 88 63

Первый интервал обозначим желтым цветом – и определим сколько данных попадает в интервал от 9 до 45,4, при этом данное 45,4 будет учитываться во втором интервале (при условии что оно есть в данных) – в итоге получаем 7 предприятий в первом интервале. И так дальше по всем интервалам.

  1. (дополнительное действие ) Проведем подсчет общего объема прибыли полученного предприятиями по каждому интервалу и в целом. Для этого сложим данные отмеченные разными цветами и получим суммарное значение прибыли.

По первому интервалу — 23 + 12 + 9 + 16 + 22 + 27 + 45 = 154 млн. руб.

По второму интервалу — 48 + 57 + 48 + 56 + 63 = 272 млн. руб.

По третьему интервалу — 118 + 87 + 98 + 88 = 391 млн. руб.

Задание . Имеются данные о величине вклада в банке 30 вкладчиков, тыс. руб. 150, 120, 300, 650, 1500, 900, 450, 500, 380, 440,

600, 80, 150, 180, 250, 350, 90, 470, 1100, 800,

500, 520, 480, 630, 650, 670, 220, 140, 680, 320

Построить интервальный вариационный ряд распределения вкладчиков, по размеру вклада выделив 4 группы с равными интервалами. По каждой группе подсчитать общий размер вкладов.

Предмет математической статистики. Генеральная и выборочная совокупность.

— Математическая статистика – раздел математики, который изучает способы отбора, группировки, систематизации и анализа статистических данных, для получения научно обоснованных выводов.

— Статистические данные – числовые значения рассматриваемого признака изучаемых объектов, полученные как результат случайного эксперимента.

Математическая статистика тесно связана с теорией вероятностей, но в отличие от теории вероятностей, математическая модель эксперимента неизвестна. В математической статистике по статистическим данным необходимо установить неизвестное распределение вероятностей или объективно оценить параметры распределения.

Методы математической статистики позволяют строить оптимальные математические модели массовых, повторяющихся явлений. Связующим звеном между теорией вероятностей и математической статистикой являются предельные теоремы теории вероятностей.

В настоящее время статистические методы используются практически во всех отраслях народного хозяйства.

— Генеральная совокупность – статистические данные всех изучаемых объектов (иногда – сами объекты). Часто генеральную совокупность рассматривают как СВ Х.

— Выборка (выборочная совокупность) – статистические данные объектов, выбранных случайно из генеральной совокупности.

— Объём выборки n (объём генеральной совокупности N ) – количество объектов, выбранных для изучения из генеральной совокупности (количество объектов в генеральной совокупности).

Примеры .

а) Статистическими данными могут быть: рост студентов; количество глаголов (или других частей речи) в отрывке текста определённой длины; средний балл аттестата; уровень интеллекта; число ошибок, допущенных диспетчером и т. п.

б) Генеральной совокупностью может быть: рост всех людей, разряды всех рабочих завода, частота употребления определённой части речи во всех произведениях изучаемого автора, средний балл аттестата всех выпускников и т. п.



в)Выборкой может быть: – рост 20 студентов, количество глаголов в выбранных произвольно 50 однородных отрывках текста длиной 500 словоупотреблений, средний балл аттестата 100 выпускников, выбранных случайно из школ города и т.п.

Выборка называется репрезентативной, если она верно отражает свойство генеральной совокупности. Репрезентативность выборки достигается случайностью отбора, когда все объекты генеральной совокупности имеют одинаковую вероятность быть отобранными.

Для того чтобы выборка была репрезентативной применяют различные способы отбора объектов изучения.

Виды отбора : простой, механический, серийный, типический.

Простой . Произвольно отбираются элементы из всей генеральной совокупности.

Механический отбор . Выбирают каждый 10 (25, 30 и т.п.) объект из генеральной совокупности.

Серийный . Проводится исследование в каждой серии (например, из текста выбирают 10 отрывков по 500 словоупотреблений- 10 серий).

Типический . Генеральную совокупность по определённому признаку разделяют на типические группы. Количество серий, извлекаемых из каждой такой группы, определяется удельным весом этой группы в генеральной совокупности.

Статистическое распределение выборки и его графическое изображение.

Пусть изучается СВ Х (генеральная совокупность) относительно некоторого признака. Проводится ряд независимых испытаний. В результате опытов СВ Х принимает некоторые значения. Совокупность полученных значений представляет собой выборку, а сами значения являются статистическими данными.

Первоначально проводят ранжирование выборки - расположение статистических данных выборки по неубыванию. Получаем вариационный ряд.

Вариационный ряд - проранжированная выборка.

Дискретный статистический ряд

Если генеральная совокупность является дискретной СВ, строится дискретный статистический ряд (статистическое распределение).

Пусть значение появилось в выборке раз,

Разa , …, - раз.

I-тая варианта выборки; - частота i-той варианты Частота показывает, сколько раз данная варианта появилась в выборке.

- относительная частота i-той варианты

(показывает какую часть выборки составляет ).

Статистическое распределение – это соответствие между вариантами выборки и их частотами или относительными частотами.

Для ДСВ статистическое распределение можно представить в виде таблицы – статистического ряда частот или статистического ряда относительных частот.

Статистический ряд частот Статистический ряд

относительных частот

........
........
........
........

Для наглядности представления статистического распределения выборки строят «графики» статистического распределения: полигон и гистограмму.

Полигон частот (относительных частот) – графическое изображение дискретного статистического ряда - ломаная линия, последовательно соединяющая точки [ для полигона относительных частот].

Пример. Исследователя интересуют знания абитуриентов по математике. Выбирают 10 абитуриентов и записывают их школьные оценки по этому предмету. Получена следующая выборка: 5;4;4;3;2;5;4;3;4;5.

а) Представить выборку в виде вариационного ряда;

б) построить статистический ряд частот и относительных частот;

в) изобразить полигон относительных частот для полученного ряда.

а) Проведем ранжирование выборки, т.е. расположим члены выборки по неубыванию. Получаем вариационный ряд: 2; 3; 3; 4; 4; 4; 4; 5; 5;5.

б) Построим статистический ряд частот (соответствие между вариантами выборки и их частотами) и статистический ряд относительных частот (соответствие между вариантами выборки и их относительными частотами)

0,1 0,2 0,4 0,3

Статистический ряд частот статистический ряд отн. частот

1+2+4+3=10=n 0,1+0,2+0,4+0,3=1.

Полигон относительных частот.


Если изучаемая случайная величина является непрерывной, то ранжирование и группировка наблюдаемых значений зачастую не позволяют выделить характерные черты варьирования ее значений. Это объясняется тем, что отдельные значения случайной величины могут как угодно мало отличаться друг от друга и поэтому в совокупности наблюдаемых данных одинаковые значения величины могут встречаться редко, а частоты вариантов мало отличаются друг от друга.

Нецелесообразно также построение дискретного ряда для дискретной случайной величины, число возможных значений которой велико. В подобных случаях следует строить интервальный вариационный ряд распределения.

Для построения такого ряда весь интервал варьирования наблюдаемых значений случайной величины разбивают на ряд частичных интервалов и подсчитывают частоту попадания значений величины в каждый частичный интервал.

Интервальным вариационным рядом называют упорядоченную совокупность интервалов варьирования значений случайной величины с соответствующими частотами или относительными частотами попаданий в каждый из них значений величины.

Для построения интервального ряда необходимо:

  1. определить величину частичных интервалов;
  2. определить ширину интервалов;
  3. установить для каждого интервала его верхнюю и нижнюю границы ;
  4. сгруппировать результаты наблюдении.

1 . Вопрос о выборе числа и ширины интервалов группировки приходится решать в каждом конкретном случае исходя из целей исследования, объема выборки и степени варьирования признака в выборке.

Приблизительно число интервалов k можно оценить исходя только из объема выборки n одним из следующих способов:

  • по формуле Стержеса : k = 1 + 3,32·lg n ;
  • с помощью таблицы 1.

Таблица 1

2 . Обычно предпочтительны интервалы одинаковой ширины. Для определения ширины интервалов h вычисляют:

  • размах варьирования R - значений выборки: R = x max - x min ,

где x max и x min - максимальная и минимальная варианты выборки;

  • ширину каждого из интервалов h определяют по следующей формуле: h = R/k .

3 . Нижняя граница первого интервала x h1 выбирается так, чтобы минимальная варианта выборки x min попадала примерно в середину этого интервала: x h1 = x min - 0,5·h .

Промежуточные интервалы получают прибавляя к концу предыдущего интервала длину частичного интервала h :

x hi = x hi-1 +h .

Построение шкалы интервалов на основе вычисления границ интервалов продолжается до тех пор, пока величина x hi удовлетворяет соотношению:

x hi < x max + 0,5·h .

4 . В соответствии со шкалой интервалов производится группирование значений признака - для каждого частичного интервала вычисляется сумма частот n i вариант, попавших в i -й интервал. При этом в интервал включают значения случайной величины, большие или равные нижней границе и меньшие верхней границы интервала.

Полигон и гистограмма

Для наглядности строят различные графики статистического распределения.

По данным дискретного вариационного ряда строят полигон частот или относительных частот.

Полигоном частот x 1 ; n 1 ), (x 2 ; n 2 ), ..., (x k ; n k ). Для построения полигона частот на оси абсцисс откладывают варианты x i , а на оси ординат - соответствующие им частоты n i . Точки (x i ; n i ) соединяют отрезками прямых и получают полигон частот (Рис. 1).

Полигоном относительных частот называют ломанную, отрезки которой соединяют точки (x 1 ; W 1 ), (x 2 ; W 2 ), ..., (x k ; W k ). Для построения полигона относительных частот на оси абсцисс откладывают варианты x i , а на оси ординат - соответствующие им относительные частоты W i . Точки (x i ; W i ) соединяют отрезками прямых и получают полигон относительных частот.

В случае непрерывного признака целесообразно строить гистограмму .

Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиной h , а высоты равны отношению n i / h (плотность частоты).

Для построения гистограммы частот на оси абсцисс откладывают частичные интервалы, а над ними проводят отрезки, параллельные оси абсцисс на расстоянии n i / h .