04.03.2020

Цифровая фабрика будущего. Фабрика будущего. Новые бизнес-модели и их цифровая трансформация. Рынок «Фабрик будущего»: текущее состояние и прогнозы


Армин Грюнвальд (Armin Gruenewald)

Любая отрасль - от автомобилестроения и авиационно­космической промышленности до станкостроения и энергетики - зависит от качества конструкторско­технологической подготовки производства и механообработки в цехах. Нередко детали и сборочные единицы изготавливаются небольшими подразделениями или независимыми компаниями, которые сталкиваются с ростом конкуренции и необходимостью применять новые материалы и технологии. На сложные цепочки поставок распространяются все более ужесточающиеся нормативные требования, а сроки разработки требуется постоянно сокращать.

Европейский изготовитель пресс­форм конкурирует с производителями, работающими на рынках с менее жесткими нормативными требованиями, а также с региональными компаниями. При этом оснастку приходится разрабатывать как можно быстрее, чтобы не отставать от сроков разработки изделий, - ведь длительность процессов сократилась наполовину. Например, раньше на создание новой модели автомобиля уходило девять­десять лет, а теперь этот срок уменьшился до четырех. Соответственно сократились и сроки разработки деталей.

Для повышения эффективности производства нередко пытаются автоматизировать отдельные этапы при помощи различных систем, электронных таблиц и бумажных документов. Если автоматизация выполняется неверно, то в результате получаются разрозненные процессы, а бесценная информация и важнейшие производственные ноу­хау не используются должным образом. Подобный подход не повышает ни эффективности, ни конкурентоспособности предприятия.

Для выхода на новый уровень эффективности и победы в конкурентной борьбе машиностроительным предприятиям требуется новая концепция ведения бизнеса, в полной мере реализующая возможности, предоставляемые самыми современными технологиями. Единая интегрированная система создает интеллектуальные модели и процессы, объединяя этапы технологического проектирования и производства в рамках «цифровой цепочки», проходящей через все предприятие. Такой подход оптимизирует производственные процессы, снижает себестоимость и сокращает сроки выполнения заказов.

Вместо того чтобы сначала создать 3D­модель в системе автоматизированного проектирования (CAD­системе), а затем осуществить импорт и экспорт в разные системы, следует создать цифровой двойник - точную виртуальную копию реального изделия. Этот двойник передается между службами предприятия без потери данных, помогая выпускать продукцию, полностью соответствующую требованиям заказчика.

Внедрение цифрового производственного процесса сразу же повышает производительность и эффективность работы даже небольших предприятий, а также способствует дальнейшему росту бизнеса. Дигитализация - это не только устранение ручного ввода данных и изменений модели на каждом этапе разработки. Применение единой системы и интеллектуальной модели обеспечивает поддержку параллельной работы специалистов. Например, подготовка контроля качества изготовления детали выполняется одновременно с разработкой управляющих программ в CAM­системе. В результате происходит автоматизация всего процесса в целом при сохранении его гибкости.

Когда в конструкцию вносятся изменения, они автоматически передаются на все этапы процесса без ручного ввода данных. Предусмотрено сравнение геометрии 3D­модели и готовой детали, измеряемой на координатно­измерительной машине (КИМ). При этом полученная информация отправляется обратно в CAM­систему. Это значительно упрощает поиск и устранение несоответствий. Создается замкнутый контур совершенствования конструкторско­технологических проектных решений. Он повышает качество и производительность, а также сокращает сроки наладки оборудования. Качественные детали изготавливаются быстрее, что увеличивает число выполняемых заказов. Более того, при выполнении следующего заказа можно применить уже имеющиеся модели, доработав их под новые требования, что позволяет не начинать каждый раз проектирование с нуля. Повторное использование имеющихся на предприятии оптимальных рабочих процессов и ноу­хау - самый эффективный способ повышения производительности и качества.

Дигитализация не только автоматизирует выпуск деталей, точно соответствующих требованиям, но и упрощает внедрение новых цифровых технологий (промышленные роботы, аддитивное производство) даже на небольших предприятиях.

Раньше роботы в основном применялись для позиционирования и транспортировки заготовок, включая загрузку и выгрузку деталей на станках. Сегодня же они чаще используются и для выполнения механической обработки. Например, управляемый на основе цифровой модели робот способен точно просверлить сотни тысяч отверстий в крыле самолета. Но для этого необходима интеграция конструкторской модели с системами программирования роботов и станков ЧПУ и с технологическим оборудованием.

3D­печать и другие виды аддитивного производства позволяют изготавливать детали, которые в прошлом было просто невозможно сделать, а также использовать новые материалы и конструкторские решения, улучшающие технические характеристики изделия, снижающие массу и упрощающие сборку. Однако внедрение подобных процессов требует перехода на совершенно другие методики проектирования, значительно отличающиеся от разработки деталей, изготавливаемых механообработкой. В частности, создаваемые для 3D­печати детали отличаются минимальной материалоемкостью и при этом совершенно не похожи на привычные. При помощи методики генеративного моделирования инженеры создают сверхлегкие конструкции, не уступающие по своим характеристикам традиционным. Такие детали могут быть пустотелыми и иметь сложные «органические» формы. При этом необходимо избегать создания излишних поддерживающих элементов - их потребуется удалять, что может замедлить производство. Важнейшим аспектом становится наличие системы автоматизированного проектирования, способной выполнять топологическую оптимизацию традиционных конструкций. Методы аддитивного производства позволяют изготавливать такие изделия нового поколения с минимальными затратами на наладку и оснастку.

Цифровой завод - это бесшовное объединение важнейших этапов проектирования и изготовления деталей. Процесс­ориентированный подход объединяет сотрудников, данные и производственные ресурсы. Он гарантирует изготовление изделий, отвечающих всем требованиям заказчика, а также увеличение прибыльности и эффективности.

Цифровой завод в действии

Чтобы воспользоваться всеми преимуществами цифрового производства, не обязательно быть промышленным гигантом. Австрийский изготовитель пресс­форм HAIDLMAIR начинал как небольшая кузнечная мастерская, но при этом компания постоянно внедряла новейшие технологии. Когда нынешний генеральный директор компании Марио Хейдлмар (Mario Haidlmair) унаследовал эту должность у своего отца, он выяснил, насколько неэффективным было использование разрозненных и нередко несовместимых систем для проектирования деталей и разработки управляющих программ. Внедрив решения от Siemens, компании удалось построить оптимизированный сквозной процесс, в рамках которого создается цифровой двойник каждой детали. «В отделе программирования станков с ЧПУ мы точно воссоздаем ситуацию, возникающую на конкретном станке», - поясняет г­н Хейдлмар.

Над изготовлением пресс­форм работает множество различных отделов компании, и все они используют интеллектуальную 3D­модель. Это позволяет проверить характеристики еще не изготовленной детали, разработать управляющие программы для токарных, трех­ и пятикоординатных станков с ЧПУ в системе NX CAM от Siemens, а также проконтролировать технологический процесс сборки. Модели, данные по режущему инструменту, технологические операции и управляющие программы для ЧПУ хранятся в системе Teamcenter, поэтому все отделы получают доступ к единому источнику актуальной информации. Подобная цифровая цепочка обеспечивает эффективное взаимодействие сотрудников. Оператор станка, имея CAD­модель детали и взаимодействуя с конструктором и программистом станков с ЧПУ, быстро устраняет все возникающие проблемы еще до начала обработки.

Интегрированная система проектирования деталей, управления технологическими процессами и оборудованием снижает себестоимость (по оценке Хейдлмара - на 15­20%), а это «сотни тысяч евро в год». Еще одно преимущество, особенно при работе на высококонкурентном рынке - «сокращение сроков выполнения заказов».

С целью дальнейшей автоматизации процессов и повышения производительности компания Haidlmair внедряет стратегию механической обработки на основе элементов, поддерживаемую системой NX CAM. «Мы хотим добиться того, чтобы порядка 80% операций электроэрозионной обработки выполнялось полностью автоматически, без вмешательства оператора», - отмечает системный администратор CAM­решений Стефан Пендль (Stefan Pendl). И речь идет не только о сокращении затрат. Цель Хейдлмара - превратить небольшое производство в «лучшего в мире производителя пресс­форм». Он пытается достичь оптимального качества продукции: «Я с оптимизмом смотрю в будущее и уверен, что мы сможем добиться снижения себестоимости при одновременном росте качества. А именно этого ожидают все наши заказчики». 

Проект «Наставники: не рядом, а вместе!»

Лидер проекта: Александра Юрьевна Телицына, исполнительный директор MOO «Старшие Братья Старшие Сестры» .

Проект ориентирован на детей, находящихся в трудной жизненной ситуации. Адаптироваться и полноценно участвовать в жизни общества таким детям помогает индивидуальное общение с наставниками. Суть проекта - привлечение в качестве наставников успешных взрослых людей - деятелей культуры и спорта, представителей бизнеса и власти. В настоящее время в проекте принимают участие директора АСИ. Программа индивидуального наставничества дает детям возможность почувствовать уверенность в своих силах, развить лидерские компетенции, сориентироваться в выборе профессии.

АСИ окажет информационную и административную поддержку, поможет наладить коммуникацию с региональными органами власти с целью тиражирования проекта.

Проект «Этномир»

Лидер проекта: Руслан Фаталиевич Байрамов, президент Международного Фонда «Диалог Культур - Единый Мир» .

Культурно-образовательный центр «Этномир» в Калужской области за десять лет существования принял полтора миллиона гостей. Этнографический парк знакомит с жизнью, традициями и культурой народов России и мира. На аутентично воссозданных дворах размещены ремесленные мастерские, дома-гостиницы, музеи, рестораны традиционной кухни, сувенирные магазины; в Центре работают образовательные программы для детей, проходят фестивали, карнавалы, выставки, конференции, концерты, связанные с культурой разных стран и народностей.

В планах проекта - сделать «Этномир» креативным городом дружбы народов. Парк рассчитывает расширить свою территорию и увеличить посещаемость до 10 миллионов человек в год.

АСИ окажет консультационную и методологическую поддержку по созданию модельной программы дополнительного образования детей на базе культурно-образовательного центра «Этномир», а также содействие в развитии международных контактов.

Публикация подготовлена сотрудниками CompMechLab ® по материалам spbstu.ru , kremlin.ru , strf.ru , minpromtorg.gov.ru и собственной информации.

)
Тема 2. Цифровая экономика
Тема 2.1 Маркетинг и современные информационные технологии (презентация , конспект , самостоятельная работа)
Тема 2.2 Цифровой след потребителя (презентация , конспект)
Тема 3. Концепция Фабрик Будущего
Тема 3.1 Современные технологические тренды и предпосылки, ведущие к созданию Фабрик Будущего (презентация , конспект)
Тема 3.2 Архитектура Фабрик Будущего. Цифровая - Умная - Виртуальная Фабрики (презентация , конспект)
Тема 4. Цифровое проектирование. Цифровая фабрика.
Тема 4.1 Компьютерный инжиниринг, возможности цифрового проектирования (презентация , конспект)
Тема 4.2 Построение Цифровой фабрики (презентация , конспект)
Тема 5.Аддитивные технологии
Тема 5.1 Обзор существующих технологий (презентация , конспект)
Тема 5.2. Перспективы использования 3D-печати для Фабрик Будущего (презентация , конспект)
Тема 6. Новые материалы
Тема 6.1 Композитные материалы (презентация , конспект)
Тема 6.2 Мета, наноматериалы и суперсплавы (презентация , конспект)
Экзамен по модулю 1

Модуль 2
Тема 7. Инструменты цифровой трансформации компании
Тема 7.1 Понятие цифровой трансформации (презентация , конспект)
Тема 7.2 Интернет вещей и технологии работы с Big Data (презентация , конспект , самостоятельная работа)
Тема 7.3 Облачные решения для цифровой трансформации (презентация , конспект)
Тема 8. Управление цифровой компанией (презентация , конспект)
Тема 9. Умная фабрика
Тема 9.1 Концепция «Умной» Фабрики (презентация , конспект)
Тема 9.2 Системы управления умным производством (презентация , конспект , самостоятельная работа)
Тема 9.3 Введение в робототехнику (презентация , конспект)
Тема 10. Виртуальная фабрика
Тема 10.1 Концепция Виртуальной Фабрики (презентация , конспект)
Тема 10.2 Построение логистических сетей для Виртуальной Фабрики (презентация , конспект)
Экзамен по модулю 2
Итоговая аттестация. Прокторинг

Курс состоял из 10 тем, а некоторые темы состояли из подтем, содержание которого я описал выше. По каждой подтеме необходимо просмотреть видеолекции и сдать тесты. К каждой видеолекции выложены конспекты лекций и презентации к ним в формате pdf-файлов. Также в составе некоторых тем присутствуют практические и самостоятельные работы, для сдачи которых необходимо также пройти тестирование. Курс делится на два модуля, по которым нужно сдать экзамены тоже в виде тестов, но на этот раз время на сдачу ограничено в размере одного часа. У каждого контрольного задания (тест, практическая работа) есть срок выполнения (дедлайн), по истечении которого даже правильные ответы система принимать не будет! В расписании курса указан дедлайн каждого задания, который варьируется от двух до четырех недель в зависимости от его сложности. И в заключении необходимо сдать общий итоговый экзамен с прокторингом – механизмом контроля за честным выполнением проверочных работ и экзаменов.

Экзамен с прокторингом представляет собой тестирование, во время которого за вами через вебкамеру с микрофоном следит человек - проктор, также он следит и за вашим рабочим столом на вашем компьютере (для этого вам необходимо будет открыть доступ к нему на время сдачи). Во время данного экзамена пользоваться никакими материалами нельзя. Также запрещено куда-нибудь уходить, с кем-либо общаться во время экзамена, уводить взгляд с экрана компьютера. Общение с проктором происходит через чат. Для сдачи экзамена с прокторингом необходимо предварительно записаться. На данном курсе это можно было сделать с 4 декабря по 28 декабря с понедельника по пятницу с 9.00 до 23.00 и в субботу с 9.00 до 12.00. Для сдачи итогового экзамена необходимо на компьютер установить google chrome и расширение к нему Examus .

Когда я сдавал экзамен проктор потребовал от меня, чтобы я поднял мой ноутбук и показал ему весь свой стол, за которым я сидел, а также включить люстру, так как ему было темно и не видно, хотя у меня были включены лампа и торшер. Также для идентификации личности необходимо показать свой паспорт на вебкамеру и его сфотографировать и фото отправить.

После успешного освоения данного курса по почте высылают удостоверение о повышении квалификации. Данный курс я прошел полностью бесплатно. Система оценивания 100-балльная. Чтобы получить удостоверение о повышении квалификации, необходимо было набрать не менее 40% по практическим заданиям и не менее 60% по промежуточным тестам, тестированию по модулям и экзамену. К примеру, на экзамене с прокторингом я набрал 95 баллов. Для общения предусмотрен форум, где можно задать команде курса вопросы, высказать ей свое мнение по теме, обсудить материал с другими слушателями и помочь им в его понимании.

Для желающих зачесть пройденный онлайн-курс при освоении образовательной программы бакалавриата или специалитета в вузе предусмотрена уникальная для России возможность получения сертификатов, электронная версия которого размещается на сайте Санкт-Петербургского политехнического университета Петра Великого: http://open.spbstu.ru/02-cert/

В общем виде сертификат выглядит так:

Приложение к нему:

О курсе

Курс разработан Санкт-Петербургским политехническим университетом Петра Великого, Центром НТИ «Новые производственные технологии» на базе ИППТ СПбПУ совместно с мировым лидером в области ERP-систем SAP, ведущим отечественным Инжиниринговым центром CompMechLab при поддержке Северо-Западного регионального центра компетенций в области онлайн-обучения.

Предлагаемые в курсе материалы уникальны, публикуются в такой системной подаче впервые.

Из википедии:

Алексе́й Ива́нович Боровко́в (род. 7 июня 1955, Ленинград) - советский и российский ученый в области вычислительной механики и компьютерного инжиниринга, член-корреспондент Российской инженерной академии и Международной академии наук высшей школы (МАН ВШ), Почетный работник сферы образования Российской Федерации (2017).

Область научных интересов - вычислительная механика и компьютерный инжиниринг (Computer-Aided Engineering), мульти- и трансдисциплинарные компьютерные технологии для решения промышленных задач, передовые производственные технологии.

По инициативе А. И. Боровкова в 1987 году на кафедре «Механика и процессы управления» физико-механического факультета Политехнического университета организована учебная и научно-исследовательская лаборатория «Вычислительная механика» (Computational Mechanic Laboratory - CompMechLab), заведующим которой он стал. На базе УНИЛ «Вычислительная механика» затем были созданы Центр наукоемких компьютерных технологий (Centre of Excellence - первый в СПбПУ центр превосходства, 2003 г.), высокотехнологичная инжиниринговая spin-out компания ООО Лаборатория «Вычислительная механика» (2006 г.), малое инновационное предприятие ООО «Политех-Инжиниринг» (2011 г.) и Инжиниринговый центр «Центр компьютерного инжиниринга» СПбПУ (2013 г.).

В настоящее время группа компаний функционирует под общим брендом CompMechLab® (CML).

А. И. Боровков - лидер мегапроекта федерального значения по созданию Фабрик Будущего в России, представленного и поддержанного на расширенном заседании экспертного совета 21 июля 2016 года.

Научно-исследовательская, просветительская, инновационная и предпринимательская деятельность А. И. Боровкова многократно получала высокую оценку экспертного сообщества и была отмечена разнообразными частными, общественными и государственными премиями, среди которых: премия Правительства Санкт-Петербурга «За выдающиеся достижения в области высшего профессионального образования» - цикл работ «Подготовка конкурентоспособных специалистов нового поколения, обладающих компетенциями мирового уровня» в научной области «Механика, машиностроение, вычислительная механика и компьютерный инжиниринг» - в номинации «Научные достижения, способствующие повышению качества подготовки специалистов и кадров высшей квалификации» (2008); XI независимая бизнес-премия «Шеф года», реализуемая федеральной группой деловых проектов Chief Time и журналом «Человек Дела» (2017) и многие другие.

В 2017 году ООО Лаборатория «Вычислительная механика» (головная компания CompMechLab®) стала лауреатом национальной промышленной премии Российской Федерации «Индустрия».

ООО Лаборатория «Вычислительная механика» разработала цифровую мультидисциплинарную кросс-отраслевую платформу для создания глобально конкурентоспособной продукции нового поколения CML-Bench . Платформа CML-Bench предназначена для автоматизации ключевых инженерных процессов, связанных с мгновенной кастомизацией, цифровым проектированием, моделированием, виртуальными испытаниями и подготовкой всей необходимой производственной документации, посредством трансдисциплинарного и надотраслевого компьютерного инжиниринга. Платформа CML-Bench является основой для создания Цифровых Фабрик Будущего – систем комплексных технологических решений по производству продуктов от этапа формализации базовых принципов изделия до этапа создания «умного» цифрового двойника на основе цифрового проектирования и моделирования с применением передовых производственных технологий.

Компания работает на мировом технологическом фронтире с компаниями-лидерами в своих отраслях, что позволяет постоянно наращивать уровень своих компетенций и сохранять глобальную конкурентоспособность уже на протяжении 10 лет. В своей работе компания применяет уникальную собственную разработку – CML-Цифровую платформу CML-Bench, которая лежит в основе CML-Экспертной интеллектуальной системы CML-AI – «интеллектуального помощника» системного инженера. Это делает возможным интеграцию на одной виртуальной площадке широкого арсенала лучшего мирового программного обеспечения для решения мультидисциплинарных инженерных задач, инфраструктуры суперкомпьютерных вычислительных мощностей и инженеров с компетенциями мирового уровня.

Портфель продуктов ООО Лаборатория «Вычислительная механика»:

Создание «цифровых двойников» изделий и процессов;
- Цифровое проектирование и моделирование узлов и агрегатов, изделий и технологических процессов их производства;
- Проведение виртуальных испытаний конструкций и изделий;
- Исследования свойств материалов, ресурса конструкций, оценка технологических процессов;
- Проектирование и исследование изделий из композиционных материалов и композитных структур;
- Проектирование изделий под заданную технологию производства: литье, штамповка, фрезеровка, аддитивное производство.

Сотрудники CompMechLab® имеют многолетний успешный опыт выполнения работ по заказам: отечественных высокотехнологичных компаний: госкорпораций “Ростех”, “Росатом”, “Роскосмос”, “Газпром”, “Концерн ВКО “Алмаз-Антей”, Объединенная авиастроительная корпорация, Объединенная двигателестроительная корпорация, Объединенная ракетно-космическая корпорация, Объединенная судостроительная корпорация, а также компаний Ракетно-космическая корпорация “Энергия” им. С.П. Королёва, АВТОВАЗ, КАМАЗ, “Силовые машины”, “Северсталь”, “ВСМПО-АВИСМА”, ФГУП НАМИ, АО «Климов» и многих других зарубежных высокотехнологичных компаний: ABB, Airbus, Alcoa, Boeing, BMW Group (BMW, MINI, Rolls-Royce), Daimler, Ferrari, General Electric, General Motors, LG Electronics, Samsung, Schlumberger, Siemens, Volkswagen Group (Audi, Bugatti Automobiles, Porsche, Volkswagen), Weatherford и др. С 2017 года CompMechLab ведёт активную работу с китайскими автопроизводителями. В числе заказчиков такие компании как BAIC Corp, Chery Automobile Corporation, а также Центральный Китайский автомобильный институт China Automotive Technology and Reseach Center (CATARC). В числе компаний, включившихся в создание Цифровых Фабрик Будущего в партнёрстве с CompMechLab, предприятия российской автомобильной промышленности – ГНЦ РФ ФГУП НАМИ (в рамках реализации проекта государственного значения «Единая модульная платформа» («Кортеж»)), ПАО «УАЗ» (в рамках реализации проекта по созданию внедорожника нового поколения), производитель современных автобусов – ООО «Бакулин Моторс Групп», двигателестроительное предприятие ПАО «ОДК-Сатурн» (входит в Объединённую двигателестроительную корпорацию) и АО «Средне-Невский судостроительный завод» (входит в Объединенную судостроительную корпорацию); высокотехнологичные предприятия Республики Татарстан – АО «НПО «ОКБ им. М.П. Симонова», АО «Казанское моторостроительное производственное объединение», ОАО «Казанский вертолетный завод», ПАО «КАМАЗ»; на данный момент отобраны наиболее актуальные отраслевые и корпоративные проблемы-вызовы для создания Фабрики Будущего с Объединенной авиастроительной корпорацией (ОАК).

ООО Лаборатория «Вычислительная механика» работает на мировом технологическом «фронтире», с компаниями-лидерами в своих отраслях, что позволяет перманентно наращивать уровень своих компетенций и сохранять глобальную конкурентоспособность уже на протяжении 10 лет. Компания в своей работу применяет уникальную собственную разработку – CML-цифровую платформу CML-Bench, которая лежит в основе CML-интеллектуальной систему CML-AI –« интеллектуального помощника» системного инженера. Это делает возможным интеграцию на одной виртуальной площадке широкого арсенала лучшего мирового программного обеспечения для решения мультидисциплинарных инженерных задач, инфраструктуры суперкомпьютерных вычислительных мощностей и инженеров с компетенциями мирового уровня.

Все ли слушатели курсов могут похвастаться, что куратором их курса был такой человек, как Боровков А.И.!?

Если вы являетесь руководителем компании или инженером, то я рекомендую пройти курс "Технологии «Фабрик Будущего»". Использование передовых производственных технологий и цифровая трансформация компании повысит производительность труда и рентабельность компании. Именно технологии, описанные в данном курсе, смогут повысит темпы роста российской экономики и повысить уровень жизни населения.

Фабрики Будущего - это определенный тип системы бизнес-процессов, способ комбинирования бизнес-процессов, который имеет следующие характеристики:

    создание цифровых платформ, своеобразных экосистем передовых цифровых технологий. На основе предсказательной аналитики и больших данных платформенный подход позволяет объединить территориально распределенных участников процессов проектирования и производства, повысить уровень гибкости и кастомизации с учетом требований потребителей;

    разработка системы цифровых моделей как новых проектируемых изделий, так и производственных процессов. Цифровые модели должны обладать высоким уровнем адекватности реальным объектам и реальным процессам (конвергенция материального и цифрового миров, порождающих синергетические эффекты);

    цифровизация всего жизненного цикла изделий (от концепт-идеи, проектирования, производства, эксплуатации, сервисного обслуживания и до утилизации). Чем позже вносятся изменения, тем их стоимость больше, а потому центр тяжести смещается в сторону процессов проектирования, в рамках которых закладываются характеристики глобальной конкурентоспособности или высокие потребительские требования.

На этапе формирования Фабрик Будущего происходит и формирование новых ключевых компетенций, например:

    быстрая кастомизация отклика на запросы Рынка или Заказчика;

    использование системных подходов (системный инжиниринг), когда необходимо в каждый момент времени держать в поле зрения всю систему, все ее взаимодействующие компоненты;

    формирование многоуровневой матрицы целевых показателей и ограничений как основы нового проектирования, значительно снижающего риски, объемы натурных испытаний и объемы работ, связанных с «доводкой изделий и продукции на основе испытаний»;

    разработка и валидация («сравнение с экспериментами») математических моделей с высоким уровнем адекватности реальным объектам и реальным процессам - так называемые «умные» модели;

    управление изменениями на протяжении всего жизненного цикла;

    «цифровая сертификация», основанная на тысячах виртуальных испытаний как отдельных компонентов, так и всей системы в целом.

Фабрики будущего. Ключевые понятия

Цифровые фабрики (Digital Factory) - системы комплексных технологических решений, обеспечивающие в кратчайшие сроки проектирование и производство глобально конкурентоспособной продукции нового поколения от стадии исследования и планирования, когда закладываются базовые принципы изделия, и заканчивая созданием цифрового макета (Digital Mock-Up, DMU), «цифрового двойника» (Smart Digital Twin), опытного образца или мелкой серии («безбумажное производство», «всё в цифре»). Цифровая фабрика подразумевает наличие «умных» моделей продуктов или изделий (машин, конструкций, агрегатов, приборов, установок и т. д.) на основе новой парадигмы цифрового проектирования и моделирования Smart Digital Twin - [(Simulation & Optimization) Smart Big Data]-Driven Advanced (Design & Manufacturing).

«Умные» фабрики (Smart Factory) - системы комплексных технологических решений, обеспечивающие в кратчайшие сроки производство глобально конкурентоспособной продукции нового поколения от заготовки до готового изделия, отличительными чертами которого является высокий уровень автоматизации и роботизации, исключающий человеческий фактор и связанные с этим ошибки, ведущие к потере качества («безлюдное производство»). В качестве входного продукта «Умных» фабрик, как правило, используются результаты работы Цифровых фабрик. «Умная» фабрика обычно подразумевает наличие оборудования для производства - станков с числовым программным управлением, промышленных роботов и т. д., а также автоматизированных систем управления технологическими процессами (Industrial Control System, ICS) и систем оперативного управления производственными процессами на уровне цеха (Manufacturing Execution System, MES).

Виртуальные фабрики (Virtual Factory) - системы комплексных технологических решений, обеспечивающие в кратчайшие сроки проектирование и производство глобально конкурентоспособной продукции нового поколения за счет объединения Цифровых и (или) «Умных» фабрик в распределенную сеть. Виртуальная фабрика подразумевает наличие информационных систем управления предприятием (Enterprise Application Systems, EAS), позволяющих разрабатывать и использовать в виде единого объекта виртуальную модель всех организационных, технологических, логистических и прочих процессов на уровне глобальных цепочек поставок (поставки => производство => дистрибьюция и логистика => сбыт => послепродажное обслуживание) и (или) на уровне распределенных производственных активов.

Фабрики будущего. Испытательные полигоны (Testbeds)

Для того чтобы формировать Фабрики Будущего, отбирая и комплексируя различные лучшие в мире технологии с добавлением собственных кросс-отраслевых интеллектуальных ноу-хау, необходимо иметь место, где их можно было бы опробовать на практике, в среде, отвечающей реальным условиям. Для этих целей дорожной картой «Технет» в 2017-2019 гг. предусмотрен запуск трех испытательных полигонов (TestBeds):

Испытательного полигона для генерации Цифровых, «Умных», Виртуальных Фабрик Будущего на базе первого в России Института передовых производственных технологий (ИППТ) СПбПУ;

Экспериментально-цифровых центров сертификации на базе Сколковского института науки и технологий и МГУ им. М.В. Ломоносова