24.11.2023

Диаграмма состояния системы алюминий-медь. Фазовая диаграмма системы Al-Mg Диаграмма состояние алюминиевых сплавов с кремнием


Лектор В.С.ЗолоторевскийОбщие сведения
Области применения
Первичный алюминий
Роль примесей и легирующих элементов
Основные системы легирования и классификация
сплавов
Cтруктура и свойства слитков и отливок
Структура и свойства деформированных
полуфабрикатов
Промышленные алюминиевые сплавы
(доклады студентов)
09.02.2017

2

Учебная литература

И.И. Новиков, В.С. Золоторевский, В.К. Портной и
др. Металловедение, том 2. МИСиС, 2014. (Глава 15)
Б.А. Колачев, В.И. Ливанов, В.И. Елагин.
Металловедение и термическая обработка цветных
металлов и сплавов. МИСиС, 2005.
В.С. Золоторевский, Н.А. Белов. Металловедение
цветных металлов. Раздел: Алюминиевые сплавы.
МИСиС, 2000. (№ 1564).
Другая литература (не менее 5 источников)
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
3

Темы докладов c презентацией

1.
2.
3.
4.
5.
6.
Силумины
Дуралюмины
Магналии
Жаропрочные алюминиевые сплавы
Высокопрочные алюминиевые сплавы
Литийсодержащие алюминиевые сплавы
В докладах (20-30 минут) рассматриваются химический состав,
структура и свойства промышленных сплавов, области
применения
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
4

Общая характеристика алюминия и его сплавов

Большие запасы (8%Al) в земной коре
1-е место среди цветных металлов по объему
производства – более 30 млн т/год (15% РФ)
Цена - 1500-2600 $/т (~1500 $/т)
Легкость – уд.вес 2,7 г/см3
Высокая прочность (сплавов)- в до 700 МПа
Высокая коррозионная стойкость
Высокая электропроводность (2/3 от Cu)
Высокая технологичность при всех видах обработки
Возможность использования отходов
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
5

Области применения алюминия и его сплавов

авиа- и ракетостроение
наземный и водный транспорт
машиностроение
электротехника
строительство
упаковка (для пищи, лекарств и т.д.)
бытовая техника
специальные области
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
6

ПЕРВИЧНЫЙ АЛЮМИНИЙ Химический состав некоторых стандартных марок первичного алюминия (ГОСТ 11069-2001) «Вторичный алюминий» - Al-сплавы из лома

ПЕРВИЧНЫЙ АЛЮМИНИЙ
Химический состав некоторых стандартных марок первичного
алюминия (ГОСТ 11069-2001)
«Вторичный алюминий» - Al-сплавы из лома и отходов
Марка
Fe, %
Si, %
Cu, %
Zn, %
Ti, %
Ост., %
Всего
примесей, %
Al, %
не
менее
высокой чистоты
А995
0,0015
0,0015
0,001
0,001
0,001
0,001
0,005
99,995
А99
0,003
0,003
0,002
0,003
0,002
0,001
0,01
99.99
А97
0,015
0,015
0,005
0,003
0,002
0,002
0,03
99,97
А95
0,03
0,03
0,015
0,005
0,002
0,005
0,05
99,95
технической чистоты
А85
0,08
0,06
0,01
0,02
0,01
0,02
0,15
99,85
А7
0,16
0,15
0,01
0,04
0,02
0,02
0,30
99,70
А5
0,30
0,25
0,02
0,06
0,03
0,03
0,30
99,50
A35
0,65 (Fe+Si)
0,05
0,1
0,02
0,03
1,00
99,35
A0
0.95 (Fe+Si)
0,05
0,1
0,02
0,03
1,00
99,00
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
7

Физические свойства Al в сравнении с другими металлами

Свойство
Al
Fe
Cu
Температура плавления, 0С
660
1539
1083
650
1652
Температура кипения, 0С 2494
Плотность, г/см3
2872
2,7
2595
7,86
1107
8,9
3000
1,738
4,5
Коэфф. терм. расш., 106* К-1
23,5
12,1
17,0
26,0
8,9
Уд. электросопр., 108* Ом*м
2,67
10,1
1,69
4,2
54
Теплопроводность, Вт*м-1*К-1
238
78,2
397
156
21,6
Теплота плавления, Дж*г-1
405
272
205
293
358
Теплота испарения, кДж*г-1
10,8
6,1
6,3
5,7
9,0
Модуль упругости, ГПа
70
220
132
44
112
Mg
Ti
У чистого Al низкая твердость - 10-15НВ, прочность в=50-70 МПа и высокая
пластичность =30-45%
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
8

Основные примеси в алюминии и его сплавах

Железо
Кремний
Fe+Si – фазы Al3Fe, Al5FeSi (β) и Al8Fe2Si (α)
Цинк
Медь
Магний
Свинец и олово
Натрий
Водород
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
9

10. ОСНОВНЫЕ БАЗОВЫЕ СИСТЕМЫ ЛЕГИРОВАНИЯ ПРОМЫШЛЕННЫХ АЛЮМИНИЕВЫХ СПЛАВОВ

Al-Si, Al-Si-Mg (силумины)
Al-Si-Cu-Mg (медистые силумины)
Al-Cu [-Mn] (жаропрочные)
Al-Mg (магналии)
Al-Mg-Si (авиали)
Al-Cu-Mg (дуралюмины)
Al-Cu-Mg-Si (ковочные)
Al-Zn-Mg (свариваемые)
Al-Zn-Mg-Cu (высокопрочные)
Al-Li-Cu-Mg (сверхлегкие)
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
10

11. Классификация легирующих элементов и примесей в промышленных алюминиевых сплавах по их влиянию на образование различных элементов струк

Классификация легирующих элементов и примесей в
промышленных алюминиевых сплавах по их влиянию на
образование различных элементов структуры
Элементы структуры,
образуемые добавками и
примесями
Легирующие
элементы и примеси
Твердый раствор (Al) и основные фазы Cu, Mg, Si, Zn, Li, (Mn) –
-упрочнители при старении
основные легирующие
элементы - сл.12-14
Нерастворимые (при отжиге) эвтекти- Fe, Si, Ni, Mn, (Mg, Cu)
ческие фазы
Первичные кристаллы
Fe, Ni, Mn, Si, (Zr, Cr, Ti)
Дисперсоиды при высокотемператур- Mn, Zr, Cr, Ti, Sc (иногда
ных нагревах
+Сu, Fe, Si и др.)
Микродобавки, мало влияющие на Be, Cd, Sr, Na, Ti, B
09.02.2017
фазовый состав Курс “Структура и свойства цветных металлов и сплавов“
11

12. Диаграмма состояния Al-Cu

13. Диаграмма состояния Al-Mg

14. Диаграмма состояния Al-Si

15. Характеристики диаграмм состояния эвтектического типа, образуемых алюминием с основными легирующими элементами


Легирую- Сп,
щие
мас.%
элементы (ат.%)
Се,
мас.%
(ат.%)
Tпл,
0C
Фаза в равновесии с (Аl)
(содержание
второго
компонента, мас.%)
1
Cu
5,7 (2,5)
33,2
(17,5)
548
CuAl2 (52%Cu)
2
Mg
17,4 (18,5) 35
(36) 450
Mg5Al8 (35%Mg)
3
Zn
82
(49,3)
94,9
(75) 382
(Zn)
(>99%Zn)
4
Si
1,65
(1,59)
12
(12)
(Si)
(>99,5%Si)
09.02.2017
577
Курс “Структура и свойства цветных металлов и сплавов“
15

16. Характеристики двойных фазовых диаграмм алюминия с переходными металлами, присутствующими в алюминиевых сплавах в качестве примесей или

Характеристики двойных фазовых диаграмм алюминия с
переходными металлами, присутствующими в алюминиевых
сплавах в качестве примесей или легирующих элементов (см. слайд
11)

Легирующие
элементы
(тип диаграммы)
Сп,
масс.%
(ат.%)
1
Fe (e)
0,05
(0,03) 1,8
(0,9) 655
FeAl3 (40%Fe)
2
Ni (e)
0,04
(0,02) 6,0
(2,8) 640
NiAl3 (42%Ni)
3
Ce (e)
0,05
(0,01) 12
(2,6) 650
CeAl4 (57%Ce)
3
Mn (e)
1,8
(0,89) 1,9
(0,91) 658
4
Sc (e)
0,3
(0,2)
0,6
(0,4) 655
ScAl3 (36%Sc)
5
Ti (p)
1,3
(0,8)
0,12
(0,08) 661
TiAl3 (37%Ti)
6
Zr (p)
0,28
(0,1)
0,11
(0,04)
661
ZrAl3 (53%Zr)
7
Cr (p)
0,8
(0,4)
0,4
(0,2) 661
CrAl7 (22%Cr)
09.02.2017
Се,p ,
мас.%
(ат.%)
Te,p, 0C
Фаза в равновесии с
(Аl)
(содержание
второго компонента,
масс.%)
MnAl6 (25%Mn)
Курс “Структура и свойства цветных металлов и сплавов“
16

17. Области составов алюминиевых сплавов и их классификация по структуре

1.Сплавы типа твердых растворов
(матричные) (подавляющее
большинство деформируемых
сплавов, а также литейные на
базе систем Al–Cu, Al–Mg и AlZn-Mg);
2.Доэвтектические сплавы
(большинство силуминов сплавов, в которых важнейшим
легирующим элементом является
кремний, например типа АК7 и
АК8М3, а также некоторые
деформируемые сплавы, в
частности типа АК4-1);
3.Эвтектические сплавы (силумины
типа АК12 и АК12М2);
4.Заэвтектические сплавы
(заэвтектические силумины,
например АК18).
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
17

18.

Общие особенности
структуры и свойств слитков
и отливок из алюминиевых
сплавов
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
18

19. Неравновесная кристаллизация

Микроструктура
сплава Al-5% Cu
Н
е
09.02.2017
Неравновесная кристаллизация – результат
неполного прохождения диффузии при
реальных скоростях охлаждения
Курс “Структура и свойства цветных металлов и сплавов“
19

20. Метастабильные варианты фазовых диаграмм Al-ПМ

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
20

21. Типичная макро- и микроструктура доэвтектических литых алюминиевых сплавов

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
21

22. Микроструктуры литых сплавов

23. ХАРАКТЕРИСТИКИ ЛИТОЙ СТРУКТУРЫ

1) форма и размер кристаллитов (зерен) ;
2) форма и размер дендритных ячеек (Al);
3) состав, структура, морфология и объемная доля частиц
избыточных фаз кристаллизационного происхождения
4) распределение легирующих элементов и примесей в
(Al)
5) характеристики субструктуры (распределение и
плотность
дислокаций,
размеры
субзерен
и
дислокационных ячеек, углы их разориентировки,
вторичные выделения);
6) количество, размер и распределение пор
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
23

24. Соотношение между размером дендритной ячейки (d) и скоростью охлаждения (Vохл) d=A V-nохл

Vохл, K/c
10-3
d, мкм
1000
Условия получения отливок
100
100
Непрерывное
литье
103
10
Литье крупных гранул (в воду)
106
1
Получение чешуек (спиннингование)
109
0,1
Получение ультратонких чешуек
09.02.2017
Литье крупных отливок в землю
литье
слитков,
Курс “Структура и свойства цветных металлов и сплавов“
кокильное
24

25. Концентрационная граница появления неравновесной эвтектики (Ск на cлайде 20)

Концентрационная граница появления
неравновесной эвтектики (С на cлайде 20)
к
С, %
Cu
Mg
Zn
Si
Равновесная
предельная
растворимость
Сп, %
5,65
17,4
82,2
1,65
0,5-2 K/мин
0,1
4,5
20,0
0,1
80-100 K/мин
0,1
0,5
2,0
0,1
1000 K/мин
0,3
1,0
3,0
0,2
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
25

26. Объемная доля (QV) и размер (m) частиц избыточных фаз и пор

QV = Cx/Ce)1/(1-К),
где
Сe – эвтектическая концентрация,
К - коэффициент распределения (Сж/Cтв),
Сx - концентрация легирующего элемента в сплаве.
m = Bd,
где d – размер дендритной ячейки
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
26

27. МОРФОЛОГИЯ ИЗБЫТОЧНЫХ ФАЗ

Большое количество и разнообразие формы частиц избыточных фаз, в
том числе одной и той же фазы при кристаллизации в разных
условиях:
1) прожилки по границам дендритных ячеек;
2) скелеты;
3) иглы, пластины;
4) тонкодифференцированные кристаллы (внутри
эвтектики) в сплавах, близких к эвтектической точке и др.
С увеличением скорости охлаждения и кристаллизации размеры частиц
уменьшаются
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
27

28. Разная морфология избыточных фаз

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
28

29. Модифицирование литой структуры

Модифирование для измельчения
первичных кристаллов
Примеры модификаторов: зерна (Al) - Ti и
Ti+B, первичного (Si) – Cu+P
Модифицирование эвтектик
Модификаторы (Si) в эвтектике: хлориды, Sr,
РЗМ – изменяют форму монокристаллов,
кристаллизующихся внутри эвтектических
колоний
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
29

30. Основные Fe- и Si-содержащие фазы в алюминиевых сплавах

Al3Fe, α(Al8Fe2Si), β(Al5FeSi)
Al15(Fe,Mn)3Si2
Al6(Fe,Cu,Mn), Al7FeCu2
Al9FeNi
Al8FeMg3Si6
Распределение легирующих элементов по сечению
дендритных ячеек (Al) - слайд 23
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
30

31. Внутренняя структура дендритов (Al)

32.

Изменение структуры и
свойств слитков и отливок
при гомогенизационном
отжиге
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
32

33. Структурные изменения при гомогенизации и закалке

растворение неравновесного избытка фаз
кристаллизационного происхождения;
2) устранение внутрикристаллитной ликвации
легирующих элементов;
3) распад алюминиевого раствора во время
изотермической выдержки с образованием
алюминидов переходных металлов (в сплавах,
содержащих такие добавки);
4)
изменение
морфологии
фаз
кристаллизационного
происхождения,
не
растворимых в твердом растворе
1)
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
33

34. Растворение неравновесных фаз в результате диффузии

где
P= (Q ·A·d/2) / (D·S·(B+K·Q) ,
P - время полного растворения -фазы
d - размер дендритной ячейки;
Q - объемная доля неравновесной -фазы;
S - суммарная поверхность ее включений;
D - коэффициент диффузии легирующего элемента в
(Al);
A, В и К - коэффициенты, постоянные для сплава
заданного состава
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
34

35. Растворение неравновесных фаз

Эмпирические уравнения:
p=b0 + b1m или p = amв,
где m – толщина растворяющихся частиц
- отливки сплава АМг9 при температуре
гомогенизации 4400С p = -1,6 + 0,48m,
- слитки сплава Д16 при температуре гомогенизации
4800C р = 0,79 + 1,66m или
p = 0,63 m1,2 (m - в мкм, p - в час).
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
35

36. Устранение внутрикристаллитной ликвации

= 5,8l02/(2D),
где l0 = d/2
D- коэф. диффузии при Тгом, см2/c:
Mg, Zn, Si - 10-9
Cu - 10-10
Ni - 10-12
Fe, Mn, Cr, Zr -10-13 - 10-14
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
36

37. Дисперсоиды алюминидов Mn, Zr и Ti

38. Фрагментация и сфероидизация эвтектического кремния при нагреве под закалку

39.

Структурные изменения при
гомогенизации и закалке
(продолжение слайда 33)
5) изменение зеренной и дислокационной
структуры алюминиевого твердого раствора;
6) распад алюминиевого раствора по основным
легирующим элементам при охлаждении после
изотермической выдержки;
7) развитие вторичной пористости.
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
39

40. Тонкая структура после закалки и старения отливок (ПЭМ)

41.

Общие особенности
структуры и свойств
деформированных
полуфабрикатов
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
41

42. . СТРУКТУРА И СВОЙСТВА ДЕФОРМИРОВАННЫХ ПОЛУФАБРИКАТОВ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ

Деформация:
«холодная» - при комнатной температуре
теплая - между комнатной и
0,5-0,6 Тпл
горячая- выше 0,5-0,6 Тпл
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
42

43. Напряжение течения 

Напряжение течения
-
холодной и теплой деформации алюминия напряжение течения непрерывно
растет с момента начала деформации и вплоть до разрушения по степенному
закону:
- При
где и m - коэффициенты, m < 1
- При горячей ОМД
= m,
σ примерно постоянно (установившаяся стадия)
после 10-50%-ной деформации
- Совместное влияние температуры Т и скорости деформации на σ
определяется (через структуру) параметром Зинера-Холомона:
Z = exp(Q/kTдеф).
σ линейно зависит от lgZ
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
43

44.

СТРУКТУРА ДЕФОРМИРОВАННЫХ
ПОЛУФАБРИКАТОВ ДО И ПОСЛЕ
ТЕРМИЧЕСКОЙ ОБРАБОТКИ
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
44

45. Волокнистая (а) и рекристаллизованная (б) зеренная структура (СМ)

а
09.02.2017
б
Курс “Структура и свойства цветных металлов и сплавов“
45

46. Карта структуры после многократной прокатки методом анализа картины обратно рассеянных электронов EBSD в СЭМ

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
46

47. ТЕКСТУРЫ ДЕФОРМАЦИИ

1. В катаных листах - двойная текстура прокатки {110}<112> (основная в
техническом Al) и {112}<111> (основная в сплавах).
2. После прессования, волочения, прокатки прутков и проволоки
круглого сечения образуется двойная аксиальная текстура <111> и
<100>.
3. В прессованных полосах и тонкостенных профилях – текстура
прокатки + аксиальная при больших отношениях толщины к
ширине.
4. В трубах, получаемых прессованием, прокаткой и волочением, «цилиндрическая» текстура (текстура прокатки после разрезки
трубы и разворота ее в плоскость).
5. В осаженных прутках – аксиальная текстура <110>
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
47

48. Диаграмма структурных состояний закаленного деформируемого сплава АК8 в зависимости от температуры и скорости горячей деформации при оса

Диаграмма структурных состояний закаленного
деформируемого сплава АК8 в зависимости от
температуры и скорости горячей деформации при
осадке
прессование
штамповка
прокатка
ковка
09.02.2017
1 - рекристаллизации
нет;
2- полная
рекристаллизация;
3- рекристаллизация
начинается после
деформации;
4- смешанная структура
Курс “Структура и свойства цветных металлов и сплавов“
48

49. Субструктура (Al) после возврата и строчечность частиц в волокнистом полуфабрикате

0,5 мкм
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
49

50. Дисперсоиды в конечной структуре деформированных полуфабрикатов (ПЭМ)

1 мкм
1мкм
200 нм
200 нм

51. Термомеханическая обработка алюминиевых сплавов

ВТМО – горячая деформация с получением
полигонизованной структуры, сохраняющейся после
закалки или отжига – упрочнение по сравнению с
рекристаллизованным состоянием (Al) («прессэффект» или «структурное упрочнение»)
НТМО – холодная деформация (прокатка) после
закалки перед старением
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
51

52. Cпособы получения нанокристаллической структуры -введением при распаде (Al) наночастиц фаз-упрочнителей (в литейных и деформируемых сплава

Cпособы получения
нанокристаллической структуры
-введением при распаде (Al) наночастиц фазупрочнителей
(в литейных и деформируемых сплавах)
-путем интенсивной пластической
деформации разными способами:
кручение под гидростическим
давлением (КГД)],
равноканальное угловое прессование
(РКУП),
многократная прокатка,
механическое легирование
и другие для получения наноразмерного зерна
в (Al)

53.

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
53

54. Интенсивная пластическая деформация (ИПД)

1
ln(1)
Интенсивная пластическая
деформация (ИПД)
Величина деформации в работах по ИПД
рассчитывается по формуле ε=-ln(1- /1), где для
листов – это разность исходного размера (диаметра
или толщины) заготовки и размера после деформации.
Например, если исходная заготовка имела толщину 10
мм, а в результате прокатки мы получили из нее лист
толщиной 1 мм, то
ε=-ln{1- (10-1)/10}=ln(0,1)=2,3.
При ИПД ε может достигать 3-4 и более за один проход
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
54

55. Схемы РКУП и КГД

РКУП - многократное продавливание образца через
канал без изменения его
формы
.
КГД-деформация за счет сил трения по
поверхности дискового образца
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
55

56. Промышленные литейные алюминиевые сплавы

Базовые системы легирования,
маркировка.
Химический и фазовый состав.
Особенности структуры и свойств
силуминов и литейных сплавов на
основе систем Al – Mg, Al – Cu и Al – Zn
– Mg
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
56

57. Системы обозначения промышленных литейных алюминиевых сплавов в России и США

Базовая система
Al-Cu
Al-Si-Cu, Al-Si-Mg,
Al-Si-Cu-Mg
Al-Si
Al-Mg
Al-Zn
Al-Sn
09.02.2017
США (АА)
2XX.0 (224.0)
3XX.0 (356.0)
4XX.0 (413.0)
5XX.0 (514.0)
7XX.0 (710.0)
8XX.0 (850.0)
Россия (ГОСТ 1583-89)
(АМ5)
(АК12М2МгН)
(АК12)
(АМг5К)
Курс “Структура и свойства цветных металлов и сплавов“
57

58. Сравнительная характеристика свойств литейных сплавов

Система
Прочн.
Кор.
стойк.
Лит.
св-ва
Свар.
Al-Si
1
2
1
2
3
3
Al-Si-Mg
2
1-2
1
2
3
3
Al-Si-Cu
2
1-2
2
1
3
3
Al-Si-Cu-Mg
2-3
1
2
1
2-3
3
Al-Cu
3
3
3
1
1
2
Al-Mg
1-2
3
1
3
2
3
09.02.2017
Пласт. Жаропроч.
Курс “Структура и свойства цветных металлов и сплавов“
58

59. Гарантируемые механические свойства силуминов по ГОСТ 1583-93

Марки
сплавов
Способ
литья
Состояние
АК7ч
К
Т6
235
1
70
АК9ч
З, К
Т6
230
3
70
АК8М3ч
К
Т5
390
4
110
АК12ММг
Н
К
Т6
215
0,7
100
09.02.2017
в,МПа, %
Курс “Структура и свойства цветных металлов и сплавов“
НВ
59

60. Механические свойства литейных сплавов на базе систем Al–Cu и Al–Mg по ГОСТ 1583-93

Сплав
АМ5
АМ4,5Кд
АМг6л
АМг6лч
АМг10(АЛ27)
09.02.2017
Способ
литья
в, МПа
, %
НВ
З
333
4
90
К
333
4
90
К
490
4
120
З
190
4
60
К
220
6
60
З, К
230
6
60
З
200
5
60
К
240
10
60
З, К
250
10
60
З, К
320
12
75
Курс “Структура и свойства цветных металлов и сплавов“
60

61. Промышленные деформируемые сплавы

Базовые системы легирования, маркировка,
химический и фазовый состав
Термически неупрочняемые сплавы на основе
систем Al – Fe – Si, Al – Mg, Al – Mn,
особенности их структуры и свойств.
Термически упрочняемые сплавы на основе
систем Al – Cu, Al – Mg, Al – Mg – Si,
Al – Cu – Mg, Al – Zn – Mg – Cu, Al – Mg – Cu –
Li.
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
61

62. Системы обозначений промышленных деформируемых алюминиевых сплавов в России и США

Базовая
система
>99.0% Al
Al-Cu
Al-Mn
Al-Si
Al-Mg
Al-Mg-Si
Al-Zn
Остальные
09.02.2017
США (АА)
1ХХX
2XXX
3XXX
4XXX
5XXX
6XXX
7XXX
8XXX
(1180)
(2024)
(3005)
(5086)
(6010)
(7075)
(8111)
Россия (ГОСТ 4784-74)
Цифровая – (буквенная)
10YY –
(АД1)
11YY – (Д16, АК4-1)
14YY – (АМц)
15YY – (АМг6)
13YY – (АВ, АД31)
19YY –
(В95)

- (АЖ0.8)
Курс “Структура и свойства цветных металлов и сплавов“
62

63. Концентрация основных легирующих элементов в промышленных деформируемых сплавах

Cu, %
Mg, %
Zn, %
Si, %
Li, .%
Al-Cu-Mg
3-5
0,5-2
-
-
-
Al-Mg-Si
-
0,3-1,2
-
0,3-1,2
-
Al-Zn-Mg
-
1-3
3-6
-
-
Al-Cu-Mg-Si
1-5
0,3-1,2
-
0,3-1,2
-
Al-Zn-Mg-Cu
0,5-3
1-3
5-9
-
-
Al-Li-Cu-Mg
0–4
0-5


1–3
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
63

64. Сравнительная характеристика свойств деформируемых сплавов

Базовая
система
Прочн. Пласт. Жароп.
Корр.
Дефор.
Свар.
Al-Mg
1-2
3
1
3
2
3
Al-Cu
3
3
3
1
2
2
Al-Mg-Si
2
3
2
3
3
2
Al-Cu-Mg
3
3
2
1
3
1
Al-Zn-Mg
1
2
1
3
3
2
Al-Zn-Mg-Cu
3
2
1
2
2
1
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
64

65. Обозначение некоторых состояний для деформируемых алюминиевых сплавов

Вид термообработки
Обозначение в
РФ1)
Обозначение
в США2)
Без термообработки, без контроля наклепа

F
Отжиг для полного снятия наклепа
М
O
Нагартованное состояние без термообработки
Н
H1
Нагартованное и частично отожженное состояние
Н1, Н2, Н3
H2
Нагартованное и стабилизированное состояние

Н3
Закалка после деформации плюс естественное
старение
T
T4
Закалка после деформации плюс старение на
максимальную прочность
T1
T6
Закалка после деформации плюс перестаривание
Т2, Т3
T7
Закалка после деформации, холодная деформация,
искусственное старение (НТМО)
T1Н
T8
1)
русские буквы,
09.02.2017
2)
латинские буквы
Курс “Структура и свойства цветных металлов и сплавов“
65

66. Типичные механические свойства термически неупрочняемых алюминиевых деформируемых сплавов

Сплав
Вид полуфабриката
Состояние
в,
МПа
0,2,
МПа
, %
АД00
Лист
М
60

28
АД1
Лист
Н
145

4
АМц
Лист
Н
185

4
АМг2
Лист
М
165

18
АМг2
Профиль
М
225
60
13
АМг3
Лист
М
195
100
15
АМг6
Лист
М
155
155
15
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
66

67. Типичные механические свойства термически упрочняемых алюминиевых деформируемых сплавов

Сплав
Вид полуфабриката
Состояние
в, МПа
0,2, МПа
, %
Д16
Лист
Т
440
290
11
Д20
Поковка
Т1
375
255
10
АК8
Пруток
Т1
450

10
АВ
Лист
М
145

20
АВ
Профиль
Т1
294
225
10
АД31
Пруток
Т1
195
145
8
В95
Пруток
Т1
510
420
6
В96ц
Поковка
Т1
590
540
4
1915
Лист
Т
315
195
10
АК4-1
Пруток
Т1
390
315
6
1420
Профиль
Т1
412
275
7
1450
Лист
Т1
490
430
4
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
67

68. Пример билета к контрольной работе

1.
2.
3.
4.
5.
В какой области диаграммы состояния
находятся составы алюминиевых сплавов с
хорошими литейными свойствами?
Какие процессы идут при закалке
деформированных полуфабрикатов из
алюминиевых сплавов?
Модифицирование структуры литейных
алюминиевых сплавов
Структура и свойства дуралюминов
Безмедистые силумины
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
68

69. Тугоплавкие металлы и сплавы

70. План раздела

Тугоплавкие металлы, их распространенность в земной коре,
применение. Металлы «большой четверки».
Общие особенности электронной и кристаллической структуры
тугоплавких металлов с ОЦК решеткой.
Физические свойства.
Химические свойства. Способы защиты тугоплавких металлов от
взаимодействия с газами воздуха
Состав защитных покрытий и способы их нанесения на тугоплавкие
металлы и сплавы.
Механические свойства: проблемы хладноломкости и жаропрочности
Принципы легирования тугоплавких металлов с целью создания
жаропрочных сплавов.
Промышленные сплавы.
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
70

71. Максимальные рабочие температуры жаропрочных сплавов на разной основе

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
71

72. Особенности электронной структуры

Тугоплавкие металлы IV-VII групп – переходные
d-элементы
V и Cr расположены в I-ом большом периоде, Zr,
Nb и Mo во II-ом, Ta, W, Nb и Re – в III-ем
Соответственно у них не полностью заполнены
3d-, 4d- и 5d-уровни, а количество электронов на
внешних уровнях почти одинаково
В результате кристаллическая структура у всех
этих металлов тоже близка
Как минимум одна модификация имеет ОЦК
решетку со всеми ее особенностями
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
72

73. Распространенность в земной коре, кристаллическая структура и некоторые физические свойства тугоплавких металлов

Плотность,
г/см3
Удельное
электросопротивление,
мкОм·см
Температура
перехода
в сверх проводящее
состояние,
К
Поперечное
сечение
захвата
тепловых
нейтронов,
барны
Металл
Содержание
в
земной
коре,
%
Тип
кристаллической
решетки
Цирконий
0,022
-ГП
-ОЦК
1852
6,5
42
0,7
0,18
Ванадий
0,0150
ОЦК
1900
6,14
24,8
5,13
4,98
Ниобий
0,0024
ОЦК
2468
8,58
12,7
9,22
1,15
Тантал
0,00021
ОЦК
3000
16,65
12,4
4,38
21
Хром
0,020
ОЦК
1875
7,19
12,8
-
3,1
Молибден
0,0015
ОЦК
2625
10,2
5,78
0,9-0,98
2,7
Вольфрам
0,0069
ОЦК
~3400
19,35
5,5
0,05
19,2
Рений
1·10-7
ГП
3180
21,02
19,14
1,7
86
Медь
0,007
09.02.2017
Температура плавления, 0С
Курс “Структура и свойства цветных металлов и сплавов“
73

74. Температура плавления переходных металлов трех длинных периодов

Максимум Тпл – при
6 (d+s)-электронах
когда максимальна
прочность сил межатомной связи
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
74

75. Химические свойства Схемы зависимости скорости окисления от времени при постоянной температуре

Покисление начинает
Сильное
р 400-5000С.
при т-рах
Причины
и линейного окислен
-низкая Тпл и Ткип оксида
(279 и 3630С у Re2O7, 795 и
14600С у МоО3),
-рыхлая крист. решетка, силь
отличающаяся от маталла
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
75

76. Взаимодействие с водородом и азотом

С водородом металлы VI-группы и рений в
твердом состоянии не взаимодействуют
Металлы IV- и V-групп активно
взаимодействуют с водородом выше 250-3000С
с образованием гидридов
С азотом взаимодействуют все тугоплавкие
металлы, особенно IV группы, меньше других хром
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
76

77. Защитные атмосферы и покрытия

Защитные атмосферы: вакуум, аргон,
водород (для W и Mo)
Защитные покрытия получают
хромированием, силицированием,
оксидированием (Al2O3, ThO2, ZrO2),
многослойным вакуумным напылением (Cr,
Si) с последующим диффузионным
отжигом
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
77

78. Механические свойства 2 основные проблемы –хладноломкость и жаропрочность Температурные зависимости относительного сужения

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
78

79. Природа хладноломкости ОЦК металлов

1.Роль примесей, особенно образующих растворы
внедрения
-предельная растворимость
-сегрегация на дислокациях
-равновесная сегрегация на границах
зерен
-образование частиц избыточных фаз
2. Влияние дислокационной структуры
3. Влияние зеренной структуры
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
79

80. Растворимость углерода, азота и кислорода в тугоплавких металлах VА и V1А-подгрупп при комнатной температуре

Металл
Растворимость ▪ 10-4 , %
углерода
азота
кислорода
Молибден
0,1 -1
1
1
Вольфрам
< 0,1
<0,1
<1
Ниобий
100
200
1000
Тантал
70
1000
200
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
80

81. Схемы структур тугоплавких ОЦК металлов в различных состояниях а – г -структуры в световом микроскопе; д – ж -дислокационная структура фол

Схемы структур тугоплавких ОЦК металлов в различных
состояниях
а – г -структуры в световом микроскопе;
д – ж -дислокационная структура фольги в электронном микроскопе;
а – литое состояние; б – деформированное;
в – рекристаллизованное состояние; г – монокристалл;
д – гомогенное распределение дислокаций;
е – ячеистая структура; ж – полигонизованная структура
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
81

82. Схемы изменения температуры хрупко -вязкого перехода тугоплавких металлов (Тхр) при легировании

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
82

83. Способы уменьшения хладноломкости

Снижение концентрации примесей
внедрения
Устранение сетки высокоугловых границ
Создание полигонизованной структуры
Измельчение зерна
Легирование рением и химически
активными элементами
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
83

84. Температурные зависимости предела прочности (а) и удельной прочности (б) тугоплавких металлов

а
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
б
84

85. Влияние легирования на жаропрочность

Твердорастворное упрочнение добавками,
повышающими или слабо снижающими
солидус металла – основы, т.е. другими
тугоплавкими элементами
Фазы – упрочнители: чаще всего карбиды, а
также нитриды, оксиды, бориды
Способы введения частиц фаз-упрочнителей –
порошковая металлургия,
- «слиточная» технология
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
85

86. Диаграмма состояния Ti – Mo

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
86

87. Диаграмма состояния Mo – W

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
87

88. Диаграмма состояния Zr – Nb

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
88

89. Схема конструирования состава жаропрочных сплавов на основе металлов «большой четверки»

Ме-основа (Мо, W, Nb, Ta) + растворимые
добавки для повышения жаропрочности (те
же металлы) и низкотемпературной
пластичности (Ti, Zr, Hf, РЗМ)+ добавки,
образующие фазы –упрочнители (С и
другие металлоиды)
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
89

90. Температурные зависимости предела прочности вольфрамовых сплавов

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
90

91.

Расшифровка кривых на слайде 94
Номер
кривой
Сплав
Метод получения
Состояние или обработка
1
100% W
Порошковая металлургия
Деформированный лист
2
W 100%W
-”-
Кованный пруток
3
W +10%Mo
-”-
-”-
4
W +15%Mo
Дуговая плавка
-”-
5
W +20%Mo
Электроннолучевая плавка
12050С, 1 час
6
W +25%Mo
Порошковая металлургия
Кованный пруток
7
W +30%Mo
Электроннолучевая плавка
12050С, 1 час
8
W +50%Mo
Порошковая металлургия
Кованный пруток
9
W +1%Th02
-”-
-”-
10
W +2%Th02
-”-
-”-
11
W +0,12%Zr
Дуговая плавка
Прессование, ковка
12
W +0,57%Nb
-”-
-”-
13
W +0,88%Nb
-”-
-”-
14
W +0,38%TaC
Порошковая металлургия
Ковка + 10000С, ½ ч
15
W +1.18%Нf + 0,086%С
-”-
Прессование, ковка
16
W +0.48%Zr + 0,048%С
-”-
-”-
17
Cплав ВВ2
Дуговая плавка
-”-
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
91

92. Химический состав и свойства молибденовых сплавов в отожженном состоянии

Среднее содержание, %
Температура
начала
рекристаллизации, 0С
σв при
1315 0С,
МПа
σ100
при
1315 0С,
МПа
Марка
сплава
Ti
Zr
W
Nb
C
Mo
-
-
-
-
<0.005
1100
150
30
ЦМ-5
-
0,45
-
-
0,05
1600
360
140
ЦМ-2А
0,2
0,1
-
-
≤0,004
1300
160 при
1400 0С
65
до 0,6
-
≤0,01
1300
190 при
1400 0С
90 при
1200 0С
-
1,4
0,3
1650
380
265
ВМ-1
ВМ-3
09.02.2017
до 0,4 0,15
1
0,45
Курс “Структура и свойства цветных металлов и сплавов“
92

93. Химический состав и свойства ниобиевых сплавов

Плотность,
г/см3
Температура
начала
рекристаллизации, 0С
Предел
прочности в
отожженном
состоянии
при 12000С
σв, МПа
Группа
сплавов
Марка
сплава
Среднее
содержание
легирующих
элементов, %
Малопрочные
ВН-2
4,5 Mo
8,6
1000
190
ВН-2А
4 Mo; 0.7Zr;<0,08C
8,65
1200
240
ВН-3
4,6Mo; 1.4Zr; 0.12C
8,6
1200
250
ВН-4
9,5Mo; 1,5Zr;
0,3C; 0,03Ce; La
-
1400
2500
Среднепрочные
Высокопрочные
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
93

94. Радиоактивные металлы

95. План раздела

Радиоактивный распад и цепная ядерная реакция.
Ядерный реактор.
Уран.
Физические, химические и механические свойства урана.
Радиационное повреждение урана. Радиационный рост
урана.
Газовое распухание урана и способы борьбы с ним.
Размерная нестабильность урана при работе реакторов.
Основные легирующие элементы.
Сплавы урана
Плутоний и его сплавы
Торий и его сплавы
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
95

96. Состав ядер атомов

-23
радиоактивных металла, используются в основном U, Pu и Th.
-Ядро состоит из нуклонов – положительно заряженных протонов и
нейтронов, имеющих примерно одинаковую массу.
-Число протонов Z (положительный заряд ядра) равно числу электронов.
-Заряд ядра Z равен суммарному числу протонов (или электронов)
-Число нуклонов (массовое число) М = Z + N (N – число нейтронов).
-У многих элементов при одном Z несколько значений N и М
-Изотопы – атомы с одинаковым Z, но разным М.
-Нуклоны в ядре связаны ядерными силами, на 6 порядков большими,
чем электростатические силы отталкивания протонов.
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
96

97. Распад и синтез ядер При увеличении Z ядерные силы сначала растут, а потом у тяжелых элементов уменьшаются. Синтез легких и распад тяжелых я

Распад и синтез ядер
При увеличении Z ядерные силы сначала растут, а потом у тяжелых
элементов уменьшаются.
Синтез легких и распад тяжелых ядер сопровождается выделением большой
энергии.
Условие стабильности ядра:
M
Z
2
1,98067 0, 0149624 M 3
Дефект массы при потере или приобретении энергии: m = E/c2,
где E – величина выделяющейся или приобретаемой энергии;
c – скорость света.
При образовании в результате синтеза ядер 1 кг гелия m = 80 г. При этом
выделяющаяся энергия E = 4,47 ·1028 МэВ (как при сгорании 20 000 т угля).
При распаде ядер тяжелых элементов также образуется огромная энергия (при
распаде ядер 1 кг U в 8 раз меньшая, чем при синтезе 1 кг He)
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
97

98. Разновидности реакций распада ядер радиоактивных изотопов (естественная радиоактивность)

1.
2.
3.
- распад с выделением –частицы (ядра гелия с
М=4 и Z=2). При этом образуется новое ядро.
Например, 226Ra88 4 2 + 222Rn86.
Позитронный или +-распад (позитрон – 0e+1)
Например, 30P15 0e+1 + 30Si14 + 0 0 ,
где
-нейтрино.
К – захват. Ядро захватывает электрон с оболочки
своего атома (чаще всего с К –оболочки), который
соединяется с протоном, образуя нейтрон.
Например, 55Fe26 + 0e-1 54Mn25 + 1n0.
При избытке нейтронов в ядре они распадаются: 1n0
1P1 + 0e-1 +0 0.
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
98

99. Реакции при бомбардировке ядер частицами

Ядерные реакции – поглощение частиц –бомбардиров ядрами
Если частица не поглощается ядром, то говорят о рассеянии
Если частица поглощается ядром, то образуется короткоживущее
(<10-16 сек) ядро, превращающееся в другое, испуская одну или
несколько частиц
Возможно образование «возбужденных» ядер, которые отдают
свой избыток энергии в виде электромагнитного излучения
Во всех ядерных реакциях Z и M остаются неизменными, а в
результате реакции выделяется или поглощается энергия
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
99

100. Эффективное поперечное сечение  бомбардируемых ядер (характеризует вероятность прохождения ядерной реакции)

Эффективное поперечное сечение
бомбардируемых ядер (характеризует
вероятность прохождения ядерной
реакции)
P = F N d ,
где P – число ядерных процессов;
F – число частиц-снарядов;
d – толщина фольги–мишени;
N – число ядер.
-Размерность – барны (1 барн = 10-24 см2).
-Наилучшие частицы-бомбардиры – нейтроны, которые
легко можно получать в реакторах и для которых не
существует кулоновского барьера.
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
100

101. Схема зависимости энергии связи ядра на 1 нуклид (Q/М) от массового числа М

Реакцией
деления
можно
управлят
С ядер
Синтез
и
(идет
в термоядерных
реакциях) пока
неуправляем
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
101

102. Схема зависимости % выхода образующихся при делении ядер урана и тория от массового числа М

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
102

103. Цепная ядерная реакция

При делении ядер в результате их бомбардировки
нейтронами выделяется энергия и образуются
нейтроны деления – мгновенные (10-15 сек) и
запаздывающие (0,114-54,3 сек после деления)
■ Образовавшиеся нейтроны расщепляют др. ядра,
в результате образуется еще больше нейтронов и
идет цепная ядерная реакция, обусловленная
тем, что вместо каждого потерянного в процессе
деления ядер нейтрона образуется в среднем
больше, чем один нейтрон
■ Управлять цепной реакцией можно только
благодаря наличию запаздывающих нейтронов
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
103

104. Ядерный реактор

Ядерный реактор – аппарат, в котором
происходит управляемый процесс деления
ядер.
Для непрерывного прохождения цепной
ядерной реакции деления надо компенсировать
потери нейтронов – число образующихся при
делении ядер нейтронов должно быть равно
или больше начального количества нейтронов
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
104

105. Принципиальная схема простейшего ядерного реактора (с массой, близкой к критической)

Коэффициент
размножения
K = · f ·n,
где - доля непоглощенных
первичных нейтронов,
f – доля нейтронов от доли, которые
вызвали деление,
n- число новых нейтронов,
образовавшихся при одном делении
К должен быть равен или больше
1 (но немного – до ~1,01), чтобы
шла управляемая цепная
реакция.
Если К=2, то произойдет
атомный взрыв через 10-6 сек
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
105

106. Принципиальная схема гетерогенного ядерного реактора

1 – урановые стержни (ТВЭЛы);
2 – замедлитель (с
минимальным P и атомным
весом – графит,Be);
3 – отражатель (из материалов,
подобных замедлителю);
4 – защита;
5 – регулирующий стержень
(с большим P)
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
106

107. Принципиальная схема ТВЭЛа (поперечное сечение)

1 – пруток ядерного
горючего;
2 – внутренняя
оболочка;
3 – внешняя оболочка;
4 – канал для
теплоносителя
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
107

108. УРАН Изотопный состав урана и реакции при захвате нейтронов ядрами 238U

Изотопы урана:
234U
238U
(0,006%), 235U (0,712%), 238U (99,28%)
делится только быстрыми нейтронами с большой энергией. При
взаимодействии с тепловыми нейтронами:
+ n 239U92 +
239U 239Np + e
92
93
-1
239Np 239Pu + 0e
93
94
-1
238U
238U
235U
09.02.2017
92
Значительного выделения энергии в этих реакциях не происходит.
является топливным сырьем для получения Pu.
является легко делящимся тепловыми нейтронами изотопом
Курс “Структура и свойства цветных металлов и сплавов“
108

109. Физические, химические свойства и полиморфные превращения в уране

Температура плавления урана 1132 0С.
(ОЦК) – модификация U стабильна при охлаждении до 764 775
0С.
-фаза (сложная тетрагональная решетка) – существует в
диапазоне от 7750 665 0С
0
(ромбическая решетка) – ниже 665 С
Переход β →α происходит с сильным уменьшением объема
(плотность увеличивается с 18,1 до 19,1 г/см3), это
вызывает большие внутренние напряжения
Низкая электро – и теплопроводность
(= 30 мкОм см)
■ Высокая химическая активность на воздухе (вплоть до
самовозгорания порошка), в воде и многих др. средах, с
жидкометаллическими теплоносителями взаимодействует слабо
- Природный уран радиационно практически безопасен
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
109

110. Влияние температуры на механические свойства урана, прокатанного в  – области с последующим быстрым охлаждением

Влияние температуры на механические
свойства урана, прокатанного в – области с
последующим быстрым охлаждением
При комнатной т-ре
у чистого (99,95%)
урана σв=300-500
МПа, =4-10%
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
110

111. Изменение формы и размеров U при облучении и ТЦО

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
111

112. Радиационное повреждение – изменение формы и размеров прутков ядерного горючего, повышение твердости, охрупчивание, образование пор и тр

Радиационное повреждение –
изменение формы и размеров прутков ядерного горючего, повышение
твердости, охрупчивание, образование пор и трещин, шероховатость
поверхности
Причины радиационного «роста»:
1) смещение атомов из положений равновесия,
2) внедрение продуктов деления в кристаллическую
решетку,
3) возникновение «термических пиков»,
4) анизотропия кристаллической решетки
Свеллинг – газовое распухание при высоких
температурах (>400 0С) из-за образования при
делении ядер ксенона и криптона
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
112

113. Размерная нестабильность в условиях многократных теплосмен

Наблюдается при наличии сильной текстуры,
устранение текстуры устраняет
формоизменение
Чем крупнее зерно, тем меньше рост, но
рельефней получается поверхность
Структурные изменения: рекристаллизация,
полигонизация, образование пор
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
113

114. Зависимость изменения длины уранового стержня от числа циклов нагрева и охлаждения 100 0С  500 0С 1 – после прокатки при 300 0С и отжига при 575 0С;

Зависимость изменения длины уранового стержня от числа
циклов нагрева и охлаждения 100 0С 500 0С
1 – после прокатки при 300 0С и отжига при 575 0С;
2 – после прокатки при 600 0С и отжига при 575 0С; 3 – после прокатки при 600
0С и закалки из – области
СС
кк
о
р
о
с
т
ь
Скорость
роста падает
С
с ослаблением
к
текстурованности
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
114

115. Сплавы урана

Сплавы с α-структурой –
малолегированные (10-2 % Al, Fe, Si),
сплавы с Mo, Zr, Nb (до 10%) – отсутствие
текстуры, мелкое зерно, дисперсные
частицы
Сплавы с γ-структурой (ОЦК) с Mo, Zr, Nb
(более 10%) –уменьшенное
формоизменение, повышенная
пластичность и коррозионная стойкость
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
115

116. Керамическое и дисперсионное ядерное горючее (ЯГ)

Керамическое ЯГ – соединения U и др.
радиоактивных металлов с металлоидами (O, C,
N) – получают методами порошковой
металлургии
Дисперсионное ЯГ – это композиты с
дискретными частицами соединений
радиоактивных металлов в нерадиоактивной
матрице (металлической, графитовой или
керамической)
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
116

117. Фазовая диаграмма системы U – Mo

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
117

118. Фазовая диаграмма системы U – Zr

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
118

119. Плутоний и его сплавы Полиморфизм плутония

Полиморфные
превращения
в плутонии
Tпп,

Кристаллическая решетка
аллотропических
модификаций Pu
Плотность,
г/см3
472
- ОЦК
16,5
450
- объемноцентрированная
16
тетрагональная
310
- ГЦК
15,9
218
- гранецентрированная
17,1
ромбическая
119
- объемноцентрированная
17,8
моноклинная
- простая моноклинная
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
19,8
119

120. Свойства плутония

■ -Pu – еще более химически активен, чем уран,
радиационно опасен из-за - и -излучения,
обладает очень большим КТР и электросопротивлением
(145 мкОм.см);
-предел прочности 350-400 МПа, <1%.
■ -Pu с ГЦК-решеткой пластичен, изотропен по свойствам,
имеет положительный температурный коэффициент
электросопротивления и отрицательный ТКР;
■ большие объемные изменения при полиморфных
превращениях;
■ невозможность использования чистого Pu в ядерных
реакторах.
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
120

121. Салавы плутония

Сплавы Pu c Al (на основе Al – дисперсионное ЯГ – сл.128)
Сплавы с переходными металлами (Zr, Ce, Fe)
Сплавы Pu-U, Pu-Th и Pu-U-Mo для реакторов на
быстрых нейтронах
Фиссиум – сплавы U-Pu со смесью продуктов
деления (в основном Mo и Ru)
Сплавы Pu с Fe, Ni, Co с низкой Тпл для
жидкого ядерного горючего
■ Сплавы Pu c Ga – стабилизация -фазы сильно
уменьшает объемные изменения
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
121

122. Температурные зависимости изменения длины Pu и его сплавов с Ga

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
122

123. Растворимость некоторых добавок в   и   модификациях Pu

Растворимость некоторых добавок в
и модификациях Pu
Фазы
Легирующий
элемент
Алюминий
13 – 16
12
Цинк
6
3–6
Церий
24
14
Торий
4
4–5
Титан
4,5
8
Железо
1,4 – 1,5
3
Цирконий
70 – 72
Полная
Уран
1
Полная
09.02.2017
Влияние легирующего
элемента на нижнюю
границу области
Повышает
Курс “Структура и свойства цветных металлов и сплавов“
123

124. Фазовая диаграмма системы Pu – Al

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
124

125. Фазовая диаграмма системы Pu – Zr

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
125

126. Фазовая диаграмма системы Pu – U

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
126

127. Фазовая диаграмма системы Pu – Fe

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
127

128. Торий и его сплавы Реакции превращения 232Th в 233U

Торий и его сплавы
Реакции превращения
232Th
232Th +
+
n
90
90
233Pa
232Th
в 233U
0e
+
91
-1
233U
92
+e
Т-ра плавления технического Th 1690 0С.
При 1400 0С -Th с ГЦК решеткой переходит в -Th с ОЦК решеткой.
Плотность - Th 11,65 г/см3,
Удельное электросопротивление 20-30 мкОм·см
КТР 11,7 10-6 град-1 – в несколько раз меньше, чем у U
Имеет хорошую пластичность и изотропность свойств благодаря ГЦК
решетке, но малопрочен (HV 40-80)
Высокая жаропрочность
Химическая активность ниже, чем у урана
Используется чаще всего в виде сплавов с ураном при повышенной
концентрации 235U
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
128

129. Фазовая диаграмма системы Th – U

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“

Алюминий является одним из важнейших материалов, используемых в электронной промышленности, как в чистом виде, так и в составе многочисленных типов сплавов на его основе. Чистый алюминий не имеет аллотропических модификаций, обладает высокой теплопроводностью и электропроводностью, составляющими 62-65% от аналогичных параметров для меди. Температура плавления алюминия - 660 °С, температура кипения - 2500 °С. Твердость чистого алюминия составляет 25 НВ по Бринелю. Алюминий легко обрабатывается резанием, волочением, давлением.

При контакте с воздухом на поверхности алюминия образуется бес- пористая защитная оксидная пленка толщиной примерно 2 нм (20 А), защищающая его от дальнейшего окисления. Алюминий обладает низкой коррозионной стойкостью в растворах щелочей, соляной и серной кислотах. Органические кислоты и азотная кислота на него не действуют.

Промышленность выпускает несколько марок алюминия: особой чистоты, высокой чистоты и технической чистоты. Алюминий особой чистоты марки А999 содержит не более 0,001% примесей; высокой чистоты марок А995, А99, А97 и А95 соответственно - не более 0,005; 0,01; 0,03 и 0,05% примесей; технической чистоты марки А85 - не более 0,15% примесей.

В электронике чистый алюминий применяют при производстве электролитических конденсаторов, фол ьг, а также в качестве мишеней при формировании алюминиевых токопроводящих дорожек микроэлектронных устройств с использованием методов термического, ионно-плазменного и магнетронного напыления.

Наибольший интерес для электронной техники представляют сплавы на основе систем «алюминий - медь» и «алюминий - кремний», составляющие две большие группы деформируемых и литейных сплавов, используемых в качестве конструкционных материалов.

На рис. 2.7 приведена равновесная диаграмма состояния системы «алюминий - медь» со стороны алюминия. Эвтектический сплав в данной системе содержит 33% меди и имеет температуру плавления 548 °С. При повышении содержания в сплаве интерметаллида повышается прочность сплава, но ухудшается его обрабатываемость. Растворимость меди в алюминии при комнатной температуре составляет 0,5% и достигает 5,7% при эвтектической температуре.

Сплавы с содержанием меди до 5,7% можно перевести в однофазное состояние путем их закалки с температуры выше линии BD. При этом закаленный сплав обладает достаточной пластичностью при умеренной прочности и допускает обработку деформацией. Однако образовавшийся после закалки твердый раствор является неравновесным, и в нем протекают процессы выделения интерметаллидов, сопровождающиеся повышением прочности сплавов. При комнатной температуре этот процесс протекает в течение 4-6 сут и называется естественным старением сплава. Ускорение процесса старения материала обеспечивают его выдержкой при повышенной температуре, такой процесс называют искусственным старением.

Рис. 2.7. Диаграмма состояния системы «алюминий-медь» Другую группу алюминиевых сплавов, называемых литейными сплавами алюминия или силуминами, составляют сплавы на основе системы «алюминий - кремний». Диаграмма состояния данной системы приведена на рис. 2.8.


Рис. 2.8.

Эвтектический сплав содержит 11,7% кремния и имеет температуру плавления 577 °С. В данной системе не образуется интерметаллических соединений. Эвтектические сплавы обладают хорошими литейными и удовлетворительными механическими свойствами, которые улучшаются при введении в сплав до 1 % соединений натрия.

В настоящее время разрабатываются новые славы на основе алюминия, позволяющие еще больше расширить сферу применения этих материалов. Так, для проекта экологичного самолета, работающего на жидком водороде (его температура –253 о С) потребовался материал, который при таких низких температурах не охрупчивается. Разработанный в России сплав О1420 на основе алюминия, легированного литием и магнием, удовлетворяет этим требованиям. Кроме того, за счет того, что оба легирующих элемента в этом сплаве легче алюминия, удается понизить удельный вес материала, и соответственно, полетную массу машин. Сочетая хорошую прочность, присущую дюралям, и пониженную плотность, сплав кроме того обладает высокой коррозионной стойкостью. Таким образом, современная наука и технология идет по пути создания материалов, сочетающих максимально возможный набор полезных качеств.

Необходимо также отметить, что в настоящее время одновременно с традиционной буквенно-цифровой существует новая цифровая маркировка алюминиевых сплавов – см. рис. 3 и табл. 10.

Рисунок 3 – Принцип цифровой маркировки алюминиевых сплавов

Таблица 10

Примеры обозначений с помощью новой маркировки

Легирующие элементы

Маркировка

Традиционная

Al (чистый)

Список литературы

1. Колачев Б.А., Ливанов В.А., Благин В.И. Металловедение и термическая обработка цветных металлов и сплавов. М.: Металлургия, 1972.-480 с.

2. Лахтин Ю.М., Леонтьева В.П. Материаловедение. М.: Машиностроение, 1990.-528 с.

3. Гуляев А.П. Металловедение. М.: Металлургия, 1986.-544 с.

4. Энциклопедия неорганических материалов. Том 1.: Киев: Гл.ред.укр.сов.энц., 1977.-840 с.

5. Энциклопедия неорганических материалов. Том 2.: Киев: Гл.ред.укр.сов.энц., 1977.-814 с.

6. Материаловедение и технология материалов. Фетисов Г.П., Карпман М.Г., Матюнин В.М. и др. М.- В.Ш., 2000.- с.182

Приложение 1

Диаграмма состояния Al-Mg (a) и зависимость механических свойств

сплавов от содержания магния (б)

Приложение 2

Диаграмма состояния Al - Cu :

штриховая линия – температура закалки сплавов

Приложение 3

Диаграмма состояния Al Si (а) и влияние кремния

на механические свойства сплавов

Введение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ………4

1 Алюминий. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …...4

2 Сплавы на основе алюминия. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …...5

2.1 Деформируемые алюминиевые сплавы,

не упрочняемые термической обработкой. . . . . . . . . . . . . . . . . . . . . . . . .......6

2.2 Деформируемые алюминиевые сплавы,

упрочняемые термической обработкой. . . . . . . . . . . . . . . . . . . . . . . . . . . .......7

2.3 Литейные алюминиевые сплавы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......11

2.4 Сплавы, получаемые методом порошковой металлургии………...……..…..14

Заключение………………………………………………….………………..……..16

Список литературы……………………….………………………………………...17

Приложение 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …. . . . . . . . . . . . . . . . . . . ….19

Приложение 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . ….. 20

Приложение 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . ….21

Кафедра теоретических основ материаловедения

В зависимости от способа производства промышленные алюминиевые сплавы делятся на спеченные, литейные и деформируемые (рис.1).

Литейные сплавы претерпевают эвтектическое превращение, а деформируемые – нет. Последние в свою очередь бывают термически неупрочняемыми (сплавы в которых нет фазовых превращений в твердом состоянии) и деформируемые, термически упрочняемые (сплавы, упрочняемые закалкой и старением).

Алюминиевые сплавы обычно легируют Си, Mg, Si, Мn, Zn, реже Li, Ni, Ti.

Деформированные алюминиевые сплавы, неупрочняемые термической обработкой

К этой группе сплавов относятся технический алюминий и термически неупрочняемые свариваемые коррозионностойкие сплавы (сплавы алюминия с марганцем и магнием). Сплавы АМц относятся к системе Аl – Ми (рис.1).

Рис.1. Диаграмма состояний “алюминий – легирующий элемент”:

1–деформируемые, термически неупрочняемые сплавы;

2–деформируемые, термически упрочняемые сплавы.

Рис.2. Диаграмма состояния “алюминий – марганец”:

–концентрация Mn в промышленных сплавах.

Рис.3. Микроструктура сплава АМЦ

Рис.6. Микроструктура дюралюмина после:

а) закалки в воде с температуры Т2;

б) закалки и искусственного старения при Т3

(справа – схематическое изображение)

Структура сплава Амц состоит из a -твердого раствора марганца в алюминии и вторичных выделений фазы MnAl (рис.3).В присутствии железа вместо MnAl образуется сложная фаза (MnFe) Al, практически нерастворимая в алюминии, поэтому сплав Амц и упрочняется термической обработкой.

Состав данных сплавов имеет очень узкие пределы: 1-1,7% Мп;

0,05 – 0,20% Cu; медь добавляют в целях уменьшения питтинговой коррозии.

Допускается до 0,6–0,7% Fe и. n 0,6-0,7% Si, что приводит к некоторому упрочнению сплавов без существенной потери сопротивления коррозии.

При понижении температуры прочность быстро растет.Поэтому сплавы этой группы нашли широкое применение в криогенной технике.

Сплавы АМг (магналий) относятся к системе А1 – Mg (рис.4). Магний образует с алюминием a -твердый раствор и в области концентраций от 1,4 до 17,4% Mg происходит выделение вторичной b -фазы (MgAl), но сплавы содержащие до 7% Mg, дают очень незначительное упрочнение при термической обработке, поэтому их упрочняют пластической деформацией–нагартовкой.

Сплавы систем А1– Мn. и А1–- Mg используются в отожженном, нагартованном и полунагартованном состояниях. В промышленных сплавах магний содержится в пределах от 0,5 до 12... 13%, сплавы с низким содержанием магния обладают наилучшей способностью к формообразованию, сплавы с высоким содержанием магния имеют хорошие литейные свойства (табл.5) приложения.


На судах из сплавов этой группы изготовлены спасательные боты, шлюпбалки, забортные трапы, дельные вещи и т.п.

Деформированные алюминиевые сплавы, упрочняемые термической обработкой

К этой группе сплавов относятся сплавы высокой и нормальной прочности. Составы некоторых деформируемых термически упрочняемых сплавов приведены в таблице 6 приложения. Типичными деформируемыми алюми-ниевыми сплавами являются дуралюмины (маркируют буквой Д) – сплавы системы А1 – Си – Mg. Очень упрощенно процессы, проходящие при упрочняющей термической обработке дуралюмина можно рассмотреть, используя диаграмму Al – Си (рис.5).

Рис.4. Диаграмма состояния “алюминий – магний”.

‚ – концентрация Mg в промышленных сплавах.

Рис.5. Фрагмент диаграммы состояния “алюминий – медь”:

Т1 – температура оплавления;

Т2 – температура закалки;

Т3 – температура искусственного старения.

Рис.7. Диаграмма состояния “алюминий – кремний”:

а) общий вид;

б) после введения модификатора.

При закалке, которая заключается в нагреве сплава выше линии переменной растворимости, выдержке при этой температуре и быстром охлаждении, фиксируется структура пересыщенного a – твердого раствора (светлый на рис.6а) и нерастворимых включении железистых и марганцовистых соединений (темные). Сплав в свежезакаленном состоянии имеет небольшую прочность s6 = 30 кг/мм3 (300 Мпа); d = 18%; твердость НВ75.

Пересыщенный твердый раствор неустойчив. Наивысшая прочность достигается при последующем старении закаленного сплава. Искусственное старение заключается в выдержке при температуре 150 - 180 градусов. При этом из пересыщенного a – твердого раствора выделяются упрочняющие фазы CuAl2, CuMgAl2, Al12Mn2Cu.

Микроструктура состаренного сплава представлена на рис.6б. Она состоит из твердого раствора и включений различных вышеперечисленных фаз.

Обработка алюминия

Все сплавы алюминия можно разделить на две группы:

Деформируемые алюминиевые сплавы - предназначены для получения полуфабрикатов (листов, плит, прутков, профилей, труб и т. д.), а также поковок и штамповых заготовок путем прокатки, прессования, ковки и штамповки.

а) Упрочняемые термической обработкой:

Дуралюмины, «дюраль» (Д1, Д16, Д20*, сплавы алюминия меди и марганца ) - удовлетворительно обрабатываются резанием в закаленном и состаренном состояниях, но плохо в отожженном состоянии. Дуралюмины хорошо свариваются точечной сваркой и не свариваются сваркой плавлением вследствие склонности к образованию трещин. Из сплава Д16 изготовляют обшивки, шпангоуты, стрингера и лонжероны самолетов, силовые каркасы, строительные конструкции, кузова автомобилей.

Сплав авиаль (АВ) удовлетворительно обрабатывается резанием после закалки и старения, хорошо сваривается аргонодуговой и контактной сваркой. Из этого сплава изготовляются различные полуфабрикаты (листы, профили, трубы и т.д.), используемые для элементов конструкций, несущих умеренные нагрузки, кроме того, лопасти винтов вертолетов, кованные детали двигателей, рамы, двери, для которых требуется высокая пластичность в холодном и горячем состоянии.

Высокопрочный сплав (В95) имеет предел прочности 560-600 Н/мм2, хорошо обрабатывается резанием и сваривается точечной сваркой. Сплав применяется в самолетостроении для нагруженных конструкций (обшивки, стрингеры, шпангоуты, лонжероны) и для силовых каркасов в строительных сооружениях.

Сплавы для ковки и штамповки (АК6, АК8, АК4-1 [жаропрочный]). Сплавы этого типа отличаются высокой пластичностью и удовлетворительными литейными свойствами, позволяющими получить качественные слитки. Алюминиевые сплавы этой группы хорошо обрабатываются резанием и удовлетворительно свариваются контактной и аргонодуговой сваркой.

б) Не упрочняемые термической обработкой:

Сплавы алюминия с марганцем (АМц) и алюминия с магнием (АМг2, АМг3, АМг5, АМг6) легко обрабатываются давлением (штамповка, гибка), хорошо свариваются и обладают хорошей коррозионной стойкостью. Обработка резанием затруднена, поэтому для получения резьбы используют специальные бесстружечные метчики (раскатники), не имеющие режущих кромок.

Литейные алюминиевые сплавы - предназначенные для фасонного литья (как правило, хорошо обрабатываются резанием).

Сплавы алюминия с кремнием (силумины) Al-Si (АЛ2, АЛ4, АЛ9) отличаются высокими литейными свойствами, а отливки - большой плотностью. Силумины сравнительно легко обрабатываются резанием.

Сплавы алюминия с медью Al-Cu (АЛ7, АЛ19) после термической обработки имеют высокие механические свойства при нормальной и повышенных температурах и хорошо обрабатываются резанием.

Сплавы алюминия с магнием Al-Mg (АЛ8, АЛ27) имеют хорошую коррозионную стойкость, повышенные механические свойства и хорошо обрабатываются резанием. Сплавы применяют в судостроении и авиации.

Жаропрочные алюминиевые сплавы (АЛ1, АЛ21, АЛ33) хорошо обрабатываются резанием.

С точки зрения обработки фрезерованием, нарезания резьбы и токарной обработки, алюминиевые сплавы также можно разделить на две группы. В зависимости от состояния (закаленные, состаренные, отожженные) алюминиевые сплавы могут относиться к разным группам по легкости

обработки:

Мягкие и пластичные алюминиевые сплавы, вызывающие проблемы при обработке резанием:

а) Отожженные: Д16, АВ.

б) Не упрочняемые термической обработкой: АМц, АМг2, АМг3, АМг5, АМг6.

Сравнительно твердые и прочные алюминиевые сплавы, которые достаточно просто обрабатываются резанием (во многих случаях, где не требуется повышенная производительность, эти материалы могут обрабатываться стандартным инструментом общего применения, но если требуется повысить скорость и качество обработки, необходимо применять специализированный инструмент):

а) Закаленные и искусственно состаренные: Д16Т, Д16Н, АВТ.

б) Ковочные: АК6, АК8, АК4-1.

в) Литейные: АЛ2, АЛ4, АЛ9, АЛ8, АЛ27, АЛ1, АЛ21, АЛ33.

Исходя из основных требований, предъявляемых к изделию, для его изготовления целесообразно использовать алюминиевые сплавы, так как они легко обрабатываются давлением (штамповка, гибка), имеют высокую теплопроводность, хорошо свариваются и обладают хорошей коррозионной стойкостью, высокой механической прочностью при относительной низкой плотности металла. Этот материал, имея высокую прочность и жесткость, может десятилетиями работать в космических условиях практически без ухудшения механических свойств. К главному недостатку данного материала можно отнести высокий коэффициент расширения.

Исходя из условий эксплуатации, из алюминиевых сплавов для изготовления конструкции наиболее предпочтительно использовать сплав АМг3, который обладает высоким комплексом механических свойств в сочетании с хорошей свариваемостью.

Основные физико-химические и механические свойства сплава АМг3

Основные механические и физические свойства сплава АМг3 представлены в таблицах 1.2.1. и 1.2.2.

Таблица 1.2.1. Химический состав сплава АМг3 (в масс. %) (по ГОСТ 4784 - 97)

Примесей

Прочие, каждая 0,05; всего 0,1

Таблица 1.2.2. Механические и физические свойства сплава АМг3 (по ГОСТ 4784 - 97)

Плотность r , кг/м 3 (при Т=20 0)

Температура плавления Т пл, ° С

Коэффициент линейного расширения a Ч 10- 6 ,

град -1 (диапазон 20 0 -100 0)

Теплопроводность l , Вт/(м Ч град)

Предел прочности при растяжении s в, МПа

Условный предел текучести s 0,2 , МПа

Относительное удлинение при разрыве д 5 (%)

Удельная теплоемкость материала C (Дж/(кг*град)) (Т=100 0)

Удельное электросопротивление R(Ом*м)(Т=20 0)

Твердость по Бринеллю (МПа)

Упрочнение сплавов достигается в результате образования твердого раствора и в меньшей степени избыточных фаз.

Структура сплава представляет собой б-твердый раствор с включением интерметаллической в-фазы (Mg 5 Al 8). При этом содержание магния в сплаве порядка 7% позволяет измельчить микрозерна, что делает структуру однородной и мелкозернистой. Диаграмма состояния Al - Mg представлена на рисунке 1.2.1.