21.11.2023

Idef0 спецификации. Стандарт функционального моделирования IDEF0. Точка зрения определяет основное направление развития модели и уровень необходимой детализации


6.2. Назначение и состав методологии SADT (IDEF0)

Методология SADT (Structured Analysis and Design Technique – методология структурного анализа и проектирования) представляет собой совокупность методов, правил и процедур, предназначенных для построения функциональной модели системы.

Начало разработки данной методологии было положено Дугласом Россом (США) в середине 60-х гг. ХХ в. С тех пор системные аналитики компании SofTech, Inc. улучшили SADT и использовали ее в решении широкого круга проблем. Программное обеспечение телефонных сетей, диагностика, долгосрочное и стратегическое планирование, автоматизированное производство и проектирование, конфигурация компьютерных систем, обучение персонала, управление финансами и материально-техническим снабжением – вот некоторые из областей эффективного применения SADT. Широкий спектр областей указывает на универсальность и мощь методологии SADT. В программе «Интеграции компьютерных и промышленных технологий» (Integrated Computer Aided Manufacturing, ICAM) Министерства обороны США была признана полезность SADT. Это привело к публикации ее части в 1981 г., называемой IDEF0 (Icam DEFinition), в качестве федерального стандарта на разработку программного обеспечения. Под этим названием SADT стала применяться тысячами специалистов в военных и промышленных организациях . Последняя редакция стандарта IDEF0 была выпущена в декабре 1993г. Национальным институтом по стандартам и технологиям США (National Institute Standards and Technology, NIST).

Данная методология при описании функционального аспекта информационной системы конкурирует с методами, ориентированными на потоки данных (DFD). В отличие от них IDEF0 позволяет:

Описывать любые системы, а не только информационные (DFD предназначена для описания программного обеспечения);

Создать описание системы и ее внешнего окружения до определения окончательных требований к ней. Иными словами, с помощью данной методологии можно постепенно выстраивать и анализировать систему даже тогда, когда трудно еще представить ее воплощение.

Таким образом, IDEF0 может применяться на ранних этапах создания широкого круга систем. В то же время она может быть использована для анализа функций существующих систем и выработки решений по их улучшению.

Основу методологии IDEF0 составляет графический язык описания процессов. Модель в нотации IDEF0 представляет собой совокупность иерархически упорядоченных и взаимосвязанных диаграмм. Каждая диаграмма является единицей описания системы и располагается на отдельном листе.

Модель (AS-IS, TO-BE или SHOULD-BE) может содержать 4 типа диаграмм [ , ]:

Контекстную диаграмму;

Диаграммы декомпозиции;

Диаграммы дерева узлов;

Диаграммы только для экспозиции (for exposition only, FEO).

Контекстная диаграмма (диаграмма верхнего уровня), являясь вершиной древовидной структуры диаграмм, показывает назначение системы (основную функцию) и ее взаимодействие с внешней средой. В каждой модели может быть только одна контекстная диаграмма. После описания основной функции выполняется функциональная декомпозиция, т. е. определяются функции, из которых состоит основная.

Далее функции делятся на подфункции и так до достижения требуемого уровня детализации исследуемой системы. Диаграммы, которые описывают каждый такой фрагмент системы, называются диаграммами декомпозиции . После каждого сеанса декомпозиции проводятся сеансы экспертизы – эксперты предметной области указывают на соответствие реальных процессов созданным диаграммам. Найденные несоответствия устраняются, после чего приступают к дальнейшей детализации процессов.

Диаграмма дерева узлов показывает иерархическую зависимость функций (работ), но не связи между ними. Их может быть несколько, поскольку дерево можно построить на произвольную глубину и с произвольного узла.

Диаграммы для экспозиции строятся для иллюстрации отдельных фрагментов модели с целью отображения альтернативной точки зрения на происходящие в системе процессы (например, с точки зрения руководства организации).

6.3. Элементы графической нотации IDEF0

Методология IDEF0 нашла широкое признание и применение, в первую очередь, благодаря простой графической нотации, используемой для построения модели. Главными компонентами модели являются диаграммы. На них отображаются функции системы в виде прямоугольников, а также связи между ними и внешней средой посредством стрелок. Использование всего лишь двух графических примитивов (прямоугольник и стрелка) позволяют быстро объяснить правила и принципы построения диаграмм IDEF0 людям, незнакомым с данной методологией. Это достоинство позволяет подключить и активизировать деятельность заказчика по описанию бизнес-процессов с использованием формального и наглядного графического языка.

На следующем рисунке показаны основные элементы графической нотации IDEF0 .

Рис. 6.1. Элементы графической нотации IDEF0

Прямоугольник представляет собой работу (процесс, деятельность, функцию или задачу) , которая имеет фиксированную цель и приводит к некоторому конечному результату. Имя работы должно выражать действие (например, «Изготовление детали», «Расчет допускаемых скоростей», «Формирование ведомости ЦДЛ № 3»).

Взаимодействие работ между собой и внешним миром описывается в виде стрелок. В IDEF0 различают 5 видов стрелок :

- вход (англ. input) – материал или информация, которые используются и преобразуются работой для получения результата (выхода). Вход отвечает на вопрос «Что подлежит обработке?». В качестве входа может быть как материальный объект (сырье, деталь, экзаменационный билет), так и не имеющий четких физических контуров (запрос к БД, вопрос преподавателя). Допускается, что работа может не иметь ни одной стрелки входа. Стрелки входа всегда рисуются входящими в левую грань работы;

- управление (англ. control) – управляющие, регламентирующие и нормативные данные, которыми руководствуется работа. Управление отвечает на вопрос «В соответствии с чем выполняется работа?». Управление влияет на работу, но не преобразуется ей, т.е. выступает в качестве ограничения. В качестве управления могут быть правила, стандарты, нормативы, расценки, устные указания. Стрелки управления рисуются входящими в верхнюю грань работы. Если при построении диаграммы возникает вопрос, как правильно нарисовать стрелку сверху или слева, то рекомендуется ее рисовать как вход (стрелка слева);

- выход (англ. output) – материал или информация, которые представляют результат выполнения работы. Выход отвечает на вопрос «Что является результатом работы?». В качестве выхода может быть как материальный объект (деталь, автомобиль, платежные документы, ведомость), так и нематериальный (выборка данных из БД, ответ на вопрос, устное указание). Стрелки выхода рисуются исходящими из правой грани работы;

- механизм (англ. mechanism) – ресурсы, которые выполняют работу. Механизм отвечает на вопрос «Кто выполняет работу или посредством чего?». В качестве механизма могут быть персонал предприятия, студент, станок, оборудование, программа. Стрелки механизма рисуются входящими в нижнюю грань работы;

- вызов (англ. call) – стрелка указывает, что некоторая часть работы выполняется за пределами рассматриваемого блока. Стрелки выхода рисуются исходящими из нижней грани работы.

6.4. Типы связей между работами

После определения состава функций и взаимосвязей между ними, возникает вопрос о правильной их композиции (объединении) в модули (подсистемы). При этом подразумевается, что каждая отдельная функция должна решать одну, строго определенную задачу. В противном случае необходима дальнейшая декомпозиция или разделение функций.

При объединении функций в подсистемы необходимо стремиться, чтобы внутренняя связность (между функциями внутри модуля) была как можно сильнее, а внешняя (между функциями, входящими в разные модули), как можно слабее. Опираясь на семантику связей методологии , введем классификацию связей между функциями (работами). Данная классификация является расширением . Типы связей приводятся в порядке уменьшения их значимости (силы связывания). В приводимых примерах утолщенными линиями выделяются функции, между которыми имеется рассматриваемый тип связи.

1. Иерархическая связь (связь «часть» – «целое») имеет место между функцией и подфункциями, из которых она состоит.

Рис. 6.2. Иерархическая связь

2. Регламентирующая (управляющая, подчиненная) связь отражает зависимость одной функции от другой, когда выход одной работы направляется на управление другой. Функцию, из которой выходит управление, следует считать регламентирующей или управляющей, а в которую входит – подчиненной. Различают прямую связь по управлению , когда управление передается с вышестоящей работы на нижестоящую (рис. 6.3), и обратную связь по управлению , когда управление передается от нижестоящей к вышестоящей (рис. 6.4).

3. Функциональная (технологическая) связь имеет место, когда выход одной функции служит входными данными для следующей функции. С точки зрения потока материальных объектов данная связь показывает технологию (последовательность работ) обработки этих объектов. Различают прямую связь по входу , когда выход передается с вышестоящей работы на нижестоящую (рис. 6.5), и обратную связь по входу , когда выход передается с нижестоящей к вышестоящей (рис.6.6).



Рис. 6.5. Прямая связь по входу Рис. 6.6. Обратная связь по входу

4. Потребительская связь имеет место, когда выход одной функции служит механизмом для следующей функции. Таким образом, одна функция потребляет ресурсы, вырабатываемые другой.

Рис. 6.7. Потребительская связь

5. Логическая связь наблюдается между логически однородными функциями. Такие функции, как правило, выполняют одну и ту же работу, но разными (альтернативными) способами или, используя разные исходные данные (материалы).

Рис. 6.8. Логическая связь

6. Коллегиальная (методическая) связь имеет место между функциями, алгоритм работы которых определяется одним и тем же управлением. Аналогом такой связи является совместная работа сотрудников одного отдела (коллег), подчиняющихся начальнику, который отдает указания и приказы (управляющие сигналы). Такая связь также возникает, когда алгоритмы работы этих функций определяются одним и тем же методическим обеспечением (СНИП, ГОСТ, официальными нормативными материалами и т. д.), служащим в качестве управления.

Рис. 6.9. Методическая связь

7. Ресурсная связь возникает между функциями, использующими для своей работы одни и те же ресурсы. Ресурсно-зависимые функции, как правило, не могут выполняться одновременно.

Рис. 6.10. Ресурсная связь

8. Информационная связь имеет место между функциями, использующими в качестве входных данных одну и ту же информацию.

Рис. 6.11. Информационная связь

9. Временная связь возникает между функциями, которые должны выполняться одновременно до или одновременно после другой функции.

Кроме указанных на рисунке случаев, эта связь имеет место также между другими сочетаниями управления, входа и механизма, поступающими в одну функцию.

Рис. 6.12. Временная связь

10. Случайная связь возникает, когда конкретная связь между функциями мала или полностью отсутствует.

Рис. 6.13. Случайная связь

Из приведенных выше типов связей наиболее сильной является иерархическая связь, которая, по сути, и определяет объединение функций в модули (подсистемы). Несколько слабее являются регламентирующие, функциональные и потребительские связи. Функции с этими связями обычно реализуются в одной подсистеме. Логические, коллегиальные, ресурсные и информационные связи одни из самых слабых. Функции, обладающие ими, как правило, реализуют в разных подсистемах, за исключением логически однородных функций (функций, связанных логической связью). Временная связь свидетельствует о слабой зависимости функций друг от друга и требует их реализации в отдельных модулях.

Таким образом, при объединении функций в модули наиболее желательными являются первые пять видов связей. Функции, связанные последними пятью связями, лучше реализовывать в отдельных модулях.

В IDEF0 существуют соглашения (правила и рекомендации) по созданию диаграмм, которые призваны облегчить чтение и экспертизу модели [ , ]. Некоторые из этих правил CASE-средства поддерживают автоматически, выполнение других следует обеспечить вручную.

1. Перед построением модели необходимо определиться, какая модель (модели) системы будет построена. Это подразумевает определение ее типа AS-IS, TO-BE или SHOULD-BE, а также определения позиции, с точки зрения которой строится модель. «Точку зрения» лучше всего представлять себе как место (позицию) человека или объекта, в которое надо встать, чтобы увидеть систему в действии. Например, при построении модели работы продуктового магазина можно среди возможных претендентов, с точки зрения которых рассматривается система, выбрать продавца, кассира, бухгалтера или директора. Обычно выбирается одна точка зрения, наиболее полно охватывающая все нюансы работы системы, и при необходимости для некоторых диаграмм декомпозиции строятся диаграммы FEO, отображающие альтернативную точку зрения.

2. На контекстной диаграмме отображается один блок, показывающий назначение системы. Для него рекомендуется отображать по 2–4 стрелки, входящие и выходящие с каждой стороны.

3. Количество блоков на диаграммах декомпозиции рекомендуется в пределах 3–6. Если на диаграмме декомпозиции два блока, то она, как правило, не имеет смысла. При наличии большого количества блоков диаграмма становится перенасыщенной и трудно читаемой.

4. Блоки на диаграмме декомпозиции следует располагать слева направо и сверху вниз. Такое расположение позволяет более четко отразить логику и последовательность выполнения работ. Кроме этого маршруты стрелок будут менее запутанными и иметь минимальное количество пересечений.

5. Отсутствие у функции одновременно стрелок управления и входа не допускается. Это означает, что запуск данной функции не контролируется и может произойти в любой произвольный момент времени либо вообще никогда.

Рис. 6.14. Функция без управления и входа

Блок с наличием только управления можно рассматривать как вызов в программе функции (процедуры) без параметров. Если у блока имеется вход, то он эквивалентен вызову в программе функции с параметрами. Таким образом, блок без управления и входа эквивалентен функции, которая в программе ни разу не вызывается на исполнение.

На рис. 6.7–6.12, отображающих фрагменты диаграмм IDEF0, встречаются блоки без входа и управления. Это не стоит рассматривать как ошибку, так как подразумевается, что одна из этих стрелок должна быть.

6. У каждого блока должен быть как минимум один выход.

Рис. 6.15. Функция без выхода

Работы без результата не имеют смысла и не должны моделироваться. Исключение составляют работы, отображаемые в модели AS-IS. Их наличие свидетельствует о неэффективности и несовершенстве технологических процессов. В модели TO-BE эти работы должны отсутствовать.

7. При построении диаграмм следует минимизировать число пересечений, петель и поворотов стрелок.

8. Обратные связи и итерации (циклические действия) могут быть изображены с помощью обратных дуг. Обратные связи по входу рисуются «нижней» петлей, обратная связь по управлению – «верхней» (см. рис. 6.4 и 6.6).

9. Каждый блок и каждая стрелка на диаграммах должны обязательно иметь имя. Допускается использовать ветвление (декомпозицию) или слияние (композицию) стрелок. Это связано с тем, что одни и те же данные или объекты, порожденные одной работой, могут использоваться сразу в нескольких других работах. И наоборот, одинаковые или однородные данные и объекты, порожденные разными работами, могут использоваться в одном месте.

Рис. 6.16. Ветвление стрелок

При этом допускается задание различным ветвям стрелки уточняющих имен после разветвления (до слияния). Если какая-либо ветвь после ветвления не именована, то считается, что ее имя соответствует имени стрелки, записанному до ветвления.

Так, на рис. 6.16 управления, входящие в блоки «Изготовление деталей» и «Сборка изделия», имеют уточняющие значения и являются составной частью более общего управления «Чертежи». Для работы блока «Контроль качества» используются все чертежи.

На диаграмме не допускается рисовать стрелки, когда до и после ветвления они не именованы. На рис. 6.17 стрелка, входящая в блок «Формирование типовых ведомостей», не имеет имени до и после ветвления, что является ошибкой.

Рис. 6.17. Неправильное именование стрелок

10. При построении диаграмм для лучшей их читаемости может использоваться механизм туннелирования стрелок. Например, чтобы не загромождать лишними деталями диаграммы верхних уровней (родительские), на диаграммах декомпозиции начало дуги помещают в тоннель.

Рис. 6.18. Туннелирование стрелок

В данном примере при построении модели проведения новогоднего утренника механизм «два топора» не будет отображаться на диаграммах верхних уровней, при чтении которых может возникнуть справедливый вопрос: «А зачем нужны два топора на новогоднем утреннике?».

Аналогичным образом можно выполнять туннелирование с обратной целью – недопущения отображения стрелки на диаграммах низших уровней. В этом случае круглые скобки ставятся на конце стрелки. На контекстной диаграмме (см. рис. 6.21) затуннелирован механизм «Инженер службы пути», входящий в блок «Определение допускаемых скоростей». Такое решение принято, так как инженер непосредственно участвует во всех работах, отображенных на диаграмме декомпозиции этого блока (см. рис. 6.22). Чтобы не показывать эту связь и не загромождать диаграмму декомпозиции, стрелка была затуннелирована.

11. Все стрелки, входящие и выходящие из блока, при построении для него диаграммы декомпозиции должны быть отображены на ней. Исключение составляют затуннелированные стрелки. Имена стрелок, перенесенных на диаграмму декомпозиции, должны совпадать с именами, указанными на диаграмме верхнего уровня.

12. Если две стрелки проходят параллельно (начинаются из одной и той же грани одной работы и заканчиваются на одной и той же грани другой работы), то по возможности следует их объединить и называть единым термином.

Рис. 6.19. Объединение связей

13. Каждый блок на диаграммах должен иметь свой номер. Для того чтобы указать положение любой диаграммы или блока в иерархии, используются номера диаграмм. Блок на диаграмме верхнего уровня обозначается 0, блоки на диаграммах второго уровня – цифрами от 1 до 9 (1, 2, …, 9), блоки на третьем уровне – двумя цифрами, первая из которых указывает на номер детализируемого блока с родительской диаграммы, а вторая номер блока по порядку на текущей диаграмме (11, 12, 25, 63) и т. д. Контекстная диаграмма имеет обозначение «А – 0», диаграмма декомпозиции первого уровня – «А0», диаграммы декомпозиции следующих уровней – состоят из буквы «А», за которой следует номер декомпозируемого блока (например, «А11», «А12», «А25», «А63»). На рисунке показано типичное дерево диаграмм (диаграмма дерева узлов) с нумерацией.

Рис. 6.20. Иерархия диаграмм

В современных CASE-средствах механизмы нумерации работ поддерживается автоматически. CASE-средства обеспечивают также автоматическое построение диаграмм дерева узлов, которые содержат только иерархические связи. Вершиной такой диаграммы может быть любой узел (блок), и она может быть построена на любую глубину.

6.6. Пример построения модели IDEF0 для системы определения допускаемых скоростей

Расчет допускаемых скоростей движения поездов является трудоемкой инженерной задачей. При проходе поездом какого-либо участка фактическая скорость движения поезда не должна превышать предельно допускаемую. Эта предельно допускаемая скорость устанавливается исходя из опыта эксплуатации и специально проводимых испытаний по динамике движения и воздействию на путь подвижного состава. Непревышение этой скорости гарантирует безопасность движения поездов, комфортабельные условия езды пассажиров и т. п. Они определяются в зависимости от типа подвижного состава (марки локомотива и типа вагонов), параметров верхнего строения пути (типа рельсов, балласта, эпюры шпал) и плана (радиуса кривых, переходных кривых, возвышения наружного рельса и т. д.). Как правило, для установления допускаемых скоростей необходимо определить не менее двух (на прямых) и пяти (в кривых) скоростей, из которых и выбирается окончательная допускаемая скорость, как наименьшая из всех рассчитанных. Расчет этих скоростей регламентируются Приказом МПС России № 41 от 12 ноября 2001 г. «Нормы допускаемых скоростей движения подвижного состава по железнодорожным путям колеи 1520 (1524) мм Федерального железнодорожного транспорта».

Как было отмечено, построение модели IDEF0 начинается с представления всей системы в виде простейшей компоненты (контекстной диаграммы). Данная диаграмма отображает назначение (основную функцию) системы и необходимые входные и выходные данные, управляющую и регламентирующую информацию, а также механизмы.

Контекстная диаграмма для задачи определения допускаемых скоростей показана на рис.6.21. Для построения модели использовался продукт BPwin 4.0 фирмы Computer Associates.


Рис. 6.21. Контекстная диаграмма системы определения допускаемых скоростей (методология IDEF0)

В качестве исходной информации , на основе которой выполняется определение допускаемых скоростей, используются:

Данные проекта новой линии или проекта реконструкции (содержат всю необходимую информацию для реализации проекта, а именно километраж, оси раздельных пунктов, план линии и др.);

Подробный продольный профиль (содержит информацию, аналогичную рассмотренной выше);

Паспорт дистанции пути (содержит информацию, аналогичную рассмотренной выше, а также сведения о верхнем строении пути (ВСП));

Данные о результатах съемки плана пути вагоном-путеизмерителем;

Ведомость возвышений наружного рельса в кривых (содержит информацию о плане пути).

Часть исходной информации может быть взята из разных источников. В частности сведения о плане (параметрах кривых) могут быть взяты из проекта новой линии или проекта реконструкции, подробного продольного профиля, паспорта дистанции пути и т.д.

Управляющими данными являются:

Указание начальника службы пути дороги или Департамента пути и сооружений ОАО «РЖД» на расчет;

Приказ № 41, содержащий нормативно-справочную информацию, порядок и формулы определения допускаемых скоростей;

Сведения о текущем или планируемом поездопотоке (данные о марках обращающихся локомотивов и типах используемых вагонов);

Сведения о планируемых ремонтах пути, реконструкции и переустройстве сооружений и устройств.

Результатом работы системы должны быть:

Ведомости допускаемых скоростей, содержащие все типы рассчитанных скоростей и позволяющие установить причину их ограничения;

Ведомости Приказа начальника дороги об установлении допускаемых скоростей на перегонах и раздельных пунктах (Приказ «Н») согласно принятой на дороге форме. Утвержденный Приказ «Н» официально закрепляет допускаемые скорости движения поездов;

Типовые формы № 1, 1а и 2, содержащие планируемые допускаемые скорости для разработки графика движения поездов.

Скорости, содержащиеся в Приказе «Н» и типовых формах, могут отличаться от рассчитанных и показываемых в ведомостях допускаемых скоростей. Это связано с тем, что в них отражают ограничения скорости не только по конструкции подвижного состава, параметров ВСП и кривых, но и по состоянию устройств и сооружений (деформация земляного полотна, перекос опор контактной сети и т. д.). Кроме того, они корректируются с учетом планируемых ремонтов пути, реконструкции и переустройства сооружений и устройств и т.д.

После построения контекстная диаграмма детализируется с помощью диаграммы декомпозиции первого уровня. На этой диаграмме отображаются функции системы, которые должны быть реализованы в рамках основной функции. Диаграмма, для которой выполнена декомпозиция, по отношению к детализирующим ее диаграммам называется родительской . Диаграмма декомпозиции по отношению к родительской называется дочерней .

Диаграмма декомпозиции первого уровня для рассматриваемой задачи приведена на рис.6.22. Как правило, при построении диаграммы декомпозиции исходная функция (декомпозируемая) разбивается на 3–8 подфункций (блоков). При этом блоки на диаграмме декомпозиции рекомендуется располагать слева направо сверху вниз, чтобы лучше была видна последовательность и логика взаимодействия подфункций.


Рис. 6.22. Диаграмма декомпозиции первого уровня (методология IDEF0)

Очередность выполнения функций для решения рассматриваемой задачи следующая:

Ввод и корректировка нормативно-справочной информации и данных по участкам дороги (блоки 1 и 2);

Подготовка задания на расчет (блок 3). В нем указывается, для какого участка и пути, а также марки локомотива и типа вагонов следует выполнить расчет;

Расчет допускаемых скоростей в соответствии с порядком и формулами, указанными в Приказе № 41 (блок 4). В качестве исходной информации выступают данные по пути участка (план, верхнее строение пути и т. д.) и нормативы, выбираемые на основании задания на расчет;

Формирование ведомостей допускаемых скоростей (блок 5). На базе результатов расчета создаются несколько видов выходных документов, которые, с одной стороны, позволяют выявить причину ограничений скорости, с другой стороны, выступают в качестве основы для подготовки регламентированных документов;

Формирование и подготовка проекта Приказа «Н» и типовых ведомостей (блоки 6 и 7).

После построения диаграммы декомпозиции первого уровня для указанных на ней функций строятся отдельные диаграммы (диаграммы декомпозиции второго уровня). Затем процесс декомпозиции (построения диаграмм) продолжается до тех пор, пока дальнейшая детализация функций не теряет смысла. Для каждой атомарной функции, описывающей элементарную операцию (т. е. функции, не имеющей диаграмму декомпозиции), составляется подробная спецификация, определяющая ее особенности и алгоритм реализации. В качестве дополнения к спецификации могут использоваться блок-схемы алгоритмов. Таким образом, процесс функционального моделирования заключается в постепенном выстраивании иерархии функций.

6.7. ICOM-коды

Стрелки, входящие в блок и выходящие из него на диаграмме верхнего уровня, являются теми же самыми, что и стрелки, входящие в диаграмму нижнего уровня и выходящие из нее, потому что блок и диаграмма представляют одну и ту же часть системы (см. рис. и ). Как следствие этого, границы функции верхнего уровня – это то же самое, что и границы диаграммы декомпозиции.

ICOM-коды (аббревиатура от Input, Control, Output и Mechanism) предназначены для идентификации граничных стрелок. ICOM-код содержит префикс, соответствующий типу стрелки (I, С, О или М), и порядковый номер (см. рис.).

На начальных этапах создания ИС необходимо понять, как работает организация, которую собираются автоматизировать. Никто в организации не знает, как она работает в той мере подробности, которая необходима для создания ИС. Руководитель хорошо знает работу в целом, но не в состоянии вникнуть в детали работы каждого рядового сотрудника. Рядовой сотрудник хорошо знает, что творится на его рабочем месте, но плохо знает, как работают коллеги. Поэтому для описания работы предприятия необходимо построить модель. Такая модель должна быть адекватна предметной области, следовательно, она должна содержать в себе знания всех участников бизнес-процессов организации.

Наиболее удобным языком моделирования бизнес-процессов является IDEF0, предложенный более 20 лет назад Дугласом Россом (SoftTech, Inc.) и называвшийся первоначально SADT - Structured Analysis and Design Technique. (В начале 70-х годов вооруженные силы США применили подмножество SADT, касающееся моделирования процессов, для реализации проектов в рамках программы ICAM (Integrated Computer-Aided Manufacturing). В дальнейшем это подмножество SADT было принято в качестве федерального стандарта США под наименованием IDEF0. Подробные спецификации на стандарты IDEF можно найти на сайте http://www.idef.com .

В IDEF0 система представляется как совокупность взаимодействующих работ или функций. Такая чисто функциональная ориентация является принципиальной - функции системы анализируются независимо от объектов, которыми они оперируют. Это позволяет более четко смоделировать логику и взаимодействие процессов организации.

Под моделью в IDEF0 понимают описание системы (текстовое и графическое), которое должно дать ответ на некоторые заранее определенные вопросы.

Моделируемая система рассматривается как произвольное подмножество Вселенной. Произвольное потому, что, во-первых, мы сами умозрительно определяем, будет ли некий объект компонентом системы, или мы будем его рассматривать как внешнее воздействие, и, во-вторых, оно зависит от точки зрения на систему. Система имеет границу, которая отделяет ее от остальной Вселенной. Взаимодействие системы с окружающим миром описывается как вход (нечто, что перерабатывается системой), выход (результат деятельности системы), управление (стратегии и процедуры, под управлением которых производится работа) и механизм (ресурсы, необходимые для проведения работы). Находясь под управлением, система преобразует входы в выходы, используя механизмы.

Процесс моделирования какой-либо системы в IDEF0 начинается с определения контекста, т. е. наиболее абстрактного уровня описания системы в целом. В контекст входит определение субъекта моделирования, цели и точки зрения на модель.

Под субъектом понимается сама система, при этом необходимо точно установить, что входит в систему, а что лежит за ее пределами, другими словами, мы должны определить, что мы будем в дальнейшем рассматривать как компоненты системы, а что как внешнее воздействие. На определение субъекта системы будет существенно влиять позиция, с которой рассматривается система, и цель моделирования - вопросы, на которые построенная модель должна дать ответ. Другими словами, первоначально необходимо определить область (Scope) моделирования. Описание области как системы в целом, так и ее компонентов является основой построения модели. Хотя предполагается, что в течение моделирования область может корректироваться, она должна быть в основном сформулирована изначально, поскольку именно область определяет направление моделирования и когда должна быть закончена модель. При формулировании области необходимо учитывать два компонента - широту и глубину. Широта подразумевает определение границ модели - мы определяем, что будет рассматриваться внутри системы, а что снаружи. Глубина определяет, на каком уровне детализации модель является завершенной. При определении глубины системы необходимо не забывать об ограничениях времени - трудоемкость построения модели растет в геометрической прогрессии от глубины декомпозиции. После определения границ модели предполагается, что новые объекты не должны вноситься в моделируемую систему; поскольку все объекты модели взаимосвязаны, внесение нового объекта может быть не просто арифметической добавкой, но в состоянии изменить существующие взаимосвязи. Внесение таких изменений в готовую модель является, как правило, очень трудоемким процессом (так называемая проблема "плавающей области").

Цель моделирования (Purpose). Модель не может быть построена без четко сформулированной цели. Цель должна отвечать на следующие вопросы:

Почему этот процесс должен быть замоделирован?

Что должна показывать модель?

Что может получить читатель?

Формулировка цели позволяет команде аналитиков сфокусировать усилия в нужном направлении. Примерами формулирования цели могут быть следующие утверждения: "Идентифицировать и определить текущие проблемы, сделать возможным анализ потенциальных улучшений", "Идентифицировать роли и ответственность служащих для написания должностных инструкций", "Описать функциональность предприятия с целью написания спецификаций информационной системы" и т. д.

Точка зрения (Viewpoint) . Хотя при построении модели учитываются мнения различных людей, модель должна строиться с единой точки зрения. Точку зрения можно представить как взгляд человека, который видит систему в нужном для моделирования аспекте. Точка зрения должна соответствовать цели моделирования. Очевидно, что описание работы предприятия с точки зрения финансиста и технолога будет выглядеть совершенно по-разному, поэтому в течение моделирования важно оставаться на выбранной точке зрения. Как правило, выбирается точка зрения человека, ответственного за моделируемую работу в целом. Часто при выборе точки зрения на модель важно задокументировать дополнительные альтернативные точки зрения. Для этой цели обычно используют диаграммы FEO (For Exposition Only).

IDEF0-модель предполагает наличие четко сформулированной цели, единственного субъекта моделирования и одной точки зрения. Для внесения области, цели и точки зрения в модели IDEF0 в BPwin следует выбрать пункт меню Edit/Model Properties , вызывающий диалог Model Properties (рис. 4). В закладкеPurpose следует внести цель и точку зрения, а в закладкуDefinition - определение модели и описание области.

В закладке Status того же диалога можно описать статус модели (черновой вариант, рабочий, окончательный и т. д.), время создания и последнего редактирования (отслеживается в дальнейшем автоматически по системной дате). В закладкеSource описываются источники информации для построения модели (например, "Опрос экспертов предметной области и анализ документации"). ЗакладкаGeneral служит для внесения имени проекта и модели, имени и инициалов автора и временных рамок модели -AS-IS иТО-ВЕ .

Рис. 4. Диалог задания свойств модели

Модели AS-IS и ТО-ВЕ . Обычно сначала строится модель существующей организации работы - AS-IS (как есть). На основе модели AS-IS достигается консенсус между различными единицами бизнеса по тому, "кто что сделал" и что каждая единица бизнеса добавляет в процесс. Модель AS-IS позволяет выяснить, "что мы делаем сегодня" перед тем, как перепрыгнуть на то, "что мы будем делать завтра". Анализ функциональной модели позволяет понять, где находятся наиболее слабые места, в чем будут состоять преимущества новых бизнес-процессов и насколько глубоким изменениям подвергнется существующая структура организации бизнеса. Детализация бизнес-процессов позволяет выявить недостатки организации даже там, где функциональность на первый взгляд кажется очевидной. Признаками неэффективной деятельности могут быть бесполезные, неуправляемые и дублирующиеся работы, неэффективный документооборот (нужный документ не оказывается в нужном месте в нужное время), отсутствие обратных связей по управлению (на проведение работы не оказывает влияния ее результат), входу (объекты или информация используются нерационально) и т. д. Найденные в модели AS-IS недостатки можно исправить при создании модели ТО-ВЕ (как будет) - модели новой организации бизнес-процессов. Модель нужна ТО-ВЕ для анализа альтернативных/лучших путей выполнения работы и документирования того, как компания будет делать бизнес в будущем.

Следует указать на распространенную ошибку при создании модели AS-IS - это создание идеализированной модели. Примером может служить создание модели на основе знаний руководителя, а не конкретного исполнителя работ. Руководитель знаком с тем, как предполагается выполнение работы по руководствам и должностным инструкциям и часто не знает, как на самом деле подчиненные выполняют рутинные работы. В результате получается приукрашенная, искаженная модель, которая несет ложную информацию и которую невозможно в дальнейшем использовать для анализа. Такая модель называется SHOULD_BE (как должно бы быть).

Технология проектирования ИС подразумевает сначала создание модели AS-IS, ее анализ и улучшение бизнес-процессов, т. е. создание модели ТО-ВЕ, и только на основе модели ТО-ВЕ строится модель данных, прототип и затем окончательный вариант ИС. Построение системы на основе модели AS-IS приводит к автоматизации предприятия по принципу "все оставить как есть, только чтобы компьютеры стояли", т. е. ИС автоматизирует несовершенные бизнес-процессы и дублирует, а не заменяет существующий документооборот. В результате внедрение и эксплуатация такой системы приводит лишь к дополнительным издержкам на закупку оборудования, создание программного обеспечения и сопровождение того и другого.

Иногда текущая AS-IS и будущая ТО-ВЕ модели различаются очень сильно, так что переход от начального к конечному состоянию становится неочевидным. В этом случае необходима третья модель, описывающая процесс перехода от начального к конечному состояния системы, поскольку такой переход - это тоже бизнес-процесс.

Результат описания модели можно получить в отчете Model Report . Диалог настройки отчета по модели вызывается из пункта менюReport/Model Report . В диалоге настройки следует выбрать необходимые поля, при этом автоматически отображается очередность вывода информации в отчет (рис. 5).

Рис. 5. Отчет по модели

Диаграммы IDEF0. Основу методологии IDEF0 составляет графический язык описания бизнес-процессов. Модель в нотации IDEF0 представляет собой совокупность иерархически упорядоченных и взаимосвязанных диаграмм. Каждая диаграмма является единицей описания системы и располагается на отдельном листе.

Модель может содержать четыре типа диаграмм:

контекстную диаграмму (в каждой модели может быть только одна контекстная диаграмма);

диаграммы декомпозиции;

диаграммы дерева узлов;

диаграммы только для экспозиции (FEO).

Контекстная диаграмма является вершиной древовидной структуры диаграмм и представляет собой самое общее описание системы и ее взаимодействия с внешней средой. После описания системы в целом проводится разбиение ее на крупные фрагменты. Этот процесс называется функциональной декомпозицией, а диаграммы, которые описывают каждый фрагмент и взаимодействие фрагментов, называются диаграммами декомпозиции. После декомпозиции контекстной диаграммы проводится декомпозиция каждого большого фрагмента системы на более мелкие и так далее, до достижения нужного уровня подробности описания. После каждого сеанса декомпозиции проводятся сеансы экспертизы - эксперты предметной области указывают на соответствие реальных бизнес-процессов созданным диаграммам. Найденные несоответствия исправляются, и только после прохождения экспертизы без замечаний можно приступать к следующему сеансу декомпозиции. Так достигается соответствие модели реальным бизнес-процессам на любом и каждом уровне модели. Синтаксис описания системы в целом и каждого ее фрагмента одинаков во всей модели.

Диаграмма дерева узлов показывает иерархическую зависимость работ, но не взаимосвязи между работами. Диаграмм деревьев узлов может быть в модели сколь угодно много, поскольку дерево может быть построено на произвольную глубину и не обязательно с корня.

Диаграммы для экспозиции (FEO) строятся для иллюстрации отдельных фрагментов модели, для иллюстрации альтернативной точки зрения, либо для специальных целей.

Пример создания функционально модели.

В качестве примера рассматривается деятельность вымышленной компании «Computer Word». Компания занимается в основном сборкой и продажей настольных компьютеров и ноутбуков. Компания не производит компоненты самостоятельно, а только собирает и тестирует компьютеры.

Основные виды работ в компании таковы:

продавцы принимают заказы клиентов;

операторы группируют заказы по типам компьютеров;

операторы собирают и тестируют компьютеры;

операторы упаковывают компьютеры согласно заказам;

кладовщик отгружает клиентам заказы.

Компания использует лицензионную бухгалтерскую информационную систему, которая позволяет оформить заказ, счет и отследить платежи по счетам.

Методика выполнения работы

1. Запустите BPwin ().

2. Если появляется диалог ModelMart Connection Manager , нажмите на кнопкуCancel (Отмена).

3. Щелкните по кнопке . Появляется диалоговое окноI would like to (рис. 6). Внесите в текстовое полеName имя модели "Деятельность компании" и выберите Туре –Business Process (IDEF0) . Нажмите кнопкуОК .

Рис. 6. Присвоение модели имени и выбор типа модели

4. Откроется диалоговое окно Properties for New Models (Свойства новой модели) (рис. 7). Введите в текстовое полеAuthor (Автор) имя автора модели и в текстовое полеAuthor initials его инициалы. Нажмите последовательно кнопкиApply иОК .

5. Автоматически создается незаполненная контекстная диаграмма (рис. 8).

6. Обратите внимание на кнопку на панели инструментов. Эта кнопка включает и выключает инструмент просмотра и навигации -Model Explorer (Браузер модели).Model Explorer имеет три вкладки –Activities (), Diagrams () и Objects (). Во вкладкеActivities щелчок правой кнопкой по объекту в браузере модели позволяет выбрать опции редактирования его свойств (рис. 9).

Рис. 8. Незаполненная контекстная диаграмма

Рис. 9. Щелчок правой кнопкой по объекту во вкладке Activities позволяет воспользоваться контекстным меню для редактирования его свойств

7. Перейдите в меню Model/Model Properties . Во вкладкеGeneral диалогового окнаModel Properties в текстовое полеModel name следует внести имя модели "Деятельность компании", а в текстовое полеProject имя проекта "Модель деятельности компании", и, наконец, в текстовоеTime Frame (Временной охват) -AS-IS (Как есть) (рис. 10).

Рис. 10. Окно задания свойств модели

8. Во вкладке Purpose диалогового окнаModel Properties в текстовое полеPurpose (цель) внесите данные о цели разработки модели - "Моделировать текущие (AS-IS) бизнес-процессы компании", а в текстовое полеViewpoint (точка зрения) - "Директор" (рис. 11).

Рис. 11. Внесение данных о цели моделирования и точке зрения

9. Во вкладке Definition диалогового окнаModel Properties в текстовое полеDefinition (Определение) внесите "Это учебная модель, описывающая деятельность компании" и в текстовое полеScope (охват) - "Общее управление бизнесом компании: исследование рынка, закупка компонентов, сборка, тестирование и продажа продуктов" (рис. 12).

10. Перейдите на контекстную диаграмму и правой кнопкой мыши щелкните по прямоугольнику представляющему, в нотации IDEF0 , условное графическое обозначение работы. В контекстном меню выберите опциюName (рис. 13). Во вкладкеName внесите имя "Деятельность компании" (рис. 14).

11. Во вкладке Definition диалогового окнаActivity Properties в текстовое полеDefinition (Определение) внесите "Текущие бизнес-процессы компании" (рис. 15). Текстовое полеNote (Примечания) оставьте незаполненным.

Рис. 12. Внесение дополнительных данных определяющих модель

Рис. 13. Контекстное меню для работы с выбранной опцией Name

Рис. 14. Присвоение работе названия

Рис. 15. Внесение дополнительных данных о работе

12. Создайте ICOM -стрелки на контекстной диаграмме (таблица 1).

Таблица 1 - Стрелки контекстной диаграммы

Название стрелки

(Arrow Name )

Определение стрелки

(Arrow Definition )

Тип стрелки

(Arrow Type )

Звонки клиентов

Запросы информации, заказы, техподдержка и т.д.

Правила и процедуры

Правила продаж, инструкции по сборке, процедуры тестирования, критерии производительности и т. д.

Проданные продукты

Настольные и портативные компьютеры

Бухгалтерская система

Оформление счетов, оплата счетов, работа с заказами

13. С помощью кнопки внесите текст в поле диаграммы - точку зрения и цель (рис. 16).

Рис. 16. Внесение текста в поле диаграммы с помощью редактора Text Block Editor

14. Создайте отчет по модели. В меню Tools/Reports/Model Report (рис. 17) задайте опции генерирования отчета (установите галочки) и нажмите кнопкуPreview (Предварительный просмотр) (рис. 18).

Рис. 17. Задание опций генерирования отчета Model Report

Рис. 18. Предварительный просмотр отчета Model Report

Декомпозиция производственных процессов по методологии IDEF 0

Работы (Activity)

Работы обозначают поименованные процессы, функции или задачи, которые происходят в течение определенного времени и имеют распознаваемые результаты. Работы изображаются в виде прямоугольников. Все работы должны быть названы и определены. Имя работы должно быть выражено отглагольным существительным, обозначающим действие (например, "Изготовление детали", "Прием заказа" и т.д.). Работа "Изготовление детали" может иметь, например, следующее определение: "Работа относится к полному циклу изготовления изделия от контроля качества сырья до отгрузки готового упакованного изделия". При создании новой модели (меню File/New ) автоматически создается контекстная диаграмма с единственной работой, изображающей систему в целом (рис. 1).

Для внесения имени работы следует щелкнуть по работе правой кнопкой мыши, выбрать в меню Name Editor и в появившемся диалоге внести имя работы. Для описания других свойств работы служит диалогActivity Properties (рис. 2).

Рис. 1. Пример контекстной диаграммы

Рис. 2. Редактор задания свойств работы

Диаграммы декомпозиции содержат родственные работы, т.е. дочерние работы, имеющие общую родительскую работу. Для создания диаграммы декомпозиции следует щелкнуть по кнопке .

Возникает диалог Activity Box Count (рис. 3), в котором следует указать нотацию новой диаграммы и количество работ на ней. Выберем нотациюIDEF0 и щелкнем наОК . Появляется диаграмма декомпозиции (рис. 4). Допустимый интервал числа работ 2-8. Декомпозировать работу на одну работу не имеет смысла: диаграммы с количеством работ более восьми получаются перенасыщенными и плохо читаются. Для обеспечения наглядности и лучшего понимания моделируемых процессов рекомендуется использовать от трех до шести блоков на одной диаграмме.

Рис . 3. Диалог Activity Box Count

Рис. 4. Пример диаграммы декомпозиции

Если оказывается, что количество работ недостаточно, то работу можно добавить в диаграмму, щелкнув сначала по кнопке на палитре инструментов, а затем по свободному месту на диаграмме.

Работы на диаграммах декомпозиции обычно располагаются по диагонали от левого верхнего угла к правому нижнему.

Такой порядок называется порядком доминирования. Согласно этому принципу расположения в левом верхнем углу располагается самая важная работа или работа, выполняемая по времени первой. Далее вправо вниз располагаются менее важные или выполняемые позже работы. Такое расположение облегчает чтение диаграмм, кроме того, на нем основывается понятие взаимосвязей работ.

Каждая из работ на диаграмме декомпозиции может быть в свою очередь декомпозирована. На диаграмме декомпозиции работы нумеруются автоматически слева направо. Номер работы показывается в правом нижнем углу. В левом верхнем углу изображается небольшая диагональная черта, которая показывает, что данная работа не была декомпозирована. Так, например, работа "Сборка изделия" имеет номер 3 и не была еще декомпозирована. Работа "Контроль качества" (номер 4) имеет нижний уровень декомпозиции

Стрелки (Arrow)

Взаимодействие работ с внешним миром и между собой описывается в виде стрелок. Стрелки представляют собой некую информацию и именуются существительными (например, "Заготовка", "Изделие", "Заказ").

В IDEF0 различают пять типов стрелок:

Вход (Input) - материал или информация, которые используются или преобразуется работой для получения результата (выхода). Допускается, что работа может не иметь ни одной стрелки входа. Каждый тип стрелок подходит к определенной стороне прямоугольника, изображающего работу, или выходит из нее. Стрелка входа рисуется как входящая в левую грань работы. При описании технологических процессов (для этого и был придуман IDEF0) не возникает проблем определения входов. Действительно, "Сырье" на рис. 1. - это нечто, что перерабатывается в процессе "Изготовление изделия" для получения результата. При моделировании ИС, когда стрелками являются не физические объекты, а данные, не все так очевидно. Например, при "Приеме пациента" карта пациента может быть и на входе и на выходе, между тем качество этих данных меняется. Другими словами, в этом примере для того, чтобы оправдать свое назначение, стрелки входа и выхода должны быть точно определены с тем, чтобы указать на то, что данные действительно были переработаны (например, на выходе - "Заполненная карта пациента"). Очень часто сложно определить, являются ли данные входом или управлением. В этом случае подсказкой может служить то, перерабатываются/изменяются ли данные в работе или нет. Если изменяются, то скорее всего это вход, если нет - управление.

Управление (Control) - правила, стратегии, процедуры или стандарты, которыми руководствуется работа. Каждая работа должна иметь хотя бы одну стрелку управления. Стрелка управления рисуется как входящая в верхнюю грань работы. На рис. 1 стрелки "Задание"и "Чертеж" - управление для работы "Изготовление изделия". Управление влияет на работу, но не преобразуется работой. Если цель работы - изменить процедуру или стратегию, то такая процедура или стратегия будет для работы входом. В случае возникновения неопределенности в статусе стрелки (управление или вход) рекомендуется рисовать стрелку управления.

Выход (Output) - материал или информация, которые производятся работой. Каждая работа должна иметь хотя бы одну стрелку выхода. Работа без результата не имеет смысла и не должна моделироваться. Стрелка выхода рисуется как исходящая из правой грани работы. На рис. 1 стрелка "Готовое изделие" является выходом для работы "Изготовление изделия".

Механизм (Mechanism) - ресурсы, которые выполняют работу, например персонал предприятия, станки, устройства и т. д. Стрелка механизма рисуется как входящая в нижнюю грань работы. На рис. 1 стрелка "Персонал предприятия" является механизмом для работы "Изготовление изделия". По усмотрению аналитика стрелки механизма могут не изображаться в модели.

Вызов (Call) - специальная стрелка, указывающая на другую модель работы. Стрелка вызова рисуется как исходящая из нижней грани работы. На рис. 1 стрелка "Другая модель работы" является вызовом для работы "Изготовление изделия". Стрелка вызова используется для указания того, что некоторая работа выполняется за пределами моделируемой системы. В BPwin стрелки вызова используются в механизме слияния и разделения моделей.

Граничные стрелки. Стрелки на контекстной диаграмме служат для описания взаимодействия системы с окружающим миром. Они могут начинаться у границы диаграммы и заканчиваться у работы, или наоборот. Такие стрелки называются граничными.

Для внесения граничной стрелки входа следует:

Стрелки управления, выхода, механизма и выхода изображаются аналогично. Для рисования стрелки выхода, например, следует щелкнуть по кнопке с символом стрелки в палитре инструментов, щелкнуть в правой части работы со стороны выхода (где начинается стрелка), перенести курсор к правой стороне экрана, пока не появится начальная штриховая полоска, и щелкнуть один раз по штриховой полоске.

Имена вновь внесенных стрелок автоматически заносятся в словарь (Arrow Dictionary ).

ICOM-коды. Диаграмма декомпозиции предназначена для детализации работы. В отличие от моделей, отображающих структуру организации, работа на диаграмме верхнего уровня в IDEF0 - это не элемент управления нижестоящими работами. Работы нижнего уровня - это то же самое, что работы верхнего уровня, но в более детальном изложении. Как следствие этого границы работы верхнего уровня - это то же самое, что границы диаграммы декомпозиции.ICOM (аббревиатура отInput, Control, Output и Mechanism ) - коды, предназначенные для идентификации граничных стрелок. КодICOM содержит префикс, соответствующий типу стрелки (I ,С ,О илиМ ), и порядковый номер. BPwin вносит ICOM-коды автоматически. Для отображения ICOM-кодов следует включить опциюShow ICOM codes на закладке Presentation диалога Model Properties .

Словарь стрелок редактируется при помощи специального редактора Arrow Dictionary Editor , в котором определяется стрелка и вносится относящийся к ней комментарий (рис. 6). Словарь стрелок решает очень важную задачу. Диаграммы создаются аналитиком для того, чтобы провести сеанс экспертизы, т. е. обсудить диаграмму со специалистом предметной области. В любой предметной области формируется профессиональный жаргон, причем очень часто жаргонные выражения имеют нечеткий смысл и воспринимаются разными специалистами по-разному. В то же время аналитик - автор диаграмм должен употреблять те выражения, которые наиболее понятны экспертам. Поскольку формальные определения часто сложны для восприятия, аналитик вынужден употреблять профессиональный жаргон, а, чтобы не возникло неоднозначных трактовок, в словаре стрелок каждому понятию можно дать расширенное и, если это необходимо, формальное определение.

Содержимое словаря стрелок можно распечатать в виде отчета (меню Report/Arrow Report... ) и получить тем самым толковый словарь терминов предметной области, использующихся в модели.

Рис . 5. Диалог Arrow Properties

Рис. 6. Словарь стрелок

Несвязанные граничные стрелки (unconnected border arrow). При декомпозиции работы входящие в нее и исходящие из нее стрелки (кроме стрелки вызова) автоматически появляются на диаграмме декомпозиции (миграция стрелок), но при этом не касаются работ. Такие стрелки называются несвязанными и воспринимаются в BPwin как синтаксическая ошибка. Для связывания стрелок входа, управления или механизма необходимо перейти в режим редактирования стрелок, щелкнуть по наконечнику стрелки и щелкнуть по соответствующему сегменту работы. Для связывания стрелки выхода необходимо перейти в режим редактирования стрелок, щелкнуть по сегменту выхода работы и затем по стрелке.

Внутренние стрелки. Для связи работ между собой используются внутренние стрелки, т. е. стрелки, которые не касаются границы диаграммы, начинаются у одной и кончаются у другой работы.

Для рисования внутренней стрелки необходимо в режиме рисования стрелок щелкнуть по сегменту (например, выхода) одной работы и затем по сегменту (например, входа) другой. В IDEF0 различают пять типов связей работ.

Связь по входу (output-input) , когда стрелка выхода вышестоящей работы (далее - просто выход) направляется на вход нижестоящей.

Связь по управлению (output-control) , когда выход вышестоящей работы направляется на управление нижестоящей. Связь по управлению показывает доминирование вышестоящей работы. Данные или объекты выхода вышестоящей работы не меняются в нижестоящей.

Обратная связь по входу (output-input feedback) , когда выход нижестоящей работы направляется на вход вышестоящей. Такая связь, как правило, используется для описания циклов.

Обратная связь по управлению (output-control feedback) , когда выход нижестоящей работы направляется на управление вышестоящей. Обратная связь по управлению часто свидетельствует об эффективности бизнес - процесса.

Связь выход-механизм (output-mechanism) , когда выход одной работы направляется на механизм другой. Эта взаимосвязь используется реже остальных и показывает, что одна работа подготавливает ресурсы, необходимые для проведения другой работы.

Явные стрелки . Явная стрелка имеет источником одну-единственную работу и назначением тоже одну-единственную работу.

Разветвляющиеся и сливающиеся стрелки . Одни и те же данные или объекты, порожденные одной работой, могут использоваться сразу в нескольких других работах. С другой стороны, стрелки, порожденные в разных работах, могут представлять собой одинаковые или однородные данные или объекты, которые в дальнейшем используются или перерабатываются в одном месте. Для моделирования таких ситуаций в IDEF0 используются разветвляющиеся и сливающиеся стрелки. Для разветвления стрелки нужно в режиме редактирования стрелки щелкнуть по фрагменту стрелки и по соответствующему сегменту работы. Для слияния двух стрелок выхода нужно в режиме редактирования стрелки сначала щелкнуть по сегменту выхода работы, а затем по соответствующему фрагменту стрелки.

Смысл разветвляющихся и сливающихся стрелок передается именованием каждой ветви стрелок. Существуют определенные правила именования таких стрелок. Рассмотрим их на примере разветвляющихся стрелок. Если стрелка именована до разветвления, а после разветвления ни одна из ветвей не именована, то подразумевается, что каждая ветвь моделирует те же данные или объекты, что и ветвь до разветвления.

Если стрелка именована до разветвления, а после разветвления какая-либо из ветвей не именована, то подразумевается, что эти ветви соответствуют именованию. Если при этом какая-либо ветвь после разветвления осталась неименованной, то подразумевается, что она моделирует те же данные или объекты, что и ветвь до разветвления.

Недопустима ситуация, когда стрелка до разветвления не именована, а после разветвления не именована какая-либо из ветвей. BPwin определяет такую стрелку как синтаксическую ошибку.

Правила именования сливающихся стрелок полностью аналогичны - ошибкой будет считаться стрелка, которая после слияния не именована, а до слияния не именована какая-либо из ее ветвей. Для именования отдельной ветви разветвляющихся и сливающихся стрелок следует выделить на диаграмме только одну ветвь, после этого вызвать редактор имени и присвоить имя стрелке. Это имя будет соответствовать только выделенной ветви.

Тоннелирование стрелок . Вновь внесенные граничные стрелки на диаграмме декомпозиции нижнего уровня изображаются в квадратных скобках и автоматически не появляются на диаграмме верхнего уровня.

Для их "перетаскивания" наверх нужно сначала выбрать кнопку на палитре инструментов и щелкнуть по квадратным скобкам граничной стрелки. Появляется диалог Border Arrow Editor (рис. 7).

Рис . 7. Диалог Border Arrow Editor

Если щелкнуть по кнопке Resolve Border Arrow , стрелка мигрирует на диаграмму верхнего уровня, если по кнопкеChangeToTunnel- стрелка будет затоннелирована и не попадет на другую диаграмму.

Тоннелирование может быть применено для изображения малозначимых стрелок. Если на какой-либо диаграмме нижнего уровня необходимо изобразить малозначимые данные или объекты, которые не обрабатываются или не используются работами на текущем уровне, то их необходимо направить на вышестоящий уровень (на родительскую диаграмму). Если эти данные не используются на родительской диаграмме, их нужно направить еще выше, и т. д. В результате малозначимая стрелка будет изображена на всех уровнях и затруднит чтение всех диаграмм, на которых она присутствует. Выходом является тоннелирование стрелки на самом нижнем уровне. Такое тоннелирование называется "не-в-родительской-диаграмме".

Пример создания диаграммы декомпозиции

1. Выберите кнопку перехода на нижний уровень в палитре инструментов и в диалоговом окнеActivity Box Count (рис. 8) установите число работ на диаграмме нижнего уровня - 3 - и нажмите кнопкуОК .

Рис. 8. Диалоговое окно Activity Box Count

2. Автоматически будет создана диаграмма декомпозиции (рис. 9).

Рис. 9. Диаграмма декомпозиции

Правой кнопкой мыши щелкните по работе расположенной в левом верхнем углу области редактирования модели, выберите в контекстном меню опцию Name и внесите имя работы. Повторите операцию для оставшихся двух работ. Затем внесите определение, статус и источник для каждой работы согласно данным таблицы 1.

Таблица 1. Работы диаграммы декомпозиции А0

Диаграмма декомпозиции примет вид представленный на рис. 10.

Рис.10 Диаграмма декомпозиции после присвоения работам наименований

3. Для изменения свойств работ после их внесения в диаграмму можно воспользоваться словарем работ (рис. 11). Вызов словаря производится при помощи пункта главного меню Dictionary /Activity .

Рис . 11. Словарь Activity Dictionary

Если описать имя и свойства работы в словаре, ее можно будет внести в диаграмму позже с помощью кнопки в палитре инструментов. Невозможно удалить работу из словаря, если она используется на какой-либо диаграмме. Если работа удаляется из диаграммы, из словаря она не удаляется. Имя и описание такой работы может быть использовано в дальнейшем. Для добавления работы в словарь необходимо перейти в конец списка и щелкнуть правой кнопкой по последней строке. Возникает новая строка, в которой нужно внести имя и свойства работы. Для удаления всех имен работ, не использующихся в модели, щелкните по кнопке(Purge (Чистить)).

4. Перейдите в режим рисования стрелок и свяжите граничные стрелки, воспользовавшись кнопкой на палитре инструментов так, как это показано на рис. 12.

Рис. 12. Связанные граничные стрелки на диаграмме А0

5. Правой кнопкой мыши щелкните по ветви стрелки управления работы "Сборка и тестирование компьютеров" и переименуйте ее в "Правила сборки и тестирования" (рис. 13). Внесите определение для новой ветви: "Инструкции по сборке, процедуры тестирования, критерии производительности и т. д.". Правой кнопкой мыши щелкните по ветви стрелки механизма работы "Продажи и маркетинг" и переименуйте ее как "Система оформления заказов" (рис. 14).

Рис. 13. Стрелка "Правила сборки и тестирования"

Рис. 14. Стрелка "Система оформления заказов"

6. Альтернативный метод внесения имен и свойств стрелок - использование словаря стрелок (вызов словаря - меню Dictionary/ Arrow ). Если внести имя и свойства стрелки в словарь (рис. 15), ее можно будет внести в диаграмму позже.

Рис. 15. Словарь стрелок

Стрелку нельзя удалить из словаря, если она используется на какой-либо диаграмме. Если удалить стрелку из диаграммы, из словаря она не удаляется. Имя и описание такой стрелки может быть использовано в дальнейшем. Для добавления стрелки необходимо перейти в конец списка и щелкнуть правой кнопкой по последней строке. Возникает новая строка, в которой нужно внести имя и свойства стрелки.

7. Создайте новые внутренние стрелки так, как показано на рис. 16.

Рис. 16. Внутренние стрелки диаграммы А0

8. Создайте стрелку обратной связи (по управлению) "Результаты сборки и тестирования", идущую от работы "Сборка и тестирование компьютеров" к работе "Продажи и маркетинг". Измените, при необходимости, стиль стрелки (толщина линий) и установите опцию Extra Arrowhead (Дополнительный Наконечник стрелы) (из контекстного меню). Методомdrag&drop перенесите имена стрелок так, чтобы их было удобнее читать. Если необходимо, установите из контекстного менюSquiggle (Загогулину). Результат возможных изменений показан на рис. 17.

Рис. 17. Результат редактирования стрелок на диаграмме А0

9. Создайте новую граничную стрелку выхода "Маркетинговые материалы", выходящую из работы "Продажи и маркетинг". Эта стрелка автоматически не попадает на диаграмму верхнего уровня и имеет квадратные скобки на наконечнике (рис. 18).

Рис. 18. Стрелка Маркетинговые материалы

10. Щелкните правой кнопкой мыши по квадратным скобкам и выберите пункт меню Arrow Tunnel (рис. 19).

В диалоговом окне Border Arrow Editor (Редактор Граничных Стрелок) выберите опциюResolve it to Border Arrow (Разрешить как Граничную Стрелку) (рис. 20).

Рис . 19. Пункт меню Arrow Tunnel

Рис . 20. Диалоговое окно Border Arrow Editor

Для стрелки "Маркетинговые материалы" выберите опцию Trim (Упорядочить) из контекстного меню. Результат выполнения лабораторной работы показан на рис. 21.

Рис. 21. Результат выполнения декомпозиции

Основной из трех методологий, поддерживаемых BPwin, является IDEF0. IDEF0, относится к семейству IDEF, которое появилось в конце шестидесятых годов под названием SADT (Structured Analysis and Design Technique). IDEF0 может быть использована для моделирования широкого класса систем. Для новых систем применение IDEF0 имеет своей целью определение требований и указание функций для последующей разработки системы, отвечающей поставленным требованиям и реализующей выделенные функции. Применительно к уже существующим системам IDEF0 может быть использована для анализа функций, выполняемых системой и отображения механизмов, посредством которых эти функции выполняются. Результатом применения IDEF0 к некоторой системе является модель этой системы, состоящая из иерархически упорядоченного набора диаграмм, текста документации и словарей, связанных друг с другом с помощью перекрестных ссылок. Двумя наиболее важными компонентами, из которых строятся диаграммы IDEF0, являются бизнес-функции или работы (представленные на диаграммах в виде прямоугольников) и данные и объекты (изображаемые в виде стрелок), связывающие между собой работы. При этом стрелки, в зависимости от того в какую грань прямоугольника работы они входят или из какой грани выходят, делятся на пять видов:

    Стрелки входа (входят в левую грань работы) - изображают данные или объекты, изменяемые в ходе выполнения работы.

    Стрелки управления (входят в верхнюю грань работы) - изображают правила и ограничения, согласно которым выполняется работа.

    Стрелки выхода (выходят из правой грани работы) - изображают данные или объекты, появляющиеся в результате выполнения работы.

    Стрелки механизма (входят в нижнюю грань работы) - изображают ресурсы, необходимые для выполнения работы, но не изменяющиеся в процессе работы (например, оборудование, людские ресурсы…)

    Стрелки вызова (выходят из нижней грани работы) - изображают связи между разными диаграммами или моделями, указывая на некоторую диаграмму, где данная работа рассмотрена более подробно.

Все работы и стрелки должны быть именованы. Первая диаграмма в иерархии диаграмм IDEF0 всегда изображает функционирование системы в целом. Такие диаграммы называются контекстными. В контекст входит описание цели моделирования, области (описания того, что будет рассматриваться как компонент системы, а что как внешнее воздействие) и точки зрения (позиции, с которой будет строиться модель). Обычно в качестве точки зрения выбирается точка зрения лица или объекта, ответственного за работу моделируемой системы в целом.

Рисунок 7.1. Функциональный блок и интерфейсные дуги

Работы на диаграммах изображаются в виде прямоугольников (функциональные блоки). Каждая работа изображает какую-либо функцию или задачу и именуется глаголом или глагольной фразой, обозначающей действие, например «Изготовление изделия», «Обслуживание клиента» и т.д. Стрелки помечаются существительным и обозначают объекты или информацию, связывающую работы между собой и с внешним миром.

После описания контекста проводится функциональная декомпозиция- система разбивается на подсистемы и каждая подсистема описывается в том же синтаксисе, что и система в целом. Затем каждая подсистема разбивается на более мелкие и так до достижения нужного уровня подробности. В результате такого разбиения, каждый фрагмент системы изображается на отдельной диаграмме декомпозиции.

После того как контекст описан, проводится построение следующих диаграмм в иерархии. Каждая последующая диаграмма является более подробным описанием (декомпозицией) одной из работ на вышестоящей диаграмме. Пример декомпозиции контекстной работы показан на Рис.7.2 и Рис.7.4. Описание каждой подсистемы проводится аналитиком совместно с экспертом предметной области. Обычно экспертом является человек, отвечающий за эту подсистему и, поэтому, досконально знающий все ее функции. Таким образом, вся система разбивается на подсистемы до нужного уровня детализации, и получается модель, аппроксимирующая систему с заданным уровнем точности. Получив модель, адекватно отображающую текущие бизнес-процессы (так называемую модель AS IS), аналитик с легкостью может увидеть все наиболее уязвимые места системы. После этого, с учетом выявленных недостатков, можно строить модель новой организации бизнес-процессов (модель TO BE).

Одной из наиболее важных особенностей методологии SADT является постепенное введение все больших уровней детализации по мере создания диаграмм, отображающих модель.

На рисунке 7.2, где приведены три диаграммы и их взаимосвязи, показана структура IDEF0.-модели. Каждый компонент модели может быть декомпозирован на другой диаграмме. Каждая диаграмма иллюстрирует "внутреннее строение" блока на родительской диаграмме.

Рисунок 7.2 - Пример контекстной диаграммы

Как видно на Рис.7.2, BPwin позволяет выделять работы и стрелки разными цветами, а также привязывать имена стрелок к самим стрелкам (стрелка по имени “Отчетность”), что повышает наглядность и читаемость диаграммы.

Рисунок 7.3 - Пример диаграммы декомпозиции

Рисунок 7 . 4 - Пример контекстной диаграммы

Рисунок 7.5 - Пример диаграммы декомпозиции

Иерархия диаграмм

Построение IDEF0-модели начинается с представления всей системы в виде простейшей компоненты - одного блока и дуг, изображающих интерфейсы с функциями вне системы. Поскольку единственный блок представляет всю систему как единое целое, имя, указанное в блоке, является общим. Это верно и для интерфейсных дуг - они также представляют полный набор внешних интерфейсов системы в целом.

Затем блок, который представляет систему в качестве единого модуля, детализируется на другой диаграмме с помощью нескольких блоков, соединенных интерфейсными дугами. Эти блоки представляют основные подфункции исходной функции. Данная декомпозиция выявляет полный набор подфункций, каждая из которых представлена как блок, границы которого определены интерфейсными дугами. Каждая из этих подфункций может быть декомпозирована подобным образом для более детального представления.

Во всех случаях каждая подфункция может содержать только те элементы, которые входят в исходную функцию. Кроме того, модель не может опустить какие-либо элементы, т.е., как уже отмечалось, родительский блок и его интерфейсы обеспечивают контекст. К нему нельзя ничего добавить, и из него не может быть ничего удалено.

Дуги, входящие в блок и выходящие из него на диаграмме верхнего уровня, являются точно теми же самыми, что и дуги, входящие в диаграмму нижнего уровня и выходящие из нее, потому что блок и диаграмма представляют одну и ту же часть системы.

Рисунк 7.6 - Структура SADT-модели. Декомпозиция диаграмм

Рисунок 7.7 - Соответствие должно быть полным и непротиворечивым

Некоторые дуги присоединены к блокам диаграммы обоими концами, у других же один конец остается неприсоединенным. Неприсоединенные дуги соответствуют входам, управлениям и выходам родительского блока. Источник или получатель этих пограничных дуг может быть обнаружен только на родительской диаграмме. Неприсоединенные концы должны соответствовать дугам на исходной диаграмме. Все граничные дуги должны продолжаться на родительской диаграмме, чтобы она была полной и непротиворечивой.

Как было отмечено, механизмы (дуги с нижней стороны) показывают средства, с помощью которых осуществляется выполнение функций. Механизм может быть человеком, компьютером или любым другим устройством, которое помогает выполнять данную функцию (рисунок 7.8).

Рис. 7.8. Пример механизма

Каждый блок на диаграмме имеет свой номер. Блок любой диаграммы может быть далее описан диаграммой нижнего уровня, которая, в свою очередь, может быть далее детализирована с помощью необходимого числа диаграмм. Таким образом, формируется иерархия диаграмм.

Для того, чтобы указать положение любой диаграммы или блока в иерархии, используются номера диаграмм. Например, А21 является диаграммой, которая детализирует блок 1 на диаграмме А2. Аналогично, А2 детализирует блок 2 на диаграмме А0, которая является самой верхней диаграммой модели. На рисунке 7.9 показано типичное дерево диаграмм.

Рисунок 7.9 - Иерархия диаграмм

Лекция 8. Методологии DFD и IDEF 3

История возникновения стандарта IDEF0

Методологию IDEF0 можно считать следующим этапом развития хорошо известного графического языка описания функциональных систем SADT (Structured Analysis and Design Teqnique). В процессе практической реализации, участники программы ICAM столкнулись с необходимостью разработки новых методов анализа процессов взаимодействия в промышленных системах. При этом кроме усовершенствованного набора функций для описания бизнес-процессов, одним из требований к новому стандарту было наличие эффективной методологии взаимодействия в рамках «аналитик-специалист». Другими словами, новый метод должен был обеспечить групповую работу над созданием модели, с непосредственным участием всех аналитиков и специалистов, занятых в рамках проекта. В результате поиска соответствующих решений родилась методология функционального моделирования IDEF0. C 1981 года стандарт IDEF0 претерпел несколько незначительных изменения, в основном ограничивающего характера, и последняя его редакция была выпущена в декабре 1993 года Национальным Институтом По Стандартам и Технологиям США (NIST).

Основные элементы и понятия IDEF0

Графический язык IDEF0 удивительно прост и гармоничен. В основе методологии лежат четыре основных понятия.

  • Первым из них является понятие функционального блока (Activity Box) . Функциональный блок графически изображается в виде прямоугольника и олицетворяет собой некоторую конкретную функцию в рамках рассматриваемой системы. По требованиям стандарта название каждого функционального блока должно быть сформулировано в глагольном наклонении (например, «производить услуги», а не «производство услуг»).

Каждая из четырех сторон функционального блока имеет своё определенное значение (роль), при этом:

1. Верхняя сторона имеет значение «Управление» (Control);

2. Левая сторона имеет значение «Вход» (Input);

3. Правая сторона имеет значение «Выход» (Output);

4. Нижняя сторона имеет значение «Механизм» (Mechanism).

Каждый функциональный блок в рамках единой рассматриваемой системы должен иметь свой уникальный идентификационный номер.

  • Вторым «китом» методологии IDEF0 является понятие интерфейсной дуги (Arrow) . Также интерфейсные дуги часто называют потоками или стрелками. Интерфейсная дуга отображает элемент системы, который обрабатывается функциональным блоком или оказывает иное влияние на функцию, отображенную данным функциональным блоком.

Графическим отображением интерфейсной дуги является однонаправленная стрелка. Каждая интерфейсная дуга должна иметь свое уникальное наименование (Arrow Label). По требованию стандарта, наименование должно быть оборотом существительного.

С помощью интерфейсных дуг отображают различные объекты, в той или иной степени определяющие процессы, происходящие в системе. Такими объектами могут быть элементы реального мира (детали, вагоны, сотрудники и т. д.) или потоки данных и информации (документы, данные, инструкции и т. д.).

В зависимости от того, к какой из сторон подходит данная интерфейсная дуга, она носит название «входящей», «исходящей» или «управляющей». Кроме того, «источником» (началом) и «приемником» (концом) каждой функциональной дуги могут быть только функциональные блоки. Необходимо отметить, что любой функциональный блок по требованиям стандарта должен иметь по крайней мере одну управляющую интерфейсную дугу и одну исходящую.

Обязательное наличие управляющих интерфейсных дуг является одним из главных отличий стандарта IDEF0 от других методологий классов DFD (Data Flow Diagram) и WFD (Work Flow Diagram).

  • Третьим основным понятием стандарта IDEF0 является декомпозиция (Decomposition) . Принцип декомпозиции применяется при разбиении сложного процесса на составляющие его функции. При этом уровень детализации процесса определяется непосредственно разработчиком модели.

Декомпозиция позволяет постепенно и структурированно представлять модель системы в виде иерархической структуры отдельных диаграмм, что делает ее менее перегруженной и легко усваиваемой.

Построение модели

Модель IDEF0 всегда начинается с представления системы как единого целого - одного функционального блока с интерфейсными дугами, простирающимися за пределы рассматриваемой области. Такая диаграмма с одним функциональным блоком называется контекстной диаграммой, и обозначается идентификатором «А-0».

В пояснительном тексте к контекстной диаграмме должна быть указана цель (Purpose) построения диаграммы в виде краткого описания и зафиксирована точка зрения (Viewpoint).

Определение и формализация цели разработки IDEF0 - модели является крайне важным моментом. Фактически цель определяет соответствующие области в исследуемой системе, на которых необходимо фокусироваться в первую очередь. Например, если мы моделируем деятельность предприятия с целью построения в дальнейшем на базе этой модели информационной системы, то эта модель будет существенно отличаться от той, которую бы мы разрабатывали для того же самого предприятия, но уже с целью оптимизации логистических цепочек.

Точка зрения определяет основное направление развития модели и уровень необходимой детализации. Четкое фиксирование точки зрения позволяет разгрузить модель, отказавшись от детализации и исследования отдельных элементов, не являющихся необходимыми, исходя из выбранной точки зрения на систему. Правильный выбор точки зрения существенно сокращает временные затраты на построение конечной модели.

В процессе декомпозиции, функциональный блок, который в контекстной диаграмме отображает систему как единое целое, подвергается детализации на другой диаграмме. Получившаяся диаграмма второго уровня содержит функциональные блоки, отображающие главные подфункции функционального блока контекстной диаграммы и называется дочерней (Child diagram) по отношению к нему (каждый из функциональных блоков, принадлежащих дочерней диаграмме соответственно называется дочерним блоком - Child Box). В свою очередь, функциональный блок - предок называется родительским блоком по отношению к дочерней диаграмме (Parent Box), а диаграмма, к которой он принадлежит - родительской диаграммой (Parent Diagram). Каждая из подфункций дочерней диаграммы может быть далее детализирована путем аналогичной декомпозиции соответствующего ей функционального блока. Важно отметить, что в каждом случае декомпозиции функционального блока все интерфейсные дуги, входящие в данный блок, или исходящие из него фиксируются на дочерней диаграмме. Этим достигается структурная целостность IDEF0 - модели.

Часто бывают случаи, когда отдельные интерфейсные дуги не имеет смысла продолжать рассматривать в дочерних диаграммах ниже какого-то определенного уровня в иерархии, или наоборот - отдельные дуги не имеют практического смысла выше какого-то уровня. Например, интерфейсную дугу, изображающую «деталь» на входе в функциональный блок «Обработать на токарном станке» не имеет смысла отражать на диаграммах более высоких уровней - это будет только перегружать диаграммы и делать их сложными для восприятия. С другой стороны, случается необходимость избавиться от отдельных «концептуальных» интерфейсных дуг и не детализировать их глубже некоторого уровня. Для решения подобных задач в стандарте IDEF0 предусмотрено понятие туннелирования . Обозначение «туннеля» (Arrow Tunnel) в виде двух круглых скобок вокруг начала интерфейсной дуги обозначает, что эта дуга не была унаследована от функционального родительского блока и появилась (из «туннеля») только на этой диаграмме. В свою очередь, такое же обозначение вокруг конца (стрелки) интерфейсной дуги в непосредственной близи от блока - приёмника означает тот факт, что в дочерней по отношению к этому блоку диаграмме эта дуга отображаться и рассматриваться не будет.

Понятие «глоссарий»

Последним из понятий IDEF0 является глоссарий (Glossary) . Для каждого из элементов IDEF0: диаграмм, функциональных блоков, интерфейсных дуг существующий стандарт подразумевает создание и поддержание набора соответствующих определений, ключевых слов, повествовательных изложений и т. д., которые характеризуют объект, отображенный данным элементом. Этот набор называется глоссарием и является описанием сущности данного элемента. Например, для управляющей интерфейсной дуги «распоряжение об оплате» глоссарий может содержать перечень полей соответствующего дуге документа, необходимый набор виз и т. д. Глоссарий гармонично дополняет наглядный графический язык, снабжая диаграммы необходимой дополнительной информацией.

Принципы ограничения сложности IDEF0-диаграмм

Обычно IDEF0-модели несут в себе сложную и концентрированную информацию, и для того, чтобы ограничить их перегруженность и сделать удобочитаемыми, в соответствующем стандарте приняты соответствующие ограничения сложности:

  • Ограничение количества функциональных блоков на диаграмме тремя-шестью. Верхний предел (шесть) заставляет разработчика использовать иерархии при описании сложных предметов, а нижний предел (три) гарантирует, что на соответствующей диаграмме достаточно деталей, чтобы оправдать ее создание;
  • Ограничение количества подходящих к одному функциональному блоку (выходящих из одного функционального блока) интерфейсных дуг четырьмя.

Разумеется, строго следовать этим ограничениям вовсе необязательно, одна«к»«»о, как показывает опыт, они являются весьма практичными в реальной работе.

Дисциплина групповой работы над разработкой IDEF0-модели

Стандарт IDEF0 содержит набор процедур, позволяющих разрабатывать и согласовывать модель большой группой людей, принадлежащих к разным областям деятельности моделируемой системы. Обычно процесс разработки является итеративным и состоит из следующих условных этапов:

  • Создание модели группой специалистов, относящихся к различным сферам деятельности предприятия. Эта группа в терминах IDEF0 называется авторами (Authors). Построение первоначальной модели является динамическим процессом, в течение которого авторы опрашивают компетентных лиц о структуре различных процессов. На основе имеющихся положений, документов и результатов опросов создается черновик (Model Draft) модели.
  • Распространение черновика для рассмотрения, согласований и комментариев. На этой стадии происходит обсуждение черновика модели с широким спектром компетентных лиц (в терминах IDEF0- читателей) на предприятии. При этом каждая из диаграмм черновой модели письменно критикуется и комментируется, а затем передается автору. Автор, в свою очередь, также письменно соглашается с критикой или отвергает её с изложением логики принятия решения и вновь возвращает откорректированный черновик для дальнейшего рассмотрения. Этот цикл продолжается до тех пор, пока авторы и читатели не придут к единому мнению.
  • Официальное утверждение модели. Утверждение согласованной модели происходит руководителем рабочей группы в том случае, если у авторов модели и читателей отсутствуют разногласия по поводу ее адекватности. Окончательная модель представляет собой согласованное представление о предприятии (системе) с заданной точки зрения и для заданной цели.

Наглядность графического языка IDEF0 делает модель вполне читаемой и для лиц, которые не принимали участия в проекте ее создания, а также эффективной для проведения показов и презентаций. В дальнейшем, на базе построенной модели могут быть организованы новые проекты, нацеленные на производство изменений на предприятии (в системе).

Процесс бизнес-моделирования может быть реализован в рамках различных методик, отличающихся прежде всего своим подходом к тому, что представляет собой моделируемая организация. В соответствии с различными представлениями об организации методики принято делить на объектные и функциональные (структурные).

Объектные методики рассматривают моделируемую организацию как набор взаимодействующих объектов – производственных единиц. Объект определяется как осязаемая реальность – предмет или явление, имеющие четко определяемое поведение. Целью применения данной методики является выделение объектов, составляющих организацию, и распределение между ними ответственностей за выполняемые действия.

Функциональные методики , наиболее известной из которых является методика IDEF , рассматривают организацию как набор функций , преобразующий поступающий поток информации в выходной поток. Процесс преобразования информации потребляет определенные ресурсы. Основное отличие от объектной методики заключается в четком отделении функций (методов обработки данных) от самих данных.

С точки зрения бизнес-моделирования каждый из представленных подходов обладает своими преимуществами. Объектный подход позволяет построить более устойчивую к изменениям систему, лучше соответствует существующим структурам организации . Функциональное моделирование хорошо показывает себя в тех случаях, когда организационная структура находится в процессе изменения или вообще слабо оформлена. Подход от выполняемых функций интуитивно лучше понимается исполнителями при получении от них информации об их текущей работе.

Функциональная методика IDEF0

Методологию IDEF0 можно считать следующим этапом развития хорошо известного графического языка описания функциональных систем SADT ( Structured Analysis and Design Technique ). Исторически IDEF0 как стандарт был разработан в 1981 году в рамках обширной программы автоматизации промышленных предприятий, которая носила обозначение ICAM (Integrated Computer Aided Manufacturing ). Семейство стандартов IDEF унаследовало свое обозначение от названия этой программы ( IDEF = Icam DEFinition), и последняя его редакция была выпущена в декабре 1993 года Национальным Институтом по Стандартам и Технологиям США ( NIST ).

Целью методики является построение функциональной схемы исследуемой системы, описывающей все необходимые процессы с точностью, достаточной для однозначного моделирования деятельности системы.

В основе методологии лежат четыре основных понятия: функциональный блок, интерфейсная дуга, декомпозиция, глоссарий .

(Activity Box) представляет собой некоторую конкретную функцию в рамках рассматриваемой системы. По требованиям стандарта название каждого функционального блока должно быть сформулировано в глагольном наклонении (например, "производить услуги"). На диаграмме функциональный блок изображается прямоугольником (рис. 6.1). Каждая из четырех сторон функционального блока имеет свое определенное значение (роль), при этом:

  • верхняя сторона имеет значение "Управление" (Control);
  • левая сторона имеет значение "Вход" (Input);
  • правая сторона имеет значение "Выход" (Output);
  • нижняя сторона имеет значение "Механизм" ( Mechanism ).


Рис. 6.1.

Интерфейсная дуга (Arrow) отображает элемент системы, который обрабатывается функциональным блоком или оказывает иное влияние на функцию , представленную данным функциональным блоком. Интерфейсные дуги часто называют потоками или стрелками.

С помощью интерфейсных дуг отображают различные объекты, в той или иной степени определяющие процессы, происходящие в системе. Такими объектами могут быть элементы реального мира (детали, вагоны, сотрудники и т.д.) или потоки данных и информации (документы, данные, инструкции и т.д.).

В зависимости от того, к какой из сторон функционального блока подходит данная интерфейсная дуга, она носит название "входящей", "исходящей" или "управляющей".

Необходимо отметить, что любой функциональный блок по требованиям стандарта должен иметь, по крайней мере, одну управляющую интерфейсную дугу и одну исходящую. Это и понятно – каждый процесс должен происходить по каким-то правилам (отображаемым управляющей дугой) и должен выдавать некоторый результат (выходящая дуга), иначе его рассмотрение не имеет никакого смысла.

Обязательное наличие управляющих интерфейсных дуг является одним из главных отличий стандарта IDEF0 от других методологий классов DFD ( Data Flow Diagram ) и WFD (Work Flow Diagram).

Декомпозиция ( Decomposition ) является основным понятием стандарта IDEF0 . Принцип декомпозиции применяется при разбиении сложного процесса на составляющие его функции . При этом уровень детализации процесса определяется непосредственно разработчиком модели.

Декомпозиция позволяет постепенно и структурировано представлять модель системы в виде иерархической структуры отдельных диаграмм, что делает ее менее перегруженной и легко усваиваемой.

Последним из понятий IDEF0 является глоссарий (Glossary) . Для каждого из элементов IDEF0 - диаграмм, функциональных блоков, интерфейсных дуг - существующий стандарт подразумевает создание и поддержание набора соответствующих определений, ключевых слов, повествовательных изложений и т.д., которые характеризуют объект, отображенный данным элементом. Этот набор называется глоссарием и является описанием сущности данного элемента. Глоссарий гармонично дополняет наглядный графический язык, снабжая диаграммы необходимой дополнительной информацией.

Модель IDEF0 всегда начинается с представления системы как единого целого – одного функционального блока с интерфейсными дугами, простирающимися за пределы рассматриваемой области. Такая диаграмма с одним функциональным блоком называется контекстной диаграммой .

В пояснительном тексте к контекстной диаграмме должна быть указана цель (Purpose) построения диаграммы в виде краткого описания и зафиксирована точка зрения (Viewpoint).

Определение и формализация цели разработки IDEF0 -модели является крайне важным моментом. Фактически цель определяет соответствующие области в исследуемой системе, на которых необходимо фокусироваться в первую очередь.

Точка зрения определяет основное направление развития модели и уровень необходимой детализации . Четкое фиксирование точки зрения позволяет разгрузить модель, отказавшись от детализации и исследования отдельных элементов, не являющихся необходимыми, исходя из выбранной точки зрения на систему. Правильный выбор точки зрения существенно сокращает временные затраты на построение конечной модели.

Выделение подпроцессов . В процессе декомпозиции функциональный блок, который в контекстной диаграмме отображает систему как единое целое, подвергается детализации на другой диаграмме. Получившаяся диаграмма второго уровня содержит функциональные блоки, отображающие главные подфункции функционального блока контекстной диаграммы , и называется дочерней (Child Diagram) по отношению к нему (каждый из функциональных блоков, принадлежащих дочерней диаграмме, соответственно называется дочерним блоком – Child Box). В свою очередь, функциональный блок - предок называется родительским блоком по отношению к дочерней диаграмме (Parent Box), а диаграмма, к которой он принадлежит – родительской диаграммой (Parent Diagram). Каждая из подфункций дочерней диаграммы может быть далее детализирована путем аналогичной декомпозиции соответствующего ей функционального блока. В каждом случае декомпозиции функционального блока все интерфейсные дуги, входящие в данный блок или исходящие из него, фиксируются на дочерней диаграмме. Этим достигается структурная целостность IDEF0 –модели.

Иногда отдельные интерфейсные дуги высшего уровня не имеет смысла продолжать рассматривать на диаграммах нижнего уровня, или наоборот - отдельные дуги нижнего отражать на диаграммах более высоких уровней – это будет только перегружать диаграммы и делать их сложными для восприятия. Для решения подобных задач в стандарте IDEF0 предусмотрено понятие туннелирования . Обозначение " туннеля " (Arrow Tunnel ) в виде двух круглых скобок вокруг начала интерфейсной дуги обозначает, что эта дуга не была унаследована от функционального родительского блока и появилась (из " туннеля ") только на этой диаграмме. В свою очередь, такое же обозначение вокруг конца (стрелки) интерфейсной дуги в непосредственной близи от блока–приемника означает тот факт, что в дочерней по отношению к этому блоку диаграмме эта дуга отображаться и рассматриваться не будет. Чаще всего бывает, что отдельные объекты и соответствующие им интерфейсные дуги не рассматриваются на некоторых промежуточных уровнях иерархии, – в таком случае они сначала "погружаются в туннель ", а затем при необходимости "возвращаются из туннеля ".

Обычно IDEF0 -модели несут в себе сложную и концентрированную информацию, и для того, чтобы ограничить их перегруженность и сделать удобочитаемыми , в стандарте приняты соответствующие ограничения сложности.

Рекомендуется представлять на диаграмме от трех до шести функциональных блоков, при этом количество подходящих к одному функциональному блоку (выходящих из одного функционального блока) интерфейсных дуг предполагается не более четырех.

Стандарт IDEF0 содержит набор процедур, позволяющих разрабатывать и согласовывать модель большой группой людей, принадлежащих к разным областям деятельности моделируемой системы. Обычно процесс разработки является итеративным и состоит из следующих условных этапов:

  • Создание модели группой специалистов, относящихся к различным сферам деятельности предприятия. Эта группа в терминах IDEF0 называется авторами (Authors). Построение первоначальной модели является динамическим процессом, в течение которого авторы опрашивают компетентных лиц о структуре различных процессов, создавая модели деятельности подразделений. При этом их интересуют ответы на следующие вопросы:

    Что поступает в подразделение "на входе"?

    • Какие функции и в какой последовательности выполняются в рамках подразделения?
    • Кто является ответственным за выполнение каждой из функций ?
    • Чем руководствуется исполнитель при выполнении каждой из функций ?
    • Что является результатом работы подразделения (на выходе)?

    На основе имеющихся положений, документов и результатов опросов создается черновик (Model Draft) модели.

  • Распространение черновика для рассмотрения, согласований и комментариев. На этой стадии происходит обсуждение черновика модели с широким кругом компетентных лиц (в терминах IDEF0 - читателей) на предприятии. При этом каждая из диаграмм черновой модели письменно критикуется и комментируется, а затем передается автору. Автор, в свою очередь, также письменно соглашается с критикой или отвергает ее с изложением логики принятия решения и вновь возвращает откорректированный черновик для дальнейшего рассмотрения. Этот цикл продолжается до тех пор, пока авторы и читатели не придут к единому мнению.
  • Официальное утверждение модели. Утверждение согласованной модели происходит руководителем рабочей группы в том случае, если у авторов модели и читателей отсутствуют разногласия по поводу ее адекватности. Окончательная модель представляет собой согласованное представление о предприятии (системе) с заданной точки зрения и для заданной цели.

Наглядность графического языка IDEF0 делает модель вполне читаемой и для лиц, которые не принимали участия в проекте ее создания, а также эффективной для проведения показов и презентаций. В дальнейшем на базе построенной модели могут быть организованы новые проекты, нацеленные на производство изменений в модели.